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Reachability problem in timed automata:  
abstractions, bounds, and search order
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The reachability problem for timed automata:
Given a timed automaton, decide if there is an execution reaching 
a green state.

Thm [Alur & Dill’94]:
The reachability problem is PSPACE-complete.



Motivation

Reachability problem is the basic problem for timed automata. 

Dually: one can think of it as of asking for a proof that a green state is not 
reachable. Such a proof is an interesting object: it is an invariant on a timed 
system.

The goal is to provide relatively small invariants, and represent them in a 
succinct way.

We hope that some of these methods can apply also to more complicated 
settings.

In this talk: abstractions + search order



Zones

Key idea: Maintain sets of valuations reachable along a path
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The key idea: Maintain sets of valuations reachable along the path. 

Zone: a set of valuations defined by conjunctions of constraints.
x<c,   x-y>c,   x>d,   x-y>d 

Fact: the « post » of a zone is a zone.



Thm [Soundness and completeness]:
The zone graph preserves state reachability.

Zones and zone graph

I Zone: set of valuations defined by
conjunctions of constraints:

x ≥ c

x ≠ y ≥ c

e.g. (x ≠ y Ø 1) · (y < 2)

I Representation: by DBM [Dil89]

Sound and complete [DT98]
Zone graph preserves state reachability
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Zone graph



Trying to solve reachability with zones

Fact:
The algorithm is correct, but it may not terminate.

Standard reachability algorithm

1 f u n c t i o n reachability check(A)
2 W := {(s0,Z0)} ; P := W // Invariant: W ✓ P

3

4 wh i l e (W 6= ;) do
5 take and remove a node (s,Z) from W

6 i f (s i n A)
7 r e t u r n Yes
8 e l s e
9 f o r each (s,Z) ) (s0,Z 0)

10 i f (s0,Z 0) 62 P

11 add (s0,Z 0) to W and to P

12 r e t u r n No

I Algorithm reachability check terminates and it is correct

I Any search policy can be implemented in line 5.
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Problem of non-termination
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Standard reachability algorithm
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Fact:
The algorithm is correct, but it may not 
terminate.
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{x, y}

(q0, x ≠ y = 0)

(q1, x ≠ y = 0)

(q1, x ≠ y = 1)

(q1, x ≠ y = 2)
...

Abstract a zone to its closure

Closure

M

(Z ): valuations that can be simulated by a valuation in Z w.r.t
to guards using constants Æ M .

Lazy abstractions for timed automata - 6/22

Abstraction: a way to get termination



q0 q1

(y = 1), {y}

{x, y}

M (x) = ≠Œ

M (y) = 1
(q0, x ≠ y = 0)

(q1, x ≠ y = 0)

(q1, x ≠ y = 1)

x ≠ y = 1 ™ Closure
M

(x ≠ y = 0)

Theorem [Herbreteau, Kini, Srivathsan, W.]

Given Z , Z

Õ and M the inclusion Z

Õ ™ Closure
M

(Z ) can be verified
efficiently.

Lazy abstractions for timed automata - 7/22

Abstraction: a way to get termination

ClosureM(Z): 
Valuations that can be simulated by a valuation in Z w.r.t. automata with 
guards using c≤M.



What abstractions we can use:
Three conditions

1. Abstraction should have finite range: finitely many sets a(W).

2. Abstraction should be complete: W⊆a(W).

3. Abstraction should be sound: a(W) should contain only valuations 

simulated by W.

Condition 1: Abstractions should have finite range

Condition 2: Abstractions should be sound ∆ a(W ) can contain
only valuations simulated by W
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q ,

Question: Why not add all the valuations simulated by W ?
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Reachability algorithm with an abstraction
Standard reachability algorithm

1 f u n c t i o n reachability check(A)
2 W := {(s0, a(Z0))} ; P := W // Invariant: W ✓ P

3

4 wh i l e (W 6= ;) do
5 take and remove a node (s,Z) from W

6 i f (s i s a c c e p t i n g i n A)
7 r e t u r n Yes
8 e l s e
9 f o r each (s,Z) )a (s0,Z 0) // Z

0 = a(post(Z))
10 i f (s0,Z 0) 62 P

11 add (s0,Z 0) to W and to P

12 r e t u r n No

I Algorithm reachability check terminates and it is correct

I Any search policy can be implemented in line 5.
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Fact:
If a(W) is a sound and complete abstraction that has finite range then  

the algorithm is correct, and it terminates.



Subsumption: an important optimisation

If a green state is reachable from (q,Z), and Z⊆Z’ then 

it is also reachable from (q,Z’). 

We say that (q,Z) is subsumed by (q,Z’).

Cor:
Keep only nodes that are maximal with respect to subsumption. 



Reachability algorithm with node subsumption

1 f u n c t i o n reachability check(A)
2 W := {(s0, a(Z0))} ; P := W

3

4 wh i l e (W 6= ;) do
5 take and remove a node (s,Z) from W

6 i f (s i s a c c e p t i n g i n A)
7 r e t u r n Yes
8 e l s e
9 f o r each (s,Z) )a (s0,Z 0) // Z

0 = a(post(Z))
10 i f (s0,Z 0) i s not subsumed by any node i n P

11 add (s0,Z 0) to W and to P

12 remove a l l nodes subsumed by (s0,Z 0) from P and W

13 r e t u r n No

I Algorithm reachability check terminates and it is correct

I Implemented in state-of-the-art tool UPPAAL

I Node subsumption is frequent due to abstractions
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Reachability algorithm with subsumption

Node subsumption is frequent due to abstractions.
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Time abstract simulation

Abstraction based on simulation

Fact: An abstraction based on simulation is sound and complete.

A time-abstract simulation is a relation between configurations (s, v) � (s
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Abstraction based on simulation

Thm [Laroussinie, Schnoebelen 2000]
Computing the coarsest time-abstract simulation for a given 
automaton is EXPTIME-hard.

For every clock x, let L(x) be the sup over constants occurring in 

lower bound guards of the automaton (x>c, x≥c).

Similarly U(x) but for upper bounds (x<c, x≤c)

LU bounds for a given automaton

Idea: compute the coarsest time-abstract simulation for all 
automata with a given LU bounds.
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Defintion [Behrmann, Bouyer, Larsen, Pelanek]:

The coarsest abstraction for all automata 
with a given LU.

Thm: 



A comparison of different abstractions
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The same algorithm but with a_LU. We store only Z

Remarks:
We store only zones not the abstractions of zones.

This is possible since we do 

Observe that LU can change during the execution.


Reachability algorithm with node subsumption

1 f u n c t i o n reachability check(A)
2 W := {(s0,Z0)} ; P := W

3

4 wh i l e (W 6= ;) do
5 take and remove a node (s,Z) from W

6 i f (s i s a c c e p t i n g i n A)
7 r e t u r n Yes
8 e l s e
9 f o r each (s,Z) ) (s0,Z 0) // Z

0 = post(Z)
10 i f Z

0 ✓ a
LU

(Z 00) f o r some (s0,Z 00) i n P // subsumption
11 then nop
12 e l s e
13 add (s0,Z 0) to W and to P

14 remove a l l nodes subsumed by (s0,Z 0) from P and W

15 r e t u r n No

I Algorithm reachability check terminates and it is correct

I Implemented in state-of-the-art tool UPPAAL

I Node subsumption is frequent due to abstractions
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Thm: 

The test

In general is not a zone.

Thus the inclusion test is as efficient as testing Z⊆Z’
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More than 106 unnecessary nodes



Static analysis [BBFL03], [UPPAAL]

Key idea: Bounds for every q of the automaton

q0 q1 q2

(y = 1), {y}

{x}
x � 106

M0(x) = �1
M0(y) = 1

M1(x) = 106

M1(y) = �1

(q0, x � y = 0)

(q0, x � y = 1) (q1, 0  x  y)

(q2, 10
6  x  y)

Lazy abstractions for timed automata - 12/26

Static analysis [Behrmann, Bouyer, Fleury, Larsen]

Key idea:
Different bounds for every state of the automaton.
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However
However...

q0 q1 q2

(y = 1), {y}

x = 1 ^ y = 2
x � 106

M0(x) = 106

M0(y) = 2

M1(x) = 106

M1(y) = �1

Static analysis gives more than 10

6
nodes in the zone graph

Need to look at semantics

Lazy abstractions for timed automata - 13/26

Static analysis gives more than 106 nodes in the zone graph.
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On-the-fly bounds [HKSW11]
Key idea: Bounds for every (q,Z ) of the zone graph

.

.

.

.

.

.

.

.

.

constants at

depend on subtree

Lazy abstractions for timed automata - 14/26

On-the-fly bounds

Key idea:
Bounds for every (q,Z) of the zone graph




q0 q1 q2

(y = 1), {y}

x = 1 ^ y = 2
x � 106

(q0, x � y = 0)

(q0, x � y = 1)

(q0, x � y = 2)

(q0, x � y = 3)

(x : 1, y : 2)

(x : 1, y : 2)

(x : 1, y : 2)

Lazy abstractions for timed automata - 15/26
Semantics tells us that q1 is unreachable, no need to consider the big 
bound for x.




Two ways of getting bounds

Static analysis:
LU bounds for every state q

On-the-fly
LU bounds for every pair (q,Z); obtained by constant propagation 
during the run of the algorithm.

Being able to quickly change LU bounds in our algorithm is very 
important here
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Observation 1
If all edges are enabled in the zone graph then we 
 do not need bounds at all.

q0 q1 q2

(y = 1), {y}

x Ø 106

(q0, x ≠ y = 0)

(q0, x ≠ y = 1) (q1, x ≠ y = 0)

(q2, x ≠ y = 0 · x Ø 106)

Trigger bounds propagation only when a disabled edge is seen

Lazy abstractions for timed automata - 14/22

q0 q1 q2

(y = 1), {y}

x Ø 106

(q0, x ≠ y = 0)

(q0, x ≠ y = 1) (q1, x ≠ y = 0)

(q2, x ≠ y = 0 · x Ø 106)

Trigger bounds propagation only when a disabled edge is seen

Lazy abstractions for timed automata - 14/22

On-the-fly propagation 
would give 106 nodes



Observation 2

If some edge is disabled in the zone graph, it is 
enough to consider only the guards that were 
responsible for the edge to be disabled.

q0 q1 q2 q3 q4
x Ø 5 y Ø 5 y > 100

w Æ 2

(q0, x = y = w Ø 0)

(q1, x = y = w Ø 5)

(q2, x = y = w Ø 5)

(q3, x = y = w > 100)

w Æ 2

x Ø 5 is responsible

M (x) = 5, M (w) = 2, M (y) = ≠Œ

Lazy abstractions for timed automata - 16/22

L(x)=5, 
U(w)=2

No bound for y!
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Lazy propagation

A new efficient propagation algorithm based on relation between
successor zones
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Lazy propagation algorithm
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M

n�2 �
n�1 := Closure

M

n�2 (Zn�2) if Z
n�2 ✓ �

n�1, don’t take g

n�1

M1 �1 := Closure
M1 (Z1) if Z1 ✓ �2, don’t take g2

M0 �1 := Closure
M0 (Z0) if Z0 ✓ �1, don’t take g1
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Lazy propagation algorithm



Exponential gain
Example [Lugiez, Niebert, Zennou’05]

Lazy: gives constants only for some pair (x
i

, y

i

) in any path (polynomial zone

graph)

Static: gives constants for all clocks (exponential)
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Example [Lugiez, Niebert, Zennou’05]

Lazy: gives constants only for some pair (x
i

, y

i

) in any path (polynomial zone

graph)

Static: gives constants for all clocks (exponential)

Lazy abstractions for timed automata - 19/22

Lazy: constraints only for one pair on each path
On-the-fly: Gives constraints on k clocks depending on the order 
of exploration.



clocks UPPAAL	(-C) static lazy
nodes sec. nodes sec. nodes sec.

CSMA/CD	10 11 120.845										 1,12 78.604																					 1,89 78.604																 2,10
CSMA/CD	11 12 311.310										 3,23 198.669																			 5,07 198.669														 5,64
CSMA/CD	12 13 786.447										 8,87 493.582																			 13,58 493.582														 14,71
C-CSMA/CD	6 6 8.153															 0,19 1.876																			 0,09
C-CSMA/CD	7 time	out 180,00 18.414																 0,97
C-CSMA/CD	8 time	out 180,00 172.040														 10,36
FDDI	50 151 Timeout	after	60min 10.299																					 13,61 401																						 0,40
FDDI	70 211 20.019																					 65,86 561																						 1,36
FDDI	140 421 Timeout 1.121																			 18,25
Fischer	9 9 135.485										 1,17 135.485																			 3,23 135.485														 4,38
Fischer	10 10 447.598										 5,04 447.598																			 12,73 447.598														 17,27
Fischer	11 11 1.464.971							 20,50 1.464.971																 46,97 1.464.971											 67,61
Critical	region	3 3 3.925															 0,03 3.872																							 0,06 3.900																			 0,08
Critical	region	4 4 78.049												 0,50 75.858																					 1,80 80.291																 2,81
Critical	region	5 5 1.768.806							 27,25 1.721.686																 72,82 2.027.734											 140,55

Experiments
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Reachability algorithm with node subsumption

1 f u n c t i o n reachability check(A)
2 W := {(s0, a(Z0))} ; P := W

3

4 wh i l e (W 6= ;) do
5 take and remove a node (s,Z) from W

6 i f (s i s a c c e p t i n g i n A)
7 r e t u r n Yes
8 e l s e
9 f o r each (s,Z) )a (s0,Z 0) // Z

0 = a(post(Z))
10 i f (s0,Z 0) i s not subsumed by any node i n P

11 add (s0,Z 0) to W and to P

12 remove a l l nodes subsumed by (s0,Z 0) from P and W

13 r e t u r n No

I Algorithm reachability check terminates and it is correct

I Implemented in state-of-the-art tool UPPAAL

I Node subsumption is frequent due to abstractions

13/35

Reachability algorithm with subsumption

Node subsumption is frequent due to abstractions.



How the algorithm works

(s0,Z0)

(s1,Z1)

(s2,Z2)

(s3,Z3) (s4,Z4)

. . . . . .

(s1,Z 0
1) (s1,Z 00

1 )

(s2,Z 00
2 )

(s3,Z 00
3 )

. . .

(s4,Z 00
4 )

✓ ⇢

⇢

⇢ =
mistakes

However, this algorithm is sensitive to the search order
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Algorithm with subsumption is sensitive to 
the search order

A situation when a node is created and then removed is called mistake.



Limiting the impact of mistakes

q1

q2

q3

q4

. . . . . .

y > 1

y  5

(q1, true)

(q3, y > 1) (q2, true)

(q4, y > 1) (q3, true)
⇢

. . . (q4, true)

. . .

Goal: stop waiting nodes in the subtree of a subsumed node

16/35

A bad exploration order
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Better approach: give priority to big nodes

I Priority among waiting nodes (default: 0)

I Big nodes get higher priority than small waiting nodes

I True zone nodes get priority 1

q1

q2

q3

q4

. . . . . .

y > 1

y  5

(q1, true) 0

(q3, y > 1)0 (q2, true) 0

(q4, y > 1)0 (q3, true) 1
⇢

in waiting queue

(q4, true) 0
⇢

. . .

18/35

Priorities to big nodes

When a node covers another then it gets a higher priority than all the 
nodes it covers.
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Priorities to big nodes

When a node covers another then it gets a higher priority than all the 
nodes it covers.



Priorities to big nodes

When a node covers another then it gets a higher priority than all the 
nodes it covers.

Moreover: true zone gets the biggest priority.

Better approach: give priority to big nodes

I Priority among waiting nodes (default: 0)

I Big nodes get higher priority than small waiting nodes

I True zone nodes get priority 1

q1

q2

q3

q4

. . . . . .

y > 1

y  5

(q1, true) 1

(q3, y > 1)0 (q2, true) 1

(q3, true) 1⇢

(q4, true) 1

. . .No mistake
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Algorithm with subsumption-based priority

1 f u n c t i o n reachability check(A)
2 W := {(s0, a(Z0))} ; P := W

3

4 wh i l e (W 6= ;) do
5 take and remove a node (s,Z) w i th h i g h e s t p r i o r i t y from W

6 i f (s i s a c c e p t i n g i n A)
7 r e t u r n Yes
8 e l s e
9 f o r each (s,Z) )a (s0,Z 0) // Z

0 = a(post(Z))
10 i f (s0,Z 0) i s not subsumed by any node i n P

11 add (s0,Z 0) to W and to P

12 update p r i o r i t y of (s0,Z 0) w. r . t . subsumed nodes
13 remove a l l nodes subsumed by (s0,Z 0) from P and W

14 r e t u r n No

I Algorithm reachability check terminates and it is correct

I Updating priorities requires to maintain P as a reachability
tree

19/35

Algorithm with priorities

Updating priorities requires to maintain P as a reachability tree.



Efficiency depends on early detection of 
mistakes

Limit of this approach

E�ciency relies on early detection of mistakes

(q1,Z1)

(q3,Z3)

(q4,Z4)

. . .

(q2,Z2)

...

(q3,Z 0
3)

⇢

(q4,Z 0
4)

. . .

. . .

⇢
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The origin of mistakes

q1

q2

q3

q4

. . . . . .

y > 1

y  5

(q1, true)

(q3, y > 1) (q2, true)

(q4, y > 1) (q3, true)
⇢

I Join states in A with incoming
paths of di↵erent lengths

I Solution: wait for “all” paths to
join in such states before exploring
any further

22/35

The origin of mistakesThe origin of mistakes
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any further
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• Different paths merging in the same 
state; but with different zones 


• Solution: wait for all paths to arrive 
before exploring from a state. 



How to wait for all paths to arrive?Acyclic automata

q1

q2

q3

q4

. . . . . .

y > 1

y  5

4

3

2

1

Topological order on the states of A

(q1, true) 4

(q3, y > 1)2 (q2, true) 3

(q3, true) 2
⇢

(q4, true)

. . .

1

No mistake

Topological ordering guarantees absence of mistake for acyclic
automata
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For acyclic automata use a 
topological order

Acyclic automata

q1

q2

q3

q4

. . . . . .

y > 1

y  5

4

3

2

1

Topological order on the states of A

(q1, true) 4

(q3, y > 1)2 (q2, true) 3

(q3, true) 2
⇢

(q4, true)

. . .

1

No mistake

Topological ordering guarantees absence of mistake for acyclic
automata

23/35

Topological order guarantees absences of mistakes during exploration.



Automata with cycles:  
how to find an ordering that works?

Automata with cycles

q1

q2

q3

q4

. . . . . .

y > 1

y  5

Solution: Topological order on the
unfolding of A

Simulated as follows:

I Compute a topological order on A

with broken cycles (DFS on A)

I Transitions in A from low priority
state to high priority state moves
to next level

I Nodes subsumption ignores levels

24/35



Automata with cycles

q1

q2

q3

q4

. . . . . .

q1

q2

q3

...

y > 1

y  5

y > 1

level 0

level 1

4

3

2

1

4

3

2

Solution: Topological order on the
unfolding of A

Simulated as follows:

I Compute a topological order on A

with broken cycles (DFS on A)

I Transitions in A from low priority
state to high priority state moves
to next level

I Nodes subsumption ignores levels

24/35

Use topological ordering on the unfolding 

• Compute a topological order on a 
spanning tree of A (DFS on A)


• Transitions going against this order 
increase the level counter

Static analysis:



Algorithm with topological-based priority

1 f u n c t i o n reachability check(A)
2 level(s0, a(Z0)) := 0
3 W := {(s0, a(Z0))} ; P := W

4

5 wh i l e (W 6= ;) do
6 take and remove a node (s,Z) w i th l owe s t l e v e l ,
7 then h i g h e s t t o p o l o g i c a l o r d e r i n g from W

8 i f (s i s a c c e p t i n g i n A)
9 r e t u r n Yes

10 e l s e
11 f o r each (s,Z) )a (s0,Z 0) // Z

0 = a(post(Z))
12 i f (s0,Z 0) i s not subsumed by any node i n P

13 i f (s0,Z 0) has h i g h e r t o p o l o g i c a l o r d e r i n g than (s,Z)
14 level(s0,Z 0) := level(s,Z) + 1
15 e l s e
16 level(s0,Z 0) := level(s,Z)
17 add (s0,Z 0) to W and to P

18 remove a l l nodes subsumed by (s0,Z 0) from P and W

19 r e t u r n No

I Algorithm reachability check terminates and it is correct

I Topological ordering computed in linear time over A

25/35

Algorithm with topological order

Algorithm terminates and is correct

Topological ordering on A can be computed in linear time



Algorithm with topological order
Topological ordering on A can be computed in linear time
Networks of automata

q0

q1

s0

s1 s2

t0

t1⇥ ⇥ . . . ⇥

How to get topological ordering for the network of automata?

I Computing the product automaton is too expensive

I Topological ordering/level is defined pointwise

I (q0, . . . , qn) topo

(q00, . . . , q
0
n

) i↵ q

i

i

topo

q

0
i

for every i

I level increases whenever it increases for one of the processes

26/35

Compute a topological order for each of the components

Then use the point-wise order:


the level of a tuple is the maximal level over its components.

Networks of automata

q0

q1

s0

s1 s2

t0

t1⇥ ⇥ . . . ⇥

How to get topological ordering for the network of automata?

I Computing the product automaton is too expensive

I Topological ordering/level is defined pointwise

I (q0, . . . , qn) topo

(q00, . . . , q
0
n

) i↵ q

i

i

topo

q

0
i

for every i

I level increases whenever it increases for one of the processes

26/35



Levels allow us to implement priorities
Subsumption-based priority is too expensive

It requires to maintain P as a reachability tree

Updating priority requires to explore the tree 

Idea: approximate subsumption-based priority using node levels

Another version of subsumption-based priority

Subsumption-based priority is expensive:

I Requires to maintain P as a reachability tree

I Updating priority nodes requires to explore the tree

Idea: implement subsumption-based priority using nodes level

small

big

⇢

big

⇢

waiting(W )

level 0

level 1

level 2

I The big node is late

I Let move “big” at the same level
than “small”

I “big” now has priority over
waiting subsumed nodes thanks
to level and “topological ordering”

28/35

When the big node comes late, 
move it to the same level as 
small.

Now big has priority over 
subsumed nodes.



Algorithm with combined strategies

1 f u n c t i o n reachability check(A)
2 level(s0, a(Z0)) := 0
3 W := {(s0, a(Z0))} ; P := W

4

5 wh i l e (W 6= ;) do
6 take and remove a node (s,Z) w i th t r u e zone , or
7 l owe s t l e v e l then h i g h e s t t o p o l o g i c a l o r d e r i n g from W

8 i f (s i s a c c e p t i n g i n A)
9 r e t u r n Yes

10 e l s e
11 f o r each (s,Z) )a (s0,Z 0) // Z

0 = a(post(Z))
12 i f (s0,Z 0) i s not subsumed by any node i n P

13 i f (s0,Z 0) subsumes some node i n P and/ or W

14 level(s0,Z 0) := min l e v e l of subsumed nodes
15 e l s e i f (s0,Z 0) has h i g h e r topo . o r d e r i n g than (s,Z)
16 level(s0,Z 0) := level(s,Z) + 1
17 e l s e
18 level(s0,Z 0) := level(s,Z)
19 add (s0,Z 0) to W and to P

20 remove a l l nodes subsumed by (s0,Z 0) from P and W

21 r e t u r n No

I Algorithm reachability check terminates and it is correct
29/35

The algorithm with levels and priorities



final m-f final m-f final m-f final m-f
B-5 63 52 11 11 16 5 11 0 11 0 11 0 11 0 11 0
B-10 1254 1233 21 229 31 10 21 0 21 0 21 0 21 0 21 0
B-15 37091 37060 31 6094 46 15 31 0 31 0 31 0 31 0 31 0

F-8 2635 2294 341 98 437 96 341 0 341 0 341 0 341 0 341 0
F-10 10219 9694 525 474 684 159 525 0 525 0 525 0 525 0 525 0
F-15 320068 318908 1160 17547 1586 426 1160 0 1160 0 1160 0 1160 0 1160 0

C-7 2424 63 2361 371 2633 272 2361 656 2361 0 2361 0 2361 0 2361 0
C-8 6238 358 5880 1425 7535 1655 5880 2098 5880 0 5880 0 5880 0 5880 0
C-9 15842 1515 14327 4721 21694 7367 14327 6100 14327 0 14327 0 14327 0 14327 0

Fi-7 11951 4214 7737 1 7737 0 7737 0 11951 4214 7737 0 7737 0 7737 0
Fi-8 40536 15456 25080 2 25080 0 25080 0 40536 15456 25080 0 25080 0 25080 0
Fi-9 135485 54450 81035 3 81035 0 81035 0 135485 54450 81035 0 81035 0 81035 0

L-8 45656 15456 30200 2 30200 0 30200 0 45656 15456 30200 0 30200 0 30200 0
L-9 147005 54450 92555 3 92555 0 92555 0 147005 54450 92555 0 92555 0 92555 0
L-10 473198 186600 286598 4 286598 0 286598 0 473198 186600 286598 0 286598 0 286598 0

CR-3 3872 857 3015 3 3405 390 3015 0 3914 899 3015 1 3231 216 3015 0
CR-4 75858 22161 53697 46 61090 7393 53697 0 77827 24130 53697 50 58165 4468 53697 0
CR-5 1721836 620903 1100933 2686 1255321 154388 1100933 0 1776712 675779 1100933 2894 1212322 111389 1100933 0

Fl-PL 881214 228265 652949 0 655653 2704 652949 0 881214 228265 652949 0 657541 4592 652949 0

mist. stored

Table 2.2: Experimental results: BFS corresponds to Algorithm 2.2 with a BFS order on the waiting nodes, Ranking-BFS implements the ranking system on top of the BFS 
algorithm (i.e. Algorithm 2.3), Waiting-BFS implements the waiting strategy on top of the BFS algorithm (i.e. Algorithm 2.4) and TWR-BFS implements the combination of 
waiting and ranking strategy (i.e. Algorithm 2.5). "visited" is the number of visited nodes, "mist." is the number of mistakes, "stored final" is the number of stored nodes 
upon termination, "stored m-f" is the difference between maximum number of stored nodes during exploration and the number of stored nodes upon termination, "visited 
ranking" is the number of visited nodes to update ranks. 

BFS Ranking-BFS Waiting-BFS TWR-BFS

visited mist. stored visited mist. stored visited mist. stored visited

Experimental results

B: blow-up,   F: FDDI,   C: CSMA-CD,    Fi: Fisher,   L: Lynch, 

CR: Critical region,  FL-PL: Flexray



Better abstractions make it more likely to subsume.

Better search order improves memory and running time. 
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Subsumtion

Coarsest
abstractions

Better
LU-bounds 

Abstractions based on
simulation

The coarsest LU-abstraction

Efficient use of the abstraction

Static bounds,
one per state

On-the-fly-bounds,
one per (state,zone) 

Lazy bounds,
from disabled edges

Better search
order

Subsumption makes the algorithm 
sensitive to exploration order

Goal: reduce mistakes
nodes that later will be deleted

Idea1: Give priority to big nodes
to minimise the effect of a mistake

Idea2: use topological order
to avoid mistakes

Algorithm with levels and priorities



Conclusions 
Good search order improves both memory and running time. 
The order we propose is easy to implement. It can serve as a 
replacement of BFS. 
The results on standard benchmarks show that the order can give 
substantial gains.


