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Introduction

Metric Temporal Logic is extensively studied Real time Logic
in the literature.

Allows timing constraints to be specified along with the
temporal ordering.

Exhibits considerable diversity in expressiveness and
decidability properties based on restriction on modalities and
type of timing constraints.

In general satisfiability checking for MTL is undecidable.

Counting within a given time slot is a very natural and useful
property in real time systems.

Thus it becomes interesting to study satisfiability checking for
its fragments and their extensions with ability to count.
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Presentation Flow

Model : Timed Words

Timed Logic with Counting : Syntax and Semantics

Temporal Projections : Simple and Oversampled

Expressiveness Relations with Counting Extensions

Satisfiability Checking: Decidability

Conclusion

Future Work
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Model : Timed Word

Models over which pointwise MTL Formula is being evaluated
.

Finite sequence of symbols along with their corresponding
timestamps.In general, timestamps monotonically increases

For the purpose of this presentation we will restrict our timed
words to be strictly monotonic.

Figure: A finite timed word over Σ = {a, b, c}. A strictly monotonic
timed word can be seen as a real line annotated with symbols from
Σ
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Time Logic : Metric Temporal Logic

MTL Syntax

φ ::= AP | φ ∧ φ | φ ∨ φ | ¬ φ | φ UI φ | φ SI φ

where I is interval of the form 〈x , y〉, x ∈ N ∪ {0},
y , x ∈ N ∪ {0,∞} and 〈...〉 ∈ {[...], (...), [...), (...]}
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Metric Temporal Logic : Semantics

MTL Semantics

ρ, i |= φ1 UIφ2 ⇐⇒ ∃j > i ρ, j |= φ2 and τj − τi ∈
I and ∀ i < k < j ρ, k |= φ1

ρ, i |= φ1 SIφ2 ⇐⇒ ∃j < i ρ, j |= φ2 and τi − τj ∈
I and ∀ i > k > j ρ, k |= φ1

Ex: work-hard U[5,10] giving-up
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Time Logic : MTL Fragments

Subclasses:

By restricting set of allowed intervals. e.g. MTL[Unp,Snp],
where np refers to non-punctual intervals. It is well known as
MITL in the literature.

By restricting set of operators. We denote MTL[W] for
subclass of MTL restricted to operators in W . e.g. MTL[ UI]
where only until operator is allowed.

We will restrict to future only fragment of MTL.
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Time Logic with counting: CTMTL

We introduce two new modal operators for counting C and
UT.

CTMTL Syntax

φ ::= AP | φ ∧ φ | φ ∨ φ | ¬ φ | φ UI ,#φ∼n φ | Cn
I φ

where I is interval of the form 〈x , y〉, x ∈ N ∪ {0},
y , x ∈ N ∪ {0,∞},
〈...〉 ∈ {[...], (...), [...), (...]},
∼= {≥,≤} and
n ∈ N ∪ {0}
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CTMTL: Semantics

ρ, i |= C∼n
〈l ,u〉φ ⇐⇒ Nφ(〈τi + l , τi + u〉) ∼ n

ρ, i |= φ1 UI ,#η∼nφ2 ⇐⇒ ∃j > i ρ, j |= φ2 ∧ τj − τi ∈
I ∧ ∀ ∧ i < k < j ρ, k |= φ1 ∧N ′φ(i , j) ∼ n
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Subclasses of CTMTL

C(0,1)MTL: Counting of the form C∼n
(0,1).

C(0,u)MTL: Counting of the form C∼n
(0,u).

CMTL: Counting with C modality only.

TMTL: Counting with UT Modality only.
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Scheduling HVAC in Demand Response: An Example

In Demand Response system an important requirement is to
reduce the Peak Power Demand.

Scheduling of HVAC to limit peak power demand below
threshold.

HVAC are more flexible as compared to devices like microwave
oven.

Constant mode switching (OFF-¿ON) causes wear and tear
and more power consumption due to transient currents.

No. of Switch yet another important parameter to grade such
scheduling algorithms.
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Scheduling HVAC in Demand Response: An Example

♦(0,3),#Switch−ON−AC≤3(Comfort − AC1 ∧ Comfort − AC2 ∧
Comfort − AC3)
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Presentation Flow

Model : Timed Words

Timed Logic with Counting : Syntax and Semantics

Temporal Projections : Simple and Oversampled

Expressiveness Relations with Counting Extensions

Decidability : Satisfiability Checking

Conclusion

Future Work
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Definitions: Simple Projection

Let Σ,X be finite disjoint set.

Simple Extension A (Σ,X )-simple extension is a timed word
ρ over 2X ∪ Σ such that at any point i ∈ dom(ρ), σi ∩ Σ 6= ∅
Simple Projection A timed word ρ over Σ obtained by
deleting symbols in X from (Σ,X ) extension ρ′ is called its
Simple Projection.
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Definitions: Oversampled Projection

Let Σ,X be finite disjoint set.

Oversampled Behaviour A (Σ,X )-oversampled behaviour is
a timed word over 2X ∪ Σ, such that σ′1 ∩ Σ 6= ∅ and
σ′|dom(ρ′)| ∩ Σ 6= ∅.
Oversampled Projection A timed word ρ over Σ obtained by
deleting symbols in X (and thus deleting the points
containing only X )from (Σ,X ) oversampled behaviour ρ′ is
called its Oversampled Projection.
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Definitions: Equisaitisfiability modulo Temporal Projection

We say that ϕ over Σ is equisatisfiable modulo temporal projection
ψ over Σ ∪ 2X iff:

Figure: Figure Illustrating ϕ is equisatisfiable to ψ. Arrow represents the
temporal(simple or oversampled) projection function

S.N.Krishna, Khushraj Madnani, Paritosh.K.Pandya Metric Temporal Logic With Counting



Flattening: An example

Flattening is a technique to reduce the modal depth of the
formula preserving satisfiability.

Example Let φ = a U[2,5](b U[2,3]c)

φflat = a U[2,5]d ∧�(d ↔ (b U[2,3]c)) ∧�(d → a ∨ b ∨ c)

Thus flattening is an example of a reduction preserving
satisfiability modulo simple projections.
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Our Results

Satisfiability Checking for CTMTL is decidable.

Exploring Expressiveness relations amongst fragments of MTL
with counting over timed words(Pointwise Semantics).
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Expressiveness Heirarchy : Logic with counting
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Expressiveness Heirarchy : Non-Punctual Fragments
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TMTL− CMTL 6= ∅

ϕ = ♦(0,1),#a≥3b
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Satisfiability Checking : Decidability

Flatten the formula

All the counting modalities are of the form �(w ↔ C∼n
I a) and

�(w ↔ aUI ,#x∼nb)

Next we eliminate counting modalities from the above
flattened formula preserving satisfiability to show decidability.
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Eliminating C≥n
I b modality

Given a word ρ over Σ we construct a simple extension ρ′ over
Σ ∪ {b0, b1, . . . , bn−1}
{b0, b1, . . . , bn−1} works as a counter. Using their behaviour
we precisely mark a as the witness for C≥nI b.
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Construction of ρ′
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Eliminating UT modality

Given a word ρ over Σ we construct a oversampling ρ′ over
Σ ∪ C ∪ B

C = {c0, . . . , cu}:These propositions oversample the model at
integer time stamps.
B =

⋃u
i=0 B

i where B i = {bi
0, . . . b

i
n} : These propositions are

used as counters for b. Counter B i resets at integer point
marked ci and saturates once the value reaches n till the next
reset.
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Marking Witness for UT sub-formula

We count the number of occurrence of b in two stages:
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Marking Witness for UT sub-formula

Either
n1 ≥ n ∨ n2 ≥ n Or, n1 < n ∧ n2 < n and thus bounded number of
cases (disjunctions).
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Conclusion

Two ways of extending MTL with counting threshold
constraints is studied.

Both ways add expressiveness to MTL orthogonally.

Satisfiability checking for the logic CTMTL is decidable.

Both the extensions enjoy benefits of relaxing punctuality.

Unlike continuous semantics, pointwise semantics creates a
zoo of sub-logics in the expressiveness hierarchy.
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Future Work

Exploring complexity results for satisfiability checking of
CTMTL.

Extending logics with modulo counting and study the
expressiveness and satisfiability checking for those extensions.

Complete picture of expressiveness of these counting
extensions with different versions of past operators.

Study model checking and synthesis problems for these
extensions.
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