
Probabilistic Programming is Fun, but Intricate Too

Probabilistic Programming
Fun but Intricate Too!

Joost-Pieter Katoen

with Friedrich Gretz, Nils Jansen, Benjamin Kaminski
Christoph Matheja, Federico Olmedo and Annabelle McIver

Mysore Workshop on Quantitative Verification, February 2016

Joost-Pieter Katoen Probabilistic Programming 1/77

Probabilistic Programming is Fun, but Intricate Too Introduction

Rethinking the Bayesian approach

[Daniel Roy, 2011]a

“In particular, the graphical model formalism that ushered in
an era of rapid progress in AI has proven inadequate in the
face of [these] new challenges.

A promising new approach that aims to bridge this gap is
probabilistic programming, which marries probability theory,
statistics and programming languages”

aMIT/EECS George M. Sprowls Doctoral Dissertation Award

Joost-Pieter Katoen Probabilistic Programming 2/77

Probabilistic Programming is Fun, but Intricate Too Introduction

A 48M US dollar research program

Joost-Pieter Katoen Probabilistic Programming 3/77

Probabilistic Programming is Fun, but Intricate Too Introduction

Probabilistic programs

What are probabilistic programs?
Sequential programs with random assignments and conditioning.

Applications
Security, machine learning, quantum computing, approximate computing

Almost every programming language has a probabilistic variant
Probabilistic C, Figaro, ProbLog, R2, Tabular, Rely,

Joost-Pieter Katoen Probabilistic Programming 4/77

Probabilistic Programming is Fun, but Intricate Too Introduction

Aim of this work
What do we want to achieve?
Formal reasoning about probabilistic programs à la Floyd-Hoare.

What do we need?
Rigorous semantics of random assignments and conditioning.

Approach

1. Develop a wp-style semantics with proof rules for loops
2. Show the correspondence to an operational semantics
3. Study the extension with non-determinism
4. Applications: Prove program transformations, program correctness,

program equivalence, and expected run-times of programs

We consider an “assembly” language: probabilistic guarded command language
Joost-Pieter Katoen Probabilistic Programming 5/77

Probabilistic Programming is Fun, but Intricate Too Introduction

Roadmap of this talk

1 Introduction

2 Two flavours of semantics

3 Program transformations and equivalence

4 Recursion

5 Non-determinism

6 Different flavours of termination

7 Run-time analysis

8 Synthesizing loop invariants

9 Epilogue

Joost-Pieter Katoen Probabilistic Programming 6/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

Dijkstra’s guarded command language

I skip empty statement
I abort abortion
I x := E assignment
I prog1 ; prog2 sequential composition
I if (G) prog1 else prog2 choice
I prog1 [] prog2 non-deterministic choice
I while (G) prog iteration

Joost-Pieter Katoen Probabilistic Programming 7/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

Conditional probabilistic GCL cpGCL

I skip empty statement
I abort abortion
I x := E assignment
I observe (G) conditioning
I prog1 ; prog2 sequential composition
I if (G) prog1 else prog2 choice
I prog1 [p] prog2 probabilistic choice
I while (G) prog iteration

Joost-Pieter Katoen Probabilistic Programming 8/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

Let’s start simple

x := 0 [0.5] x := 1;
y := -1 [0.5] y := 0

This program admits four runs and yields the outcome:

Pr[x =0, y =0] = Pr[x =0, y =−1] = Pr[x =1, y =0] = Pr[x =1, y =−1] = 1/4

[Hicks 2014, The Programming Languages Enthusiast]

“The crux of probabilistic programming is to consider normal-looking programs as if they
were probability distributions.”

Joost-Pieter Katoen Probabilistic Programming 9/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

A loopy program

For p an arbitrary probability:

bool c := true;
int i : = 0;
while (c) {

i := i + 1;
(c := false [p] c := true)

}

The loopy program models a geometric distribution with parameter p.

Pr[i = N] = (1−p)N−1 · p for N > 0

Joost-Pieter Katoen Probabilistic Programming 10/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

On termination

bool c := true;
int i : = 0;
while (c) {

i := i + 1;
(c := false [p] c := true)

}

This program does not always terminate. It almost surely terminates.

Joost-Pieter Katoen Probabilistic Programming 11/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

Conditioning

Joost-Pieter Katoen Probabilistic Programming 12/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

Let’s start simple

x := 0 [0.5] x := 1;
y := -1 [0.5] y := 0;
observe (x+y = 0)

This program blocks two runs as they violate x+y = 0. Outcome:

Pr[x =0, y =0] = Pr[x =1, y =−1] = 1/2

Observations thus normalize the probability of the “feasible” program runs

Joost-Pieter Katoen Probabilistic Programming 13/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

A loopy program
For p an arbitrary probability:

bool c := true;
int i : = 0;
while (c) {

i := i + 1;
(c := false [p] c := true)

}
observe (odd(i))

The feasible program runs have a probability
∑

N>0 (1−p)2N ·p = 1/(2−p)

This models the following distribution with parameter p:
Pr[i = 2N + 1] = (1−p)2N · p · (2−p) for N > 0

Pr[i = 2N] = 0

Joost-Pieter Katoen Probabilistic Programming 14/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

Operational semantics

This can be defined using Plotkin’s SOS-style semantics

Joost-Pieter Katoen Probabilistic Programming 15/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

The piranha problem [Tijms, 2004]

Joost-Pieter Katoen Probabilistic Programming 16/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

Operational semantics

f1 := gf [0.5] f1 := pir;
f2 := pir;
s := f1 [0.5] s := f2;
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?

Consider the expected reward of successful termination without violating any observation

cer(P, [f1 = pir])(σI) = 1·1/2 + 0·1/4
1− 1/4

=
1/2
3/4

= 2/3.

Joost-Pieter Katoen Probabilistic Programming 17/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

Expectations

Weakest pre-expectation [McIver & Morgan 2004]

An expectation maps program states onto non-negative reals. It’s the
quantitative analogue of a predicate.
An expectation transformer is a total function between two expectations
on the state of a program.
The transformer wp(P, f) for program P and post-expectation f yields the
least expectation e on P’s initial state ensuring that P’s execution
terminates with an expectation f .
Annotation {e}P {f } holds for total correctness iff e 6 wp(P, f), where
6 is to be interpreted in a point-wise manner.

Weakest liberal pre-expectation wlp(P, f) = wp(P, f) + Pr[P diverges].

Joost-Pieter Katoen Probabilistic Programming 18/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

Expectation transformer semantics of cpGCL

Syntax

I skip

I abort

I x := E

I observe (G)

I P1 ; P2

I if (G) P1 else P2

I P1 [p] P2

I while (G)P

Semantics wp(P, f)

I f
I 0
I f [x := E]
I [G] · f
I wp(P1,wp(P2, f))
I [G] · wp(P1, f) + [¬G] · wp(P2, f)
I p · wp(P1, f) + (1−p) · wp(P2, f)
I µX . ([G] · wp(P,X) + [¬G] · f)

µ is the least fixed point operator wrt. the ordering 6 on expectations.

wlp-semantics differs from wp-semantics only for while and abort.

Joost-Pieter Katoen Probabilistic Programming 19/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

x := 0 [1/2] x := 1; // command c1
y := 0 [1/3] y := 1; // command c2

wp(c1; c2, [x = y])
=

wp(c1,wp(c2, [x = y]))
=

wp(c1, 1/3·wp(y := 0, [x = y]) + 2/3·wp(y := 1, [x = y]))
=

wp(c1, 1/3·[x = 0] + 2/3·[x = 1])
=

1/2·wp(x := 0, 1/3·[x = 0] + 2/3·[x = 1]) + 1/2·wp(x := 1, 1/3·[x = 0] + 2/3·[x = 1])
=

1/2· (1/3·[0 = 0] + 2/3·[0 = 1]) + 1/2· (1/3·[1 = 0] + 2/3·[1 = 1])
=

1/2· (1/3·1 + 2/3·0) + 1/2· (1/3·0 + 2/3·1)
=

1/2· (1/3 + 2/3)
=
1/2

Joost-Pieter Katoen Probabilistic Programming 20/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

The piranha program – a wp perspective
f1 := gf [0.5] f1 := pir;
f2 := pir;
s := f1 [0.5] s := f2;
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?

E(f1 = pir | P terminates) = 1·1/2 + 0·1/4
1− 1/4

=
1/2
3/4

= 2
3 .

We define cwp(P, f) = wp(P, f)
wlp(P, 1) .

wlp(P, 1) = 1− Pr[P violates an observation]. This includes diverging runs.

Joost-Pieter Katoen Probabilistic Programming 21/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

Divergence matters

abort [0.5] {
x := 0 [0.5] x := 1;
y := 0 [0.5] y := 1;
observe (x = 0 || y = 0)

}

Our approach: wp(P, f)
wlp(P, 1)

Here: cwp(P, [y = 0]) = 2
7

Microsoft’s R2 approach: wp(P, f)
wp(P, 1)

Here: cwp(P, [y = 0]) = 2
3

In general:

observe (G) ≡ while(~G) skip

Warning: This is a simple example. Typically divergence comes from loops.

Joost-Pieter Katoen Probabilistic Programming 22/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

Leave divergence up to the programmer?

Almost-sure termination is “more undecidable” than ordinary termination.
More on this follows later.

Joost-Pieter Katoen Probabilistic Programming 23/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

Infeasible programs

int x := 1;
while (x = 1) {

x : = 1
}

I Certain divergence
I Conditional termination = 0.

int x := 1;
while (x = 1) {

x : = 1 [0.5] x := 0;
observe (x = 1)

}

I Divergence with probability zero.
I Conditional termination = undefined.

These two programs are mostly not distinguished. We do.

Joost-Pieter Katoen Probabilistic Programming 24/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

Soundness?

Our wp-semantics is a conservative extension of McIver’s wp-semantics.

McIver’s wp-semantics is a conservative extension of Dijkstra’s wp-semantics.

Joost-Pieter Katoen Probabilistic Programming 25/77

Probabilistic Programming is Fun, but Intricate Too Two flavours of semantics

Weakest pre-expectations = conditional rewards

For program P and expectation f with cwp(P, f) = (wp(P, f),wlp(P, 1)):

The ratio of wp(P, f) over wlp(P, 1) for input η equals1 the conditional expected
reward to reach a successful terminal state in P’s MC when starting with η.

Expected rewards in finite Markov chains can be computed in polynomial time.

1Either both sides are equal or both sides are undefined.
Joost-Pieter Katoen Probabilistic Programming 26/77

Probabilistic Programming is Fun, but Intricate Too Program transformations and equivalence

Overview

1 Introduction

2 Two flavours of semantics

3 Program transformations and equivalence

4 Recursion

5 Non-determinism

6 Different flavours of termination

7 Run-time analysis

8 Synthesizing loop invariants

9 Epilogue

Joost-Pieter Katoen Probabilistic Programming 27/77

Probabilistic Programming is Fun, but Intricate Too Program transformations and equivalence

Importance of these results

I Unambiguous meaning to (almost) all probabilistic programs

I Operational interpretation to weakest pre-expectations

I Basis for proving correctness
I of programs
I of program transformations
I of program equivalence
I of static analysis
I of compilers
I

Joost-Pieter Katoen Probabilistic Programming 28/77

Probabilistic Programming is Fun, but Intricate Too Program transformations and equivalence

Removal of conditioning
I Idea: restart an infeasible run until all observe-statements are passed
I Change prog by adding auxiliary variable flag and:

I observe(G) becomes if(~G) flag := true
I abort becomes if(~flag)abort
I while(G) prog becomes while(G && ~flag)prog

I For program variable x use auxiliary variable sx
I store initial value of x into sx
I on each new loop-iteration restore x to sx

sx1,...,sxn := x1,...,xn; flag := true;
while(flag) {

flag := false;
x1,...,xn := sx1,...,sxn;
modprog

}

where modprog is obtained from prog as above

Joost-Pieter Katoen Probabilistic Programming 29/77

Probabilistic Programming is Fun, but Intricate Too Program transformations and equivalence

Removal of conditioning
the transformation in action:

x := 0 [p] x := 1;
y := 0 [p] y := 1;
observe(x =/= y)

sx, sy := x, y; flag := true;
while(flag) {

x, y := sx, sy; flag := false;
x := 0 [p] x := 1;
y := 0 [p] y := 1;
if (x = y) flag := true

}

a data-flow analysis yields:

x, y := 0, 0;
while(x =/= y) {

x := 0 [p] x := 1;
y := 0 [p] y := 1

}

Joost-Pieter Katoen Probabilistic Programming 30/77

Probabilistic Programming is Fun, but Intricate Too Program transformations and equivalence

Removal of conditioning

Soundness of transformation
For program P, transformed program P̂, and post-expectation f :

cwp(P, f) = wp(P̂, f)

Joost-Pieter Katoen Probabilistic Programming 31/77

Probabilistic Programming is Fun, but Intricate Too Program transformations and equivalence

A dual program transformation

repeat
a0 := 0 [0.5] a0 := 1;
a1 := 0 [0.5] a1 := 1;
a2 := 0 [0.5] a2 := 1;
i := 4*a0 + 2*a1 + a0 + 1

until (1 <= i <= 6)

a0 := 0 [0.5] a0 := 1;
a1 := 0 [0.5] a1 := 1;
a2 := 0 [0.5] a2 := 1;
i := 4*a0 + 2*a1 + a0 + 1
observe (1 <= i <= 6)

Loop-by-observe replacement if there is no data flow between loop iterations

Joost-Pieter Katoen Probabilistic Programming 32/77

Probabilistic Programming is Fun, but Intricate Too Program transformations and equivalence

Playing with geometric distributions

I X is a random variable, geometrically distributed with parameter p
I Y is a random variable, geometrically distributed with parameter q
Q: generate a sample x , say, according to the random variable X − Y

int XminY1(float p, q){ // 0 <= p, q <= 1
int x := 0;
bool flip := false;
while (not flip) { // take a sample of X to increase x

(x +:= 1 [p] flip := true);
}
flip := false;
while (not flip) { // take a sample of Y to decrease x

(x -:= 1 [q] flip := true);
}
return x; // a sample of X-Y

}

Joost-Pieter Katoen Probabilistic Programming 33/77

Probabilistic Programming is Fun, but Intricate Too Program transformations and equivalence

Program equivalence

int XminY1(float p, q){
int x, f := 0, 0;
while (f = 0) {

(x +:= 1 [p] f := 1);
}
f := 0;
while (f = 0) {

(x -:= 1 [q] f := 1);
}
return x;

}

int XminY2(float p, q){
int x, f := 0, 0;
(f := 0 [0.5] f := 1);
if (f = 0) {

while (f = 0) {
(x +:= 1 [p] f := 1);

}
} else {

f := 0;
while (f = 0) {

x -:= 1;
(skip [q] f := 1);

}
}

return x;
}

Claim: [Kiefer et al., 2012]

Both programs are equivalent for (p, q) = (12 ,
2
3).

Our (semi-automated) analysis yields:

Both programs are equivalent for any q with q = 1
2−p .

Joost-Pieter Katoen Probabilistic Programming 34/77

Probabilistic Programming is Fun, but Intricate Too Recursion

Overview

1 Introduction

2 Two flavours of semantics

3 Program transformations and equivalence

4 Recursion

5 Non-determinism

6 Different flavours of termination

7 Run-time analysis

8 Synthesizing loop invariants

9 Epilogue

Joost-Pieter Katoen Probabilistic Programming 35/77

Probabilistic Programming is Fun, but Intricate Too Recursion

Recursion

Can we also deal with recursion, such as:

P :: skip [0.5] { call P; call P; call P }

For instance, with which probability does P terminate?

Joost-Pieter Katoen Probabilistic Programming 36/77

Probabilistic Programming is Fun, but Intricate Too Recursion

Recursion

The semantics of recursive procedures is the limit of their n-th inlining:

callD
0 P = abort

callD
n+1P = D(P)[call P := callD

n P]

wp(call P, f) = supn wp(callD
n P, f)

where D is the process declaration and D(P) the body of P

This corresponds to the fixed point of a (higher order) environment transformer

Joost-Pieter Katoen Probabilistic Programming 37/77

Probabilistic Programming is Fun, but Intricate Too Recursion

Pushdown Markov chains

Joost-Pieter Katoen Probabilistic Programming 38/77

Probabilistic Programming is Fun, but Intricate Too Recursion

Wp = expected rewards in pushdown MCs

For recursive program P and post-expectation f :

wp(P, f) for input η equals the expected reward (that depends on f) to reach a
terminal state in the pushdown MC of P when starting with η.

Checking expected rewards in finite-control pushdown MDPs is decidable.

Joost-Pieter Katoen Probabilistic Programming 39/77

Probabilistic Programming is Fun, but Intricate Too Recursion

Proof rules for recursion

Standard proof rule for recursion:

wp(call P, f) 6 g derives wp(D(P), f) 6 g
wp(call P, f)[D] 6 g

call P satisfies f , g if P’ body satisfies it,
assuming the recursive calls in P ′s body do so too.

Proof rule for obtaining two-sided bounds given `0 = 0 and u0 = 0:

`n 6 wp(call P, f) 6 un derives `n+1 6 wp(D(P), f) 6 un+1
sup

n
`n 6 wp(call P, f)[D] 6 sup

n
un

Joost-Pieter Katoen Probabilistic Programming 40/77

Probabilistic Programming is Fun, but Intricate Too Recursion

The golden ratio

Extension with proof rules allows to show e.g.,

P :: skip [0.5] { call P; call P; call P }

terminates with probability
√
5− 1
2 = 1

φ
= ϕ

Or: apply to reason about Sherwood variants of binary search, quick sort etc.

Joost-Pieter Katoen Probabilistic Programming 41/77

Probabilistic Programming is Fun, but Intricate Too Recursion

Joost-Pieter Katoen Probabilistic Programming 42/77

Probabilistic Programming is Fun, but Intricate Too Non-determinism

Overview

1 Introduction

2 Two flavours of semantics

3 Program transformations and equivalence

4 Recursion

5 Non-determinism

6 Different flavours of termination

7 Run-time analysis

8 Synthesizing loop invariants

9 Epilogue

Joost-Pieter Katoen Probabilistic Programming 43/77

Probabilistic Programming is Fun, but Intricate Too Non-determinism

Non-determinism

[Gordon, Henzinger et al. 2014]

“[. . .] there are several technical challenges in adding non-determinism to
probabilistic programs."

Joost-Pieter Katoen Probabilistic Programming 44/77

Probabilistic Programming is Fun, but Intricate Too Non-determinism

Non-determinism: Operational semantics

I Use Markov decision processes (rather than Markov chains)
I Resolve the non-determinism by means of policies
I Take expected rewards over demonic policies:

Simple extension. But: conditioning needs policies with memory.

Joost-Pieter Katoen Probabilistic Programming 45/77

Probabilistic Programming is Fun, but Intricate Too Non-determinism

x := 1 [1/2] { x := 2 [] { observe(false) [1/2] x := 2.2} }

Joost-Pieter Katoen Probabilistic Programming 46/77

Probabilistic Programming is Fun, but Intricate Too Non-determinism

Non-determinism: wp-semantics

Without conditioning:

wp(P1[]P2, f) = min (wp(P1, f),wp(P2, f))

This corresponds to a demonic resolution of non-determinism

This preserves the correspondence to the operational semantics

Joost-Pieter Katoen Probabilistic Programming 47/77

Probabilistic Programming is Fun, but Intricate Too Non-determinism

Non-determinism + conditioning is problematic

It is impossible to provide a compositional wp-semantics for non-determinism in
presence of conditioning.2

2Under the assumption that non-determinism is an implementation choice.
Joost-Pieter Katoen Probabilistic Programming 48/77

Probabilistic Programming is Fun, but Intricate Too Non-determinism

Joost-Pieter Katoen Probabilistic Programming 49/77

Probabilistic Programming is Fun, but Intricate Too Non-determinism

Joost-Pieter Katoen Probabilistic Programming 50/77

Probabilistic Programming is Fun, but Intricate Too Different flavours of termination

Overview

1 Introduction

2 Two flavours of semantics

3 Program transformations and equivalence

4 Recursion

5 Non-determinism

6 Different flavours of termination

7 Run-time analysis

8 Synthesizing loop invariants

9 Epilogue

Joost-Pieter Katoen Probabilistic Programming 51/77

Probabilistic Programming is Fun, but Intricate Too Different flavours of termination

Termination

[Esparza et al. 2012]

“[Ordinary] termination is a purely topological property [. . .], but almost-sure
termination is not. [. . .] Proving almost–sure termination requires arithmetic
reasoning not offered by termination provers."

Joost-Pieter Katoen Probabilistic Programming 52/77

Probabilistic Programming is Fun, but Intricate Too Different flavours of termination

Nuances of termination

. certain termination

. termination with probability one
=⇒ almost-sure termination

. in an expected finite number of steps
=⇒ positive almost-sure termination

. for all possible program inputs
=⇒ universal [positive] almost-sure termination

Joost-Pieter Katoen Probabilistic Programming 53/77

Probabilistic Programming is Fun, but Intricate Too Different flavours of termination

Certain termination

int i : = 100;
while (i > 0) {

i := i - 1;
}

This program certainly terminates.

Joost-Pieter Katoen Probabilistic Programming 54/77

Probabilistic Programming is Fun, but Intricate Too Different flavours of termination

Positive almost-sure termination

For p an arbitrary probability:

bool c := true;
int i : = 0;
while (c) {

i := i + 1;
(c := false [p] c := true)

}

This program almost surely terminates. In finite expected time.

Joost-Pieter Katoen Probabilistic Programming 55/77

Probabilistic Programming is Fun, but Intricate Too Different flavours of termination

Negative almost-sure termination

Consider the one-dimensional (symmetric) random walk:

int x : = 10;
while (x > 0) {

(x := x - 1 [0.5] x := x + 1)
}

This program almost surely terminates
but requires an infinite expected time to do so.

Joost-Pieter Katoen Probabilistic Programming 56/77

Probabilistic Programming is Fun, but Intricate Too Different flavours of termination

Compositionality

Consider the two probabilistic programs:

int x := 1;
bool c := true;
while (c) {

c := false [0.5] c := true;
x := 2*x

}

Finite expected termination time

while (x > 0) {
x : = x - 1

}

Finite termination time

Running the right after the left program
yields an infinite expected termination time

Joost-Pieter Katoen Probabilistic Programming 57/77

Probabilistic Programming is Fun, but Intricate Too Different flavours of termination

Three results

Determining expected outcomes is as hard as almost-sure termination.

Almost-sure termination is “more undecidable” than ordinary termination.

Universal almost-sure termination is as hard as almost-sure termination.
This does not hold for positive almost-sure termination.

Joost-Pieter Katoen Probabilistic Programming 58/77

Probabilistic Programming is Fun, but Intricate Too Different flavours of termination

Hardness of almost sure termination

Σ0
1 Π0

1
∆0

1

Σ0
2 Π0

2
∆0

2

Σ0
3 Π0

3
∆0

3

...

H H

UH UH

COF COF

LEXP

semi–decidable

REXP
PASTwith access to

H–oracle:
semi–decidable

EXP

AST not
semi–decidable;
even with
access to
H–oracle

not
semi–decidable;
even with
access to
UH–oracle

UAST

UPAST

Joost-Pieter Katoen Probabilistic Programming 59/77

Probabilistic Programming is Fun, but Intricate Too Different flavours of termination

Proof idea: hardness of positive as-termination

Reduction from the complement of the universal halting problem
For an ordinary program Q that does not on all inputs terminate,
provide a probabilistic program P (depending on Q) and an input η,
such that P does terminate in an expected finite number of steps on η.

Joost-Pieter Katoen Probabilistic Programming 60/77

Probabilistic Programming is Fun, but Intricate Too Different flavours of termination

Let’s start simple
bool c := true;
int nrflips := 0;
while (c) {

nrflips := nrflips + 1;
(c := false [0.5] c := true);

}

Expected runtime (integral over the bars):

1

The nrflips-th iteration takes place with probability 1/2nrflips.

Joost-Pieter Katoen Probabilistic Programming 61/77

Probabilistic Programming is Fun, but Intricate Too Different flavours of termination

Reducing an ordinary program to a probabilistic one
Assume an enumeration of all inputs for Q is given

bool c := true;
int nrflips := 0;
int i := 0;
while (c) {

// simulate Q for one (further) step on its i-th input
if (Q terminates on its ith input) {

i := i + 1;
// reset simulation of program Q
cheer // take 2nrflips meaningless steps

} else {
nrflips := nrflips + 1;
(c := false [0.5] c := true);

}
}

P looses interest in further simulating Q by a coin flip to decide for termination.

Joost-Pieter Katoen Probabilistic Programming 62/77

Probabilistic Programming is Fun, but Intricate Too Different flavours of termination

Q does not always halt
Let i be the first input for which Q does not terminate.

Expected runtime of P (integral over the bars):

1

cheering on termination on (i−1)-th input

Finite cheering — finite expected runtime!

Joost-Pieter Katoen Probabilistic Programming 63/77

Probabilistic Programming is Fun, but Intricate Too Different flavours of termination

Q terminates on all inputs

Expected runtime of P (integral over the bars):

· · ·

1

Infinite cheering — infinite expected runtime!

Joost-Pieter Katoen Probabilistic Programming 64/77

Probabilistic Programming is Fun, but Intricate Too Run-time analysis

Overview

1 Introduction

2 Two flavours of semantics

3 Program transformations and equivalence

4 Recursion

5 Non-determinism

6 Different flavours of termination

7 Run-time analysis

8 Synthesizing loop invariants

9 Epilogue

Joost-Pieter Katoen Probabilistic Programming 65/77

Probabilistic Programming is Fun, but Intricate Too Run-time analysis

Expected run-times

Aim
Provide a wp-calculus to determine expected run-times. Why?
1. Be able to prove positive almost-sure termination
2. Reason about the efficiency of randomised algorithms

Let ert() : T→ T where T = {t | t : S → [0,∞]}
ert(P, t) represents the run-time of P given that its continuation takes t
time units

Joost-Pieter Katoen Probabilistic Programming 66/77

Probabilistic Programming is Fun, but Intricate Too Run-time analysis

Expected run-times

Syntax

I skip

I abort

I x := mu

I P1 ; P2

I if (G) P1 else P2

I P1 [] P2

I while(G)P

Semantics ert(P, t)

I 1+t
I 0
I 1 + λσ.E[[µ]](σ) (λv .t[x := v](σ))
I ert(P1, ert(P2, t))
I 1 + [G] · ert(P1, t) + [¬G] · ert(P2, t)
I max (ert(P1, t), ert(P2, t))
I µX . 1 + ([G] · ert(P,X) + [¬G] · t)

µ is the least fixed point operator wrt. the ordering 6 on run-times

accompanied with a set of proof rules to get two-sided bounds on run-times

Joost-Pieter Katoen Probabilistic Programming 67/77

Probabilistic Programming is Fun, but Intricate Too Run-time analysis

Coupon collector problem

A more modern phrasing:
Each box of cereal contains one (equally likely) out of N coupons.

You win a price if all N coupons are collected.
How many boxes of cereal need to be bought on average to win?

Joost-Pieter Katoen Probabilistic Programming 68/77

Probabilistic Programming is Fun, but Intricate Too Run-time analysis

Coupon collector problem

cp := [0,...,0]; // no coupons yet
i , x := 1, 0;
while (x < N) {

while (cp[i] =/= 0) {
i := uniform(1...N)

}
cp[i] := 1; // coupon i obtained
x := x + 1; // one less to go

}

Using our ert-calculus one can prove that expected run-time is Θ(N· logN).
By systematic formal verification à la Floyd-Hoare. No hidden assumptions.

Joost-Pieter Katoen Probabilistic Programming 69/77

Probabilistic Programming is Fun, but Intricate Too Synthesizing loop invariants

Overview

1 Introduction

2 Two flavours of semantics

3 Program transformations and equivalence

4 Recursion

5 Non-determinism

6 Different flavours of termination

7 Run-time analysis

8 Synthesizing loop invariants

9 Epilogue

Joost-Pieter Katoen Probabilistic Programming 70/77

Probabilistic Programming is Fun, but Intricate Too Synthesizing loop invariants

Quantitative loop invariants

Recall that for while-loops we have:

wp(while(G){P}, f) = µX . ([G] · wp(P,X) + [¬G] · f)

To determine this wp, we use an “invariant” I such that [¬G] · I 6 f .

Quantitative loop invariant
Expectation I is a quantitative loop invariant if —by consecution—

I it is preserved by loop iterations: [G] · I 6 wlp(P, I).
To guarantee soundness, I has to fulfill either:
1. I is bounded from below and by above by some constants, or
2. on each iteration there is a probability ε > 0 to exit the loop

Then: {I} while(G){P} {f } is a correct program annotation.

Joost-Pieter Katoen Probabilistic Programming 71/77

Probabilistic Programming is Fun, but Intricate Too Synthesizing loop invariants

Invariant synthesis for linear programs

inspired by [Colón et al. 2002]

1. Speculatively annotate a while-loop with linear expressions:

[α1·x1 + . . .+ αn·xn + αn+1 << 0] · (β1·x1 + . . .+ βn·xn + βn+1)

with real parameters αi ,βi , program variable xi , and <<∈ {<,6 }.
2. Transform these numerical constraints into Boolean predicates.
3. Transform these predicates into non-linear FO formulas.
4. Use constraint-solvers for quantifier elimination (e.g., Redlog).
5. Simplify the resulting formulas (e.g., using Slfq and SMT solving).
6. Exploit resulting assertions to infer program correctness.

Joost-Pieter Katoen Probabilistic Programming 72/77

Probabilistic Programming is Fun, but Intricate Too Synthesizing loop invariants

Soundness and completeness

For any linear pGCL program annotated with propositionally linear expressions, our
method will find all parameter solutions that make the annotation valid, and no
others.

Joost-Pieter Katoen Probabilistic Programming 73/77

Probabilistic Programming is Fun, but Intricate Too Synthesizing loop invariants

Prinsys Tool: Synthesis of Probabilistic Invariants

download from moves.rwth-aachen.de/prinsys

Joost-Pieter Katoen Probabilistic Programming 74/77

Probabilistic Programming is Fun, but Intricate Too Synthesizing loop invariants

Program equivalence

int XminY1(float p, q){
int x, f := 0, 0;
while (f = 0) {
(x +:= 1 [p] f := 1);

}
f := 0;
while (f = 0) {
(x −:= 1 [q] f := 1);

}
return x;

}

int XminY2(float p, q){
int x, f := 0, 0;
(f := 0 [0.5] f := 1);
if (f = 0) {
while (f = 0) {
(x +:= 1 [p] f := 1);

}
} else {
f := 0;
while (f = 0) {
x −:= 1;
(skip [q] f := 1);

}
}

return x;
}

Using template T = x + [f = 0] · α we find the invariants :
α11 = p

1−p , α12 = − q
1−q , α21 = α11 and α22 = − 1

1−q .

Expected value of x is p
1− p −

q
1− q and p

2(1− p) −
1

2(1− q) .

Joost-Pieter Katoen Probabilistic Programming 75/77

Probabilistic Programming is Fun, but Intricate Too Epilogue

Epilogue

Take-home message

I Connection between wp and operational semantics
I Semantic intricacies of conditioning (divergence)
I Interplay of non-determinism and conditioning
I Program transformations

Extensions
I Recursion
I Loop invariant synthesis
I Expected run-time analysis
I Intricacies of termination

Joost-Pieter Katoen Probabilistic Programming 76/77

Probabilistic Programming is Fun, but Intricate Too Epilogue

Further reading
I J.-P. K., A. McIver, L. Meinicke, and C. Morgan.

Linear-invariant generation for probabilistic programs.
SAS 2010.

I F. Gretz, J.-P. K., and A. McIver.
Operational versus wp-semantics for pGCL.
J. on Performance Evaluation, 2014.

I F. Gretz et al..
Conditioning in probabilistic programming.
MFPS 2015.

I B. Kaminski, J.-P. K., C. Matheja, and F. Olmedo
Determining expected run-times of probabilistic programs.
ESOP 20163.

I B. Kaminski, J.-P. K., C. Matheja, and F. Olmedo
Reasoning about recursive probabilistic programs.
submitted.

3Nominated for the EATCS best paper award of ETAPS 2016.
Joost-Pieter Katoen Probabilistic Programming 77/77

	Introduction
	Two flavours of semantics
	Program transformations and equivalence
	Recursion
	Non-determinism
	Different flavours of termination
	Run-time analysis
	Synthesizing loop invariants
	Epilogue

