Metric Temporal Logic With Counting

S.N.Krishna, Khushraj Madnani, Paritosh.K.Pandya

February 1, 2016

S.N.Krishna, Khushraj Madnani, Paritosh.K.Pandya Metric Temporal Logic With Counting

S.N.Krishna, Khushraj Madnani, Paritosh.K.Pandya Metric Temporal Logic With Counting

▲御 ▶ ▲ 臣

æ

• *Metric Temporal Logic* is extensively studied Real time Logic in the literature.

/□ ▶ < 글 ▶ < 글

- *Metric Temporal Logic* is extensively studied Real time Logic in the literature.
- Allows timing constraints to be specified along with the temporal ordering.

→ < ∃→

- *Metric Temporal Logic* is extensively studied Real time Logic in the literature.
- Allows timing constraints to be specified along with the temporal ordering.
- Exhibits considerable diversity in expressiveness and decidability properties based on restriction on modalities and type of timing constraints.

- *Metric Temporal Logic* is extensively studied Real time Logic in the literature.
- Allows timing constraints to be specified along with the temporal ordering.
- Exhibits considerable diversity in expressiveness and decidability properties based on restriction on modalities and type of timing constraints.
- In general satisfiability checking for MTL is undecidable.

- *Metric Temporal Logic* is extensively studied Real time Logic in the literature.
- Allows timing constraints to be specified along with the temporal ordering.
- Exhibits considerable diversity in expressiveness and decidability properties based on restriction on modalities and type of timing constraints.
- In general satisfiability checking for MTL is undecidable.
- Counting within a given time slot is a very natural and useful property in real time systems.

- *Metric Temporal Logic* is extensively studied Real time Logic in the literature.
- Allows timing constraints to be specified along with the temporal ordering.
- Exhibits considerable diversity in expressiveness and decidability properties based on restriction on modalities and type of timing constraints.
- In general satisfiability checking for MTL is undecidable.
- Counting within a given time slot is a very natural and useful property in real time systems.
- Thus it becomes interesting to study satisfiability checking for its fragments and their extensions with ability to count.

- Model : Timed Words
- Timed Logic with Counting : Syntax and Semantics
- Temporal Projections : Simple and Oversampled
- Expressiveness Relations with Counting Extensions
- Satisfiability Checking: Decidability
- Conclusion
- Future Work

S.N.Krishna, Khushraj Madnani, Paritosh.K.Pandya Metric Temporal Logic With Counting

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

•

• Models over which pointwise MTL Formula is being evaluated

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

•

- Models over which pointwise MTL Formula is being evaluated
- Finite sequence of symbols along with their corresponding timestamps.

伺 ト く ヨ ト く ヨ ト

- Models over which pointwise MTL Formula is being evaluated
- Finite sequence of symbols along with their corresponding timestamps. In general, timestamps monotonically increases

- Models over which pointwise MTL Formula is being evaluated
- Finite sequence of symbols along with their corresponding timestamps. In general, timestamps monotonically increases
- For the purpose of this presentation we will restrict our timed words to be strictly monotonic.

- Models over which pointwise MTL Formula is being evaluated
- Finite sequence of symbols along with their corresponding timestamps. In general, timestamps monotonically increases
- For the purpose of this presentation we will restrict our timed words to be strictly monotonic.

Figure: A finite timed word over $\Sigma = \{a, b, c\}$. A strictly monotonic timed word can be seen as a real line annotated with symbols from Σ

- Model : Timed Words
- Timed Logic with Counting : Syntax and Semantics
- Temporal Projections : Simple and Oversampled
- Expressiveness Relations with Counting Extensions
- Satisfiability Checking: Decidability
- Conclusion
- Future Work

• MTL Syntax

(E)

MTL Syntax

 $\phi ::= AP | \phi \land \phi | \phi \lor \phi | \neg \phi | \phi \cup_I \phi | \phi S_I \phi$ where *I* is interval of the form $\langle x, y \rangle$, $x \in \mathcal{N} \cup \{0\}$, $y, x \in \mathcal{N} \cup \{0, \infty\}$ and $\langle ... \rangle \in \{[...], (...), [...), (...]\}$

伺 ト く ヨ ト く ヨ ト

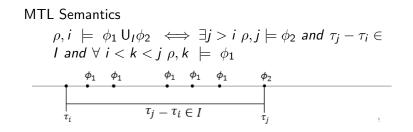
S.N.Krishna, Khushraj Madnani, Paritosh.K.Pandya Metric Temporal Logic With Counting

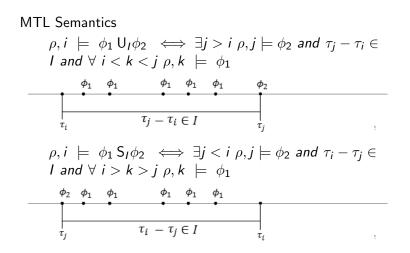
-

MTL Semantics

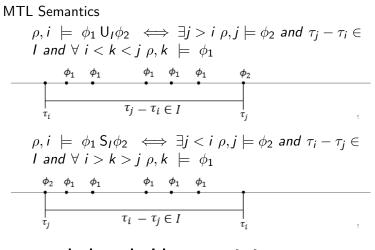
< ∃ →

∃ >





・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ



Ex: work-hard $U_{[5,10]}$ giving-up

→ < ∃→

э

э

• By restricting set of allowed intervals. e.g. $MTL[U_{np}, S_{np}]$, where *np* refers to non-punctual intervals. It is well known as MITL in the literature.

- By restricting set of allowed intervals. e.g. MTL[U_{np}, S_{np}], where *np* refers to non-punctual intervals. It is well known as MITL in the literature.
- By restricting set of operators. We denote MTL[W] for subclass of MTL restricted to operators in W. e.g. MTL[U₁] where only until operator is allowed.

- By restricting set of allowed intervals. e.g. $MTL[U_{np}, S_{np}]$, where *np* refers to non-punctual intervals. It is well known as MITL in the literature.
- By restricting set of operators. We denote MTL[W] for subclass of MTL restricted to operators in W. e.g. MTL[U₁] where only until operator is allowed.
- We will restrict to future only fragment of MTL.

• We introduce two new modal operators for counting C and UT.

- We introduce two new modal operators for counting C and UT.
- CTMTL Syntax

 $\phi ::= AP \mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid \phi \ \cup_{I, \# \phi \sim n} \phi \mid C_I^n \phi$ where *I* is interval of the form $\langle x, y \rangle$, $x \in \mathcal{N} \cup \{0\}$, $y, x \in \mathcal{N} \cup \{0, \infty\}$, $\langle ... \rangle \in \{[...], (...), [...]\}$,

- We introduce two new modal operators for counting C and UT.
- CTMTL Syntax

 $\phi ::= AP \mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid \phi \ \cup_{I, \#\phi \sim n} \phi \mid C_I^n \phi$ where *I* is interval of the form $\langle x, y \rangle$, $x \in \mathcal{N} \cup \{0\}$, $y, x \in \mathcal{N} \cup \{0, \infty\}$, $\langle ... \rangle \in \{[...], (...), [...), (...]\}$, $\sim = \{\geq, \leq\}$ and

- We introduce two new modal operators for counting C and UT.
- CTMTL Syntax

 $\phi ::= AP \mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid \phi \cup_{I, \#\phi \sim n} \phi \mid C_I^n \phi$ where *I* is interval of the form $\langle x, y \rangle$, $x \in \mathcal{N} \cup \{0\}$, $y, x \in \mathcal{N} \cup \{0, \infty\}$, $\langle ... \rangle \in \{[...], (...), [...), (...]\}$, $\sim = \{\geq, \leq\}$ and $n \in \mathcal{N} \cup \{0\}$

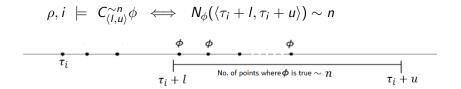
CTMTL: Semantics

∢母▶ ∢ ≣▶

э

э

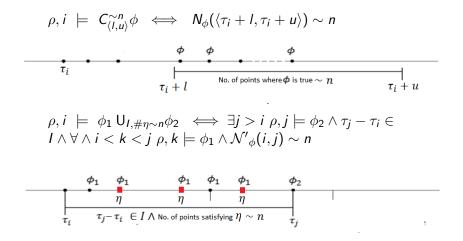
CTMTL: Semantics



聞き くぼき くぼう

3

CTMTL: Semantics



/⊒ > < ∃ >

- ∢ ⊒ → ⊒

• $C_{(0,1)}$ MTL: Counting of the form $C_{(0,1)}^{\sim n}$.

伺 ト く ヨ ト く ヨ ト

э

- $C_{(0,1)}$ MTL: Counting of the form $C_{(0,1)}^{\sim n}$.
- $C_{(0,u)}$ MTL: Counting of the form $C_{(0,u)}^{\sim n}$.

- ∢ ≣ ▶

- $C_{(0,1)}$ MTL: Counting of the form $C_{(0,1)}^{\sim n}$.
- $C_{(0,u)}$ MTL: Counting of the form $C_{(0,u)}^{\sim n}$.
- CMTL: Counting with C modality only.

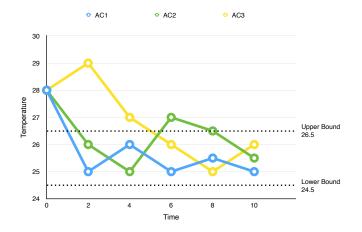
- $C_{(0,1)}$ MTL: Counting of the form $C_{(0,1)}^{\sim n}$.
- $C_{(0,u)}$ MTL: Counting of the form $C_{(0,u)}^{\sim n}$.
- CMTL: Counting with C modality only.
- TMTL: Counting with UT Modality only.

Scheduling HVAC in Demand Response: An Example

• In Demand Response system an important requirement is to reduce the Peak Power Demand.

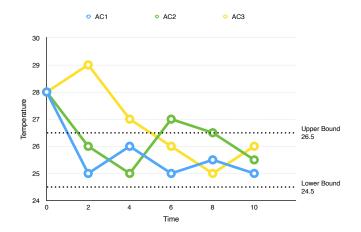
- In Demand Response system an important requirement is to reduce the Peak Power Demand.
- Scheduling of HVAC to limit peak power demand below threshold.
- HVAC are more flexible as compared to devices like microwave oven.
- Constant mode switching (OFF-¿ON) causes wear and tear and more power consumption due to transient currents.
- No. of Switch yet another important parameter to grade such scheduling algorithms.

Scheduling HVAC in Demand Response: An Example



Scheduling HVAC in Demand Response: An Example

 $(0,3), #Switch-ON-AC \leq 3$ (Comfort $-AC_1 \land Comfort - AC_2 \land Comfort - AC_3$)



₹ *____* � � � �

- Model : Timed Words
- Timed Logic with Counting : Syntax and Semantics
- Temporal Projections : Simple and Oversampled
- Expressiveness Relations with Counting Extensions
- Decidability : Satisfiability Checking
- Conclusion
- Future Work

S.N.Krishna, Khushraj Madnani, Paritosh.K.Pandya Metric Temporal Logic With Counting

• Let Σ, X be finite disjoint set.

∃ >

- Let Σ, X be finite disjoint set.
- Simple Extension A (Σ, X)-simple extension is a timed word ρ over 2^X ∪ Σ such that at any point i ∈ dom(ρ), σ_i ∩ Σ ≠ Ø

- Let Σ, X be finite disjoint set.
- Simple Extension A (Σ, X)-simple extension is a timed word ρ over 2^X ∪ Σ such that at any point i ∈ dom(ρ), σ_i ∩ Σ ≠ Ø
- Simple Projection A timed word ρ over Σ obtained by deleting symbols in X from (Σ, X) extension ρ' is called its Simple Projection.

- Let Σ, X be finite disjoint set.
- Simple Extension A (Σ, X)-simple extension is a timed word ρ over 2^X ∪ Σ such that at any point i ∈ dom(ρ), σ_i ∩ Σ ≠ Ø
- Simple Projection A timed word ρ over Σ obtained by deleting symbols in X from (Σ, X) extension ρ' is called its Simple Projection.

A valid
$$\Sigma$$
, X Extension $\Sigma = \{a, b, c\} X = \{d\}$

- Let Σ, X be finite disjoint set.
- Simple Extension A (Σ, X)-simple extension is a timed word ρ over 2^X ∪ Σ such that at any point i ∈ dom(ρ), σ_i ∩ Σ ≠ Ø
- Simple Projection A timed word ρ over Σ obtained by deleting symbols in X from (Σ, X) extension ρ' is called its Simple Projection.

The simple projection of the above Extension over Σ

S.N.Krishna, Khushraj Madnani, Paritosh.K.Pandya Metric Temporal Logic With Counting

< ∃ →

э

• Let Σ, X be finite disjoint set.

-

- Let Σ, X be finite disjoint set.
- Oversampled Behaviour A (Σ, X) -oversampled behaviour is a timed word over $2^X \cup \Sigma$, such that $\sigma'_1 \cap \Sigma \neq \emptyset$ and

$$\sigma'_{|\textit{dom}(\rho')|} \cap \Sigma \neq \emptyset$$

- Let Σ, X be finite disjoint set.
- Oversampled Behaviour A (Σ , X)-oversampled behaviour is a timed word over $2^X \cup \Sigma$, such that $\sigma'_1 \cap \Sigma \neq \emptyset$ and $\sigma'_{|dom(\rho')|} \cap \Sigma \neq \emptyset$.
- Oversampled Projection A timed word ρ over Σ obtained by deleting symbols in X (and thus deleting the points containing only X)from (Σ, X) oversampled behaviour ρ' is called its Oversampled Projection.

- Let Σ, X be finite disjoint set.
- Oversampled Behaviour A (Σ, X) -oversampled behaviour is a timed word over $2^X \cup \Sigma$, such that $\sigma'_1 \cap \Sigma \neq \emptyset$ and $\sigma'_{|dom(\rho')|} \cap \Sigma \neq \emptyset$.
- Oversampled Projection A timed word ρ over Σ obtained by deleting symbols in X (and thus deleting the points containing only X)from (Σ, X) oversampled behaviour ρ' is called its Oversampled Projection.

A valid Σ, X oversampled behaviour $\Sigma = \{a, b, c\} X = \{d\}$

- Let Σ, X be finite disjoint set.
- Oversampled Behaviour A (Σ , X)-oversampled behaviour is a timed word over $2^X \cup \Sigma$, such that $\sigma'_1 \cap \Sigma \neq \emptyset$ and $\sigma'_{|dom(\rho')|} \cap \Sigma \neq \emptyset$.
- Oversampled Projection A timed word ρ over Σ obtained by deleting symbols in X (and thus deleting the points containing only X)from (Σ, X) oversampled behaviour ρ' is called its Oversampled Projection.

A valid Σ, X oversampled behaviour $\Sigma = \{a, b, c\}$ $X = \{d\}$

a a a b b b c0 1.44 2.25 3.26 5.29 6.25 7.29 9

The oversampled projection of the above oversampled behaviour over Σ

Definitions: Equisaitisfiability modulo Temporal Projection

We say that φ over Σ is equisatisfiable modulo temporal projection ψ over $\Sigma \cup 2^X$ iff:

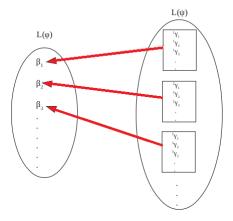


Figure: Figure Illustrating φ is equisatisfiable to ψ . Arrow represents the temporal(simple or oversampled) projection function $\langle \sigma \rangle \langle z \rangle \langle z$

S.N.Krishna, Khushraj Madnani, Paritosh.K.Pandya

Metric Temporal Logic With Counting

S.N.Krishna, Khushraj Madnani, Paritosh.K.Pandya Metric Temporal Logic With Counting

→ < ∃→

э

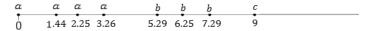
• Flattening is a technique to reduce the modal depth of the formula preserving satisfiability.

- Flattening is a technique to reduce the modal depth of the formula preserving satisfiability.
- Example Let $\phi = a \operatorname{U}_{[2,5]}(b \operatorname{U}_{[2,3]}c)$

- Flattening is a technique to reduce the modal depth of the formula preserving satisfiability.
- Example Let $\phi = a U_{[2,5]}(b U_{[2,3]}c)$
- $\phi_{\textit{flat}} = a \cup_{[2,5]} d \land \Box (d \leftrightarrow (b \cup_{[2,3]} c)) \land \Box (d \rightarrow a \lor b \lor c)$

→ < ∃→

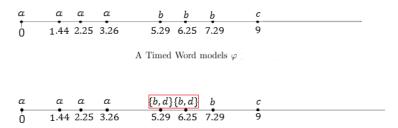
- Flattening is a technique to reduce the modal depth of the formula preserving satisfiability.
- Example Let $\phi = a \operatorname{U}_{[2,5]}(b \operatorname{U}_{[2,3]}c)$
- $\phi_{flat} = a \cup_{[2,5]} d \wedge \Box (d \leftrightarrow (b \cup_{[2,3]} c)) \wedge \Box (d \rightarrow a \lor b \lor c)$



A Timed Word models φ

・ 同 ト ・ ヨ ト ・ ヨ ト …

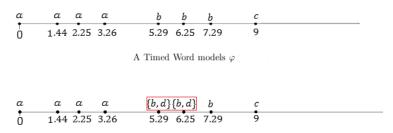
- Flattening is a technique to reduce the modal depth of the formula preserving satisfiability.
- Example Let $\phi = a U_{[2,5]}(b U_{[2,3]}c)$
- $\phi_{flat} = a \cup_{[2,5]} d \wedge \Box (d \leftrightarrow (b \cup_{[2,3]} c)) \wedge \Box (d \rightarrow a \lor b \lor c)$



The corresponding Timed Word which is the model of flattened formula φ_{flat}

- 4 同 2 4 日 2 4 日 2 4

- Flattening is a technique to reduce the modal depth of the formula preserving satisfiability.
- Example Let $\phi = a U_{[2,5]}(b U_{[2,3]}c)$
- $\phi_{flat} = a \cup_{[2,5]} d \land \Box (d \leftrightarrow (b \cup_{[2,3]} c)) \land \Box (d \rightarrow a \lor b \lor c)$



The corresponding Timed Word which is the model of flattened formula φ_{flat}

Thus flattening is an example of a reduction preserving satisfiability modulo simple projections.

S.N.Krishna, Khushraj Madnani, Paritosh.K.Pandya Metric Temporal Logic With Counting

Related Work

S.N.Krishna, Khushraj Madnani, Paritosh.K.Pandya Metric Temporal Logic With Counting

▲御▶ ▲ 臣▶ ▲ 臣

æ

• Satisfiability Checking of *MITL* is decidable with *EXPSPACE* complexity. [Alur *et al. J.ACM* 1996]

- ∢ ≣ ▶

Related Work

- Satisfiability Checking of *MITL* is decidable with *EXPSPACE* complexity. [Alur *et al. J.ACM* 1996]
- Satisfiability problem for MTL[U₁] is decidable by reducing it to reachability problem for 1-clock Timed Alternating Automata.[Ouaknine *et al. LICS* 2005]

- Satisfiability Checking of *MITL* is decidable with *EXPSPACE* complexity. [Alur *et al. J.ACM* 1996]
- Satisfiability problem for MTL[U₁] is decidable by reducing it to reachability problem for 1-clock Timed Alternating Automata.[Ouaknine *et al. LICS* 2005]
- Satisfiability Checking of QTL with counting is decidable with *EXPSPACE* complexity. [Rabinovich *et.al. FORMATS* 2008]

- Satisfiability Checking of *MITL* is decidable with *EXPSPACE* complexity. [Alur *et al. J.ACM* 1996]
- Satisfiability problem for MTL[U₁] is decidable by reducing it to reachability problem for 1-clock Timed Alternating Automata.[Ouaknine *et al. LICS* 2005]
- Satisfiability Checking of QTL with counting is decidable with *EXPSPACE* complexity. [Rabinovich *et.al. FORMATS* 2008]
- Counting adds expressiveness to MITL over signals [Rabinovich *FORMATS* 2008].

< /⊒ ► < ≡ ►

- Satisfiability Checking of *MITL* is decidable with *EXPSPACE* complexity. [Alur *et al. J.ACM* 1996]
- Satisfiability problem for MTL[U₁] is decidable by reducing it to reachability problem for 1-clock Timed Alternating Automata.[Ouaknine *et al. LICS* 2005]
- Satisfiability Checking of QTL with counting is decidable with *EXPSPACE* complexity. [Rabinovich *et.al. FORMATS* 2008]
- Counting adds expressiveness to MITL over signals [Rabinovich *FORMATS* 2008].
- *MTL* with counting over signals is expressively complete with FO[<, +1] over reals [Hunter *CSL* 2013].

▲□ ▶ ▲ □ ▶ ▲ □

- Satisfiability Checking of *MITL* is decidable with *EXPSPACE* complexity. [Alur *et al. J.ACM* 1996]
- Satisfiability problem for MTL[U₁] is decidable by reducing it to reachability problem for 1-clock Timed Alternating Automata.[Ouaknine *et al. LICS* 2005]
- Satisfiability Checking of QTL with counting is decidable with *EXPSPACE* complexity. [Rabinovich *et.al. FORMATS* 2008]
- Counting adds expressiveness to MITL over signals [Rabinovich *FORMATS* 2008].
- *MTL* with counting over signals is expressively complete with FO[<, +1] over reals [Hunter *CSL* 2013].
- Counting LTL is equivalent to LTL and has *EXP SPACE* complete satisfiability checking.[Laroussinie *et. al. TIME* 2010].

《曰》 《聞》 《臣》 《臣》

Our Results

æ

• Satisfiability Checking for CTMTL is decidable.

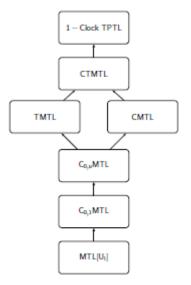
- **→** → **→**

- ∢ ⊒ →

- Satisfiability Checking for CTMTL is decidable.
- Exploring Expressiveness relations amongst fragments of MTL with counting over timed words(Pointwise Semantics).

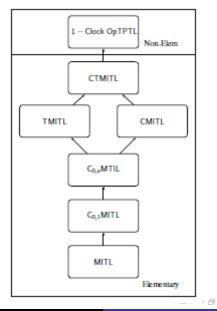
- Model : Timed Words
- Timed Logic with Counting : Syntax and Semantics
- Temporal Projections : Simple and Oversampled
- Expressiveness Relations with Counting Extensions
- Satisfiability Checking: Decidability
- Discussion
- Future Work

Expressiveness Heirarchy : Logic with counting



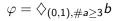
▲御▶ ▲理▶ ▲理▶

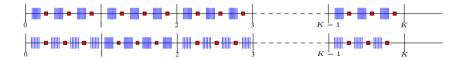
Expressiveness Heirarchy : Non-Punctual Fragments



э

S.N.Krishna, Khushraj Madnani, Paritosh.K.Pandya Metric Temporal Logic With Counting





(日)

3

- Model : Timed Words
- Timed Logic with Counting : Syntax and Semantics
- Temporal Projections : Simple and Oversampled
- Expressiveness Relations with Counting Extensions
- Satisfiability Checking: Decidability
- Discussion
- Future Work

Satisfiability Checking : Decidability

S.N.Krishna, Khushraj Madnani, Paritosh.K.Pandya Metric Temporal Logic With Counting

• • = • • = •

• Flatten the formula

- ∢ ≣ ▶

- ∢ ≣ ▶

• Flatten the formula

• All the counting modalities are of the form $\Box(w \leftrightarrow C_I^{\sim n}a)$ and $\Box(w \leftrightarrow a \cup_{I,\#x \sim n}b)$

▶ ∢ ≣ ▶

• Flatten the formula

- All the counting modalities are of the form $\Box(w \leftrightarrow C_I^{\sim n}a)$ and $\Box(w \leftrightarrow a \cup_{I,\#x \sim n}b)$
- Next we eliminate counting modalities from the above flattened formula preserving satisfiability to show decidability.

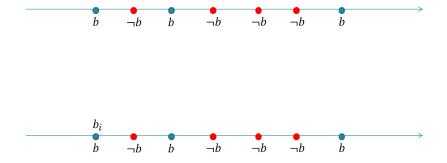
Eliminating $C_{I}^{\geq n}$ b modality

S.N.Krishna, Khushraj Madnani, Paritosh.K.Pandya Metric Temporal Logic With Counting

-

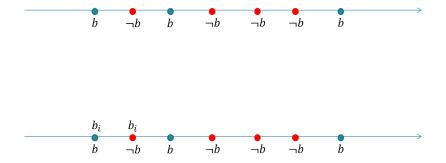
• Given a word ρ over Σ we construct a simple extension ρ' over $\Sigma \cup \{b_0, b_1, \dots, b_{n-1}\}$

- Given a word ρ over Σ we construct a simple extension ρ' over $\Sigma \cup \{b_0, b_1, \dots, b_{n-1}\}$
- {b₀, b₁,..., b_{n-1}} works as a counter. Using their behaviour we precisely mark a as the witness for C₁^{≥n}b.



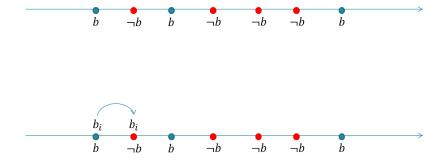
æ

・聞き ・ ほき・ ・ ほき



æ

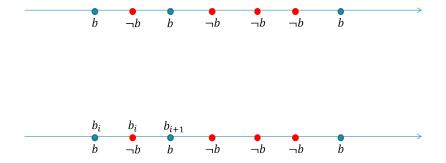
・聞き ・ ほき・ ・ ほき



æ

-∢ ≣⇒

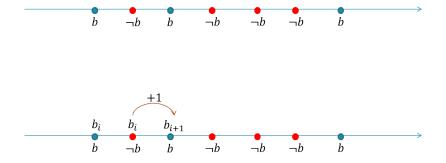
@▶ ∢ ≣▶



æ

_ र ≣ ≯

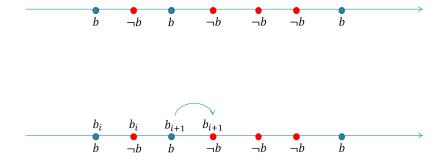
母▶ ∢ ≣▶



æ

'≣ ▶

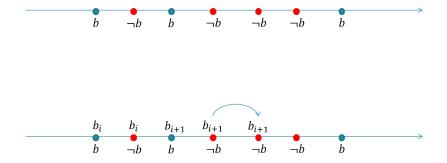
< ∃ →



æ

'≣ ▶

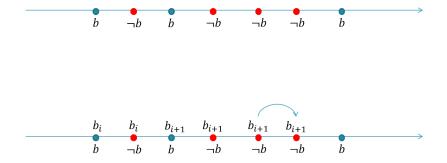
< ∃ >



æ

∃ >

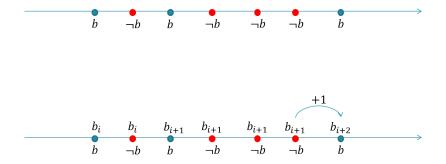
< ∃ →



æ

≣ ।•

< ∃ →

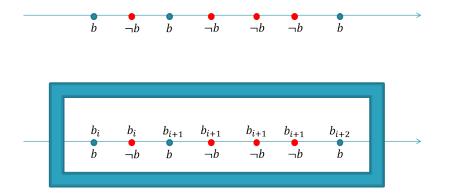


æ

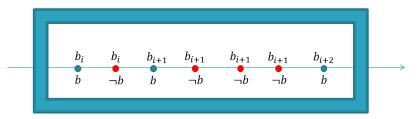
∃ >

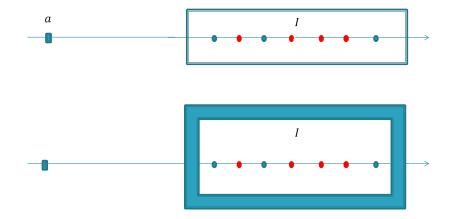
3

Note how the behaviour of b_i helps in finding the occurrences of b



No. of points where b holds = No. of different indices along with b

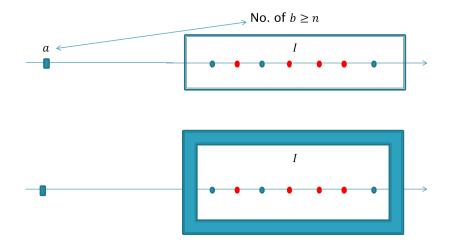




S.N.Krishna, Khushraj Madnani, Paritosh.K.Pandya Metric Temporal Logic With Counting

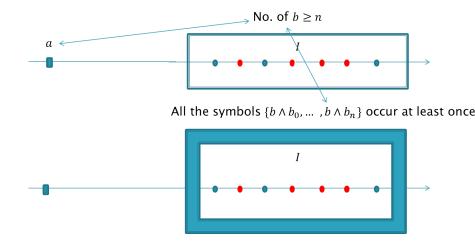
э

<ロト <部ト < 注ト < 注ト

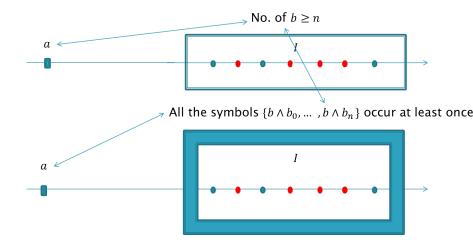


- 4 同 6 4 日 6 4 日 6

3



▲ 同 ▶ → 三 ▶



□→ < □→</p>

< ∃ →

Eliminating UT modality

- **→** → **→**

• Given a word ρ over Σ we construct a **oversampling** ρ' over $\Sigma \cup C \cup B$

→ < ∃→

- Given a word ρ over Σ we construct a oversampling ρ' over $\Sigma \cup C \cup B$
 - $C = \{c_0, ..., c_u\}$:

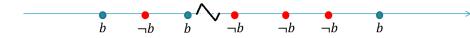
伺 と く ヨ と く ヨ と

- Given a word ρ over Σ we construct a **oversampling** ρ' over $\Sigma \cup C \cup B$
 - $C = \{c_0, \dots, c_u\}$: These propositions oversample the model at integer time stamps.

伺 ト く ヨ ト く ヨ ト

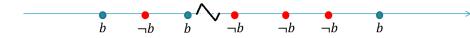
- Given a word ρ over Σ we construct a **oversampling** ρ' over $\Sigma \cup C \cup B$
 - $C = \{c_0, \dots, c_u\}$: These propositions oversample the model at integer time stamps.
 - $B = \bigcup_{i=0}^{u} B^{i}$ where $B^{i} = \{b_{0}^{i}, \dots, b_{n}^{i}\}$: These propositions are used as counters for *b*. Counter B^{i} resets at integer point marked c_{i} and saturates once the value reaches *n* till the next reset.

Oversample the word



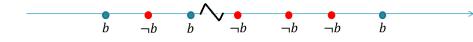
< ∃ →

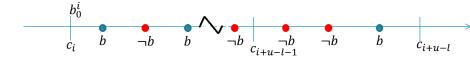
Oversample the word



< ∃ →

Initiate the counter

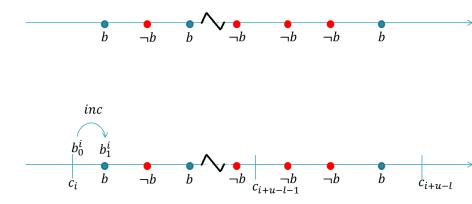




< ∃ >

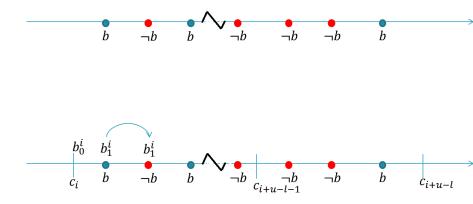
Construction of ρ^\prime

Propagate the counter



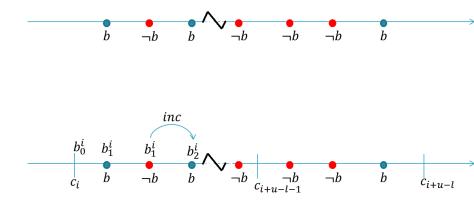
Construction of ρ^\prime

Propagate the counter



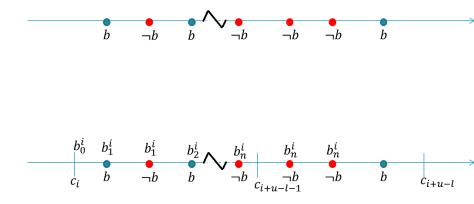
Construction of ρ^\prime

Propagate the counter



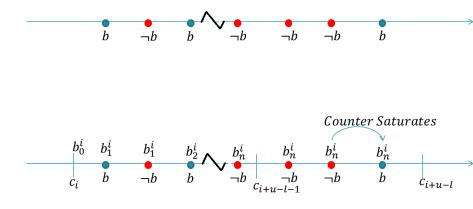
Construction of ρ'

Propagate the counter



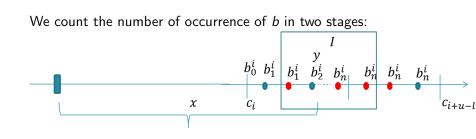
< ∃ →

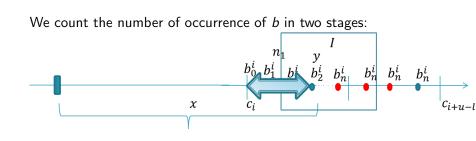
Propagate the counter and stop incrementing after highest va

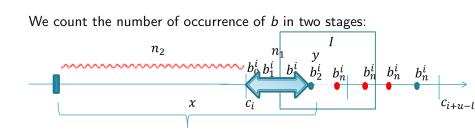


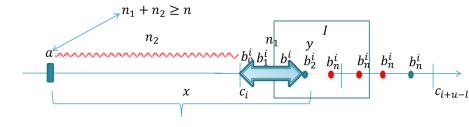
S.N.Krishna, Khushraj Madnani, Paritosh.K.Pandya Metric Temporal Logic With Counting

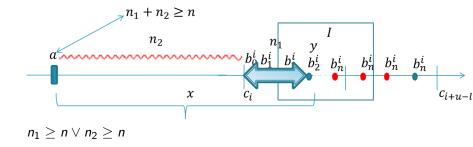
□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

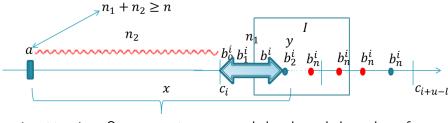












 $n_1 \ge n \lor n_2 \ge n$ Or, $n_1 < n \land n_2 < n$ and thus bounded number of cases (disjunctions).

- Model : Timed Words
- Timed Logic with Counting : Syntax and Semantics
- Temporal Projections : Simple and Oversampled
- Expressiveness Relations with Counting Extensions
- Satisfiability Checking: Decidability
- Conclusion
- Future Work

Conclusion

S.N.Krishna, Khushraj Madnani, Paritosh.K.Pandya Metric Temporal Logic With Counting

▲御 ▶ ▲ 臣 ▶

æ

• Two ways of extending MTL with counting threshold constraints is studied.

/□ ▶ < 글 ▶ < 글

- Two ways of extending MTL with counting threshold constraints is studied.
- Both ways add expressiveness to MTL orthogonally.

▶ ∢ ≣ ▶

- Two ways of extending MTL with counting threshold constraints is studied.
- Both ways add expressiveness to MTL orthogonally.
- Satisfiability checking for the logic CTMTL is decidable.

- Two ways of extending MTL with counting threshold constraints is studied.
- Both ways add expressiveness to MTL orthogonally.
- Satisfiability checking for the logic CTMTL is decidable.
- Both the extensions enjoy benefits of relaxing punctuality.

- Two ways of extending MTL with counting threshold constraints is studied.
- Both ways add expressiveness to MTL orthogonally.
- Satisfiability checking for the logic CTMTL is decidable.
- Both the extensions enjoy benefits of relaxing punctuality.
- Unlike continuous semantics, pointwise semantics creates a zoo of sub-logics in the expressiveness hierarchy.

- Model : Timed Words
- Timed Logic with Counting : Syntax and Semantics
- Temporal Projections : Simple and Oversampled
- Expressiveness Relations with Counting Extensions
- Satisfiability Checking: Decidability
- Conclusion
- Future Work

- Exploring complexity results for satisfiability checking of CTMTL.
- Extending logics with modulo counting and study the expressiveness and satisfiability checking for those extensions.
- Complete picture of expressiveness of these counting extensions with different versions of past operators.
- Study model checking and synthesis problems for these extensions.

Thank You

- ∢ ≣ ▶

э

æ

- Y. Hirshfeld and A. Rabinovich. An expressive temporal logic for real time. In MFCS, pages 492–504, 2006.
- P. Hunter. When is metric temporal logic expressively complete? In CSL, pages 380–394, 2013.
- S. N. Krishna K. Madnani and P. K. Pandya. Partially punctual metric temporal logic is decidable. In TIME, pages 174–183, 2014.
- D. Kini, S. N. Krishna, and P. K. Pandya. On construction of safety signal automata for MITL[U, S] using temporal projections. In FORMATS, pages 225–239, 2011.
- F. Laroussinie, A. Meyer, and E. Petonnet. Counting Itl. In TIME, pages 51–58, 2010.
- K. Madnani, S. N. Krishna, and P. K. Pandya. Partially punctual metric temporal logic is decidable. In http://arxiv.org/abs/1404.6965, 2014.
- J. Ouaknine and J. Worrell. On the decidability of metric temporal logic. In LICS, pages 188–197, 2005.

References

- F. Chevalier P. Bouyer and N. Markey. On the expressiveness of tptl and mtl. In FST&TCS, pages 432–443, 2005.
- P. K. Pandya and S. Shah. On expressive powers of timed logics: Comparing boundedness, non-punctuality, and deterministic freezing. In CONCUR, pages 60–75, 2011.
- Pavithra Prabhakar and Deepak D'Souza. On the expressiveness of MTL with past operators. In FORMATS, pages 322–336, 2006.
- A. Rabinovich. Complexity of metric temporal logics with counting and the pnueli modalities. Theor. Comput. Sci., 411(22-24):2331–2342, 2010.
- Jean Francois Raskin. Logics, Automata and Classical Theories for Deciding Real Time. PhD thesis, Universite de Namur, 1999.

- 4 同 6 4 日 6 4 日 6