On Stochastic Timed Games

TCQV 2016, Mysuru

Shankara Narayanan Krishna

February 2, 2016

2-player game on TA Controller, Environment target locations reachability objectives

(0,0)

$$(\bullet,0) \xrightarrow{0,\downarrow} (\bullet,0) \xrightarrow{1.6,\rightarrow} (\bullet,1.6) \xrightarrow{.4,\rightarrow} (\triangle,2)$$

Strategies and objectives

Strategy for each player: mapping of finite runs to a delay and an action

Strategies and objectives

Strategy for each player: mapping of finite runs to a delay and an action

Goal of player \bullet : reach \triangle and minimize accumulated cost Goal of player \bullet : avoid \triangle or, if not possible, maximize accumulated cost

Adding stochastic features

to model probabilistic behaviours

Stochastic Timed Games (STGs)

Stochastic player ○ Classical players ◊, □ Prescribed probability distributions from ○

- ▶ Players ♦, play according to standard strategies
- ▶ Player plays according to fixed probability distributions
 - choose a delay according to some distribution
 - choose an action according to some discrete distribution

A Play

From the game and strategies, we obtain a Markov chain

Attaching probabilities to delays

► The exponential distribution, as in continuous time Markov chains, with delays in [0, ∞)

density function
$$t = \begin{cases} \lambda.exp(-\lambda t), & \text{ if } t \ge 0, \\ 0, & \text{ otherwise.} \end{cases}$$

► For bounded intervals, the uniform distribution,

density function
$$t = \begin{cases} rac{1}{|l|} & \text{ if } t \geqslant 0, \\ 0, & \text{ otherwise.} \end{cases}$$

▶ STGs having only the stochastic player \bigcirc : $\frac{1}{2}$ player games.

- ▶ STGs having only the stochastic player \bigcirc : $\frac{1}{2}$ player games.
- $\begin{array}{c} \overbrace{s_{0}}^{x \leq 2, e_{1}} \underbrace{s_{1}}_{y := 0} \xrightarrow{x \leq 7, e_{2}} \underbrace{s_{2}}_{y \geq 1} \\ x = 1, e_{3} \\ \overbrace{s_{3}}^{s_{3}} \\ \end{array} \begin{array}{c} x \geq 5, e_{3} \\ \overbrace{s_{4}}^{s_{4}} \end{array}$ $\begin{array}{c} \text{Path } \pi(s_{0} \xrightarrow{e_{1}} \underbrace{e_{2}}_{\rightarrow}) \\ [5mm] \left\{s_{0} \xrightarrow{\tau_{1}, e_{1}} s_{1} \xrightarrow{\tau_{2}, e_{2}} s_{2}\right\}$
 - $\{ \mathbf{s}_0 \rightarrow \mathbf{s}_1 \rightarrow \mathbf{s}_2 \mid \\ \tau_1 \leqslant 2, \tau_1 + \tau_2 \leqslant 7, \tau_2 \geqslant 1 \}$
 - Compute $\mathbb{P}(\pi(s_0 \stackrel{e_1}{\to} \stackrel{e_2}{\to}))$

- ▶ STGs having only the stochastic player \bigcirc : $\frac{1}{2}$ player games.
- - ▶ Path $\pi(s_0 \stackrel{e_1}{\rightarrow} \stackrel{e_2}{\rightarrow})$
 - $\begin{array}{c} \blacktriangleright \hspace{0.1cm} \{s_0 \stackrel{\tau_1, e_1}{\rightarrow} s_1 \stackrel{\tau_2, e_2}{\rightarrow} s_2 \mid \\ \tau_1 \leqslant 2, \tau_1 + \tau_2 \leqslant 7, \tau_2 \geqslant 1 \} \end{array}$
 - Compute $\mathbb{P}(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2}))$

- $\int_{t \in I(s_0, e_1)} \alpha \mathbb{P}(\pi(s_t \stackrel{e_2}{\rightarrow})) d\mu_{s_0}(t)$
- $\blacktriangleright \alpha = p_{s_0+t}(e_1)$
- α discrete distribution over transitions enabled at $s_0 + t$, given by weights on transitions

- ▶ STGs having only the stochastic player \bigcirc : $\frac{1}{2}$ player games.
- $\begin{array}{c} \overbrace{x = 1, e_3}^{x \leq 2, e_1} \underbrace{x \leq 7, e_2}_{y := 0} \underbrace{s_2}_{y \geq 1} \\ \overbrace{x = 1, e_3}^{x \leq 7, e_2} \underbrace{s_2}_{y \geq 1} \\ \overbrace{x \geq 5, e_3}_{s_4} \end{array}$
 - ▶ Path $\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})$
 - $\begin{array}{c} \blacktriangleright \hspace{0.1cm} \{ s_0 \stackrel{\tau_1, e_1}{\rightarrow} s_1 \stackrel{\tau_2, e_2}{\rightarrow} s_2 \mid \\ \tau_1 \leqslant 2, \tau_1 + \tau_2 \leqslant 7, \tau_2 \geqslant 1 \} \end{array}$
 - Compute $\mathbb{P}(\pi(s_0 \stackrel{e_1}{\to} \stackrel{e_2}{\to}))$

- $\int_{t \in I(s_0, e_1)} \alpha \mathbb{P}(\pi(s_t \xrightarrow{e_2})) d\mu_{s_0}(t)$
- $\blacktriangleright \alpha = p_{s_0+t}(e_1)$
- α discrete distribution over transitions enabled at $s_0 + t$, given by weights on transitions

$$I(s_0, e_1) = \{ \tau \mid s_0 \stackrel{\tau, e_1}{\rightarrow} \}$$

• μ_{s_0} distribution over $I(s_0)$

$$I(s_0) = \bigcup_e I(s_0, e)$$

$$\bullet \ s_0 \stackrel{t}{\rightarrow} s_0 + t \stackrel{e_1}{\rightarrow} s_t$$

$$\mathbb{P}(\pi(s_0 \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \int_{t \in I(s_0, e_1)} p_{s_0+t}(e_1) \mathbb{P}(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})) d\mu_{s_0} t$$

- *n*-dimensional integral
- For infinite runs:

$$\mathsf{Cyl}(\pi(s_0 \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{\rho.\rho' \mid \rho \in \pi(s_0 \xrightarrow{e_1} \cdots \xrightarrow{e_n})\}$$

- P is extended in a standard and unique way to the σ-algebra Ω generated by the cylinders.
- ► For every state s, \mathbb{P} is a probability measure over $(\operatorname{Runs}(s), \Omega(s))$

An Example

$$\mathcal{P}(\pi((A,0),e_{1}e_{2})) = \int_{0}^{1} \frac{\mathcal{P}(\pi((B,0),e_{2}))}{2} d\mu_{(A,0)}(t)$$
$$= \int_{0}^{1} \frac{1}{2} (\int_{1}^{2} \frac{1}{2} d\mu_{(B,0)}(u)) d\mu_{(A,0)}(t)$$
$$= \frac{1}{2} \int_{0}^{1} (\int_{1}^{2} \frac{1}{2} \frac{1}{2} du)) dt) = \frac{1}{8}$$

 $d\mu_{(A,0)}$ uniform distribution over [0,1], $d\mu_{(B,0)}$ uniform distribution over [0,2].

$1\frac{1}{2}$ player and $2\frac{1}{2}$ player models

Extend using standard strategies for other players § and

▶ Strategy profile $\Lambda = (\lambda_{\diamondsuit}, \lambda_{\square})$ with $\lambda_{\square} = (0, e_3)$ and

 $\lambda_{\diamondsuit} = \begin{cases} (0.5, e_1) \text{ if}(s_0, \nu) \text{ is such that } \nu \leqslant 0.5, \\ (0, e_1) \text{ otherwise.} \end{cases}$

$2\frac{1}{2}$ player Example

$$\begin{array}{l}
x < 1 & x \leq 1 \\
\Rightarrow & s_{0} & x < 1, e_{1} \\
x = 0, e_{2} \\
x = 0, e_{2} \\
x = 0
\end{array}$$
If $\rho = (s_{0}, 0) \xrightarrow{0.5, e_{1}} (s_{1}, 0.5) \xrightarrow{0.e_{3}} (s_{2}, 0.5)$, then
$$\mathbb{P}_{\Lambda}(\rho, e_{4}e_{1}e_{3}e_{4}) = \frac{1}{1.5} \int_{t=0}^{0.5} \frac{1}{2} \mathbb{P}_{\Lambda}(\rho \xrightarrow{t, e_{4}} (s_{0}, 0), e_{1}e_{3}e_{4}))dt \\
= \frac{1}{1.5} \int_{t=0}^{0.5} \frac{1}{2} \mathbb{P}_{\Lambda}(\rho \xrightarrow{t, e_{4}} (s_{0}, 0) \xrightarrow{0.5, e_{1}} (s_{1}, 0.5), e_{3}e_{4}))dt \\
= \frac{1}{1.5} \int_{t=0}^{0.5} \frac{1}{2} \mathbb{P}_{\Lambda}(\rho \xrightarrow{t, e_{4}} (s_{0}, 0) \xrightarrow{0.5, e_{1}} (s_{1}, 0.5), e_{3}e_{4}))dt \\
= \frac{1}{1.5} \int_{t=0}^{0.5} \frac{1}{2} \mathbb{P}_{\Lambda}(\rho \xrightarrow{t, e_{4}} (s_{0}, 0) \xrightarrow{0.5, e_{1}} (s_{1}, 0.5), e_{3}e_{4}))dt \\
= \frac{1}{1.5} \int_{t=0}^{0.5} \frac{1}{2} \mathbb{P}_{\Lambda}(\rho \xrightarrow{t, e_{4}} (s_{0}, 0) \xrightarrow{0.5, e_{1}} (s_{1}, 0.5), e_{3}e_{4})dt \\
= \frac{1}{1.5} \int_{t=0}^{0.5} \frac{1}{2} \mathbb{P}_{\Lambda}(\rho \xrightarrow{t, e_{4}} (s_{0}, 0) \xrightarrow{0.5, e_{1}} (s_{1}, 0.5) \xrightarrow{0.6} (s_{2}, 0.5), e_{4})dt \\
= \frac{1}{1.5} \int_{t=0}^{0.5} \frac{1}{2} \mathbb{P}_{\Lambda}(\rho \xrightarrow{t, e_{4}} (s_{0}, 0) \xrightarrow{0.5, e_{1}} (s_{1}, 0.5) \xrightarrow{0.6} (s_{2}, 0.5), e_{4})dt \\
= \frac{1}{1.5} \int_{t=0}^{0.5} \frac{1}{2} \mathbb{P}_{\Lambda}(\rho \xrightarrow{t, e_{4}} (s_{0}, 0) \xrightarrow{0.5, e_{1}} (s_{1}, 0.5) \xrightarrow{0.6} (s_{2}, 0.5), e_{4})dt \\
= \frac{1}{1.5} \int_{t=0}^{0.5} \frac{1}{2} \mathbb{P}_{\Lambda}(\rho \xrightarrow{t, e_{4}} (s_{0}, 0) \xrightarrow{0.5, e_{1}} (s_{1}, 0.5) \xrightarrow{0.6} (s_{2}, 0.5), e_{4})dt \\
= \frac{1}{1.5} \int_{t=0}^{0.5} \frac{1}{2} \mathbb{P}_{\Lambda}(\rho \xrightarrow{t, e_{4}} (s_{0}, 0) \xrightarrow{0.5, e_{1}} (s_{1}, 0.5) \xrightarrow{0.6} (s_{2}, 0.5), e_{4})dt \\
= \frac{1}{1.5} \int_{t=0}^{0.5} \frac{1}{2} \mathbb{P}_{\Lambda}(\rho \xrightarrow{t, e_{4}} (s_{0}, 0) \xrightarrow{0.5, e_{1}} (s_{1}, 0.5) \xrightarrow{0.6} (s_{1}, 0.5), e_{4} (s_{1}, 0.5) \xrightarrow{0.6} (s_{1}, 0.5), e_{4} (s_{1}, 0.5) \xrightarrow{0.6} (s_$$

- $\frac{1}{2}$ player game = pure stochastic process
- CTMC = timed automata with one clock, reset on all transitions.
 Exponential distributions, with a rate per location.
- PTA = subclass of 1¹/₂ player games, where no time elapse happens in stochastic nodes. So, only discrete probabilities based on weights of outgoing edges.

Synthesis and Reachability Problems

Games	
 ► ○ ► ○, ◊ ► ○, ◊, □ 	$rac{1}{2}$ player game $1rac{1}{2}$ player game $2rac{1}{2}$ player game

Reachability

- Qualitative (reach with probability $\bowtie r, r \in \{0, 1\}$)
- Quantitative (reach with probability $\bowtie r, r \in [0, 1]$)

Synthesis

Given a game \mathcal{G} , an untimed safety property φ , and a rational threshold r, does \Diamond have a strategy λ_{\Diamond} against all possible strategies λ_{\Box} of \Box such that $\mathbb{P}(\mathcal{G}_{\lambda_{\Diamond},\lambda_{\Box}} \models \varphi) \bowtie r$?

- Safety : Decidability for $\frac{1}{2}$, $1\frac{1}{2}$ as well as $2\frac{1}{2}$ player games
- Reachability :

Model		Qual.Reach	Quant.Reach
$\frac{1}{2}$ player	1 clock	D ¹	D ²
	n clocks	D ¹ (reactive)	Open
$1\frac{1}{2}$ player	1 clock	D ³	D (Initialized)
	n clocks	D (reactive)	U
$2\frac{1}{2}$ player	1 clock	Open	D (Initialized)
	n clocks	Open	U ³ , U(Time bounded)

¹[Bertrand, Bouyer, Brihaye, Menet, Baier, Größer, and Jurdzinski, 2014]

²Initialized, [Bertrand, Bouyer, Brihaye, and Markey, 2008]

³[Bouyer and Forejt, 2009]

• e_1e_3 thin, e_1e_2 thick

▶ Both e_1e_2 , e_1e_3 thick

Given state s, $s \models \varphi$ iff $\mathbb{P}(\{\rho \in \mathsf{Runs}(s) \mid \rho \models \varphi\}) = 1$

For ease of notations, we use colors in place of propositions.

$$x \leq 1 \quad x \leq 1, e_2 \qquad x \geq 3, e_4 \qquad x \leq 1 \qquad x \leq 1$$

$$\Rightarrow 5_0 \qquad x = 1, e_3 \qquad s_1 \qquad x \leq 1, e_5 \qquad s_2 \qquad x = 0, e_6 \qquad s_3 \qquad e_7, x \leq 1$$

$$e_1, x \leq 1 \qquad x \leq 1$$

 $\mathcal{A} \nvDash \Box(green \to \Diamond(red)), \text{ but } \mathbb{P}(\mathcal{A} \models \Box(green \to \Diamond(red))) = 1$

- Probability of thick paths > 0, while probability of thin paths is 0.
- ▶ For safety, if all thick paths satisfy the property, that is good!

Timed Region Graph : Thick and Thin

Work on the thick graph $\text{Thick}(\mathcal{A})$, obtained by removing the thin edges.

Every infinite path in Thick(\mathcal{A}) satisfies safety property φ from state $\imath(s)$ iff $\mathcal{A}, s \models_{\mathbb{P}} \varphi$.

- Connecting probabilistic semantics and topological semantics
- Algorithmic solutions to almost sure satisfaction using the thick graph

Topology on Infinite Runs of \mathcal{A}

Let *s* be a state of \mathcal{A} . $\mathcal{T}_s^{\mathcal{A}}$ topology on Runs (\mathcal{A}, s) .

- ▶ Basic open sets : \emptyset , Runs(A, s), as well as Cyl(π) for thick paths π
- Meagre sets : countable union of nowhere dense $(\dot{\overline{A}} = \emptyset)$ sets
- Large : Complement is meagre
- Topological games characterizing largeness

Let (A, \mathcal{T}) be a toplological space and \mathcal{B} a family of subsets of A satisfying

- ▶ For all $B \in \mathcal{B}$, $\mathring{B} \neq \emptyset$
- ▶ For every open set *O* of *A*, $B \subseteq O$ for some $B \in \mathcal{B}$.

Game: Pick some set $C \subseteq A$.

- Player 1 picks some $B_1 \in \mathcal{B}$
- ▶ Player 2 responds with some $B_2 \in \mathcal{B}, B_2 \subseteq B_1$
- Repeat

Player 1 wins iff $\bigcap_{i=1}^{\infty} B_i \cap C \neq \emptyset$. Else, player 2 wins.

[Oxtoby, 1957]

Player 2 wins a Banach-Mazur game with target set C iff C is meagre

Large Satisfaction

Is $C = \bigcup_i (e_1^i e_2(e_4 e_5)^{\omega})$ large?

- ▶ Player 1 starts with $Cyl(e_1^n)$ or $Cyl(e_1^ne_2)$ for some $n \in \mathbb{N}$.
- Player 2 responds with Cyl(e₁ⁿe₂) or Cyl(e₁ⁿe₂e₄)
- Game continues picking only thick edges, and converges into a run of C and player 1 wins.
- ► C is hence large

- Given a safety property φ, if the set of paths satisfying φ is large, then φ is true almost surely.
- \blacktriangleright If $\neg\varphi$ is large, then there is a thick prefix violating φ
- Large and almost sure satisfaction coincide; result extends to 2¹/₂ player case.

- Given a safety property φ, if the set of paths satisfying φ is large, then φ is true almost surely.
- \blacktriangleright If $\neg\varphi$ is large, then there is a thick prefix violating φ
- Large and almost sure satisfaction coincide; result extends to 2¹/₂ player case.
- However, this does not help for general properties.

 \Diamond (*red*) is violated by a thick path, but it is true almost surely!

Qualitative Reachability : $\frac{1}{2}$ player

• $\varphi = \diamond$ blue is satisfied by every fair and thick path.

Qualitative Reachability : $\frac{1}{2}$ player

• $\varphi = \diamondsuit$ blue is satisfied by every fair and thick path.

- ► However, $\mathbb{P}_{\mathcal{A}}(\pi(s_0, (e_3e_4e_5)^{\omega})) > 0$. Hence, $\mathbb{P}_{\mathcal{A}}(s_0 \models \mathsf{fair}) < 1$.
- If the underlying system is such that P_A(s₀ ⊨ fair) = 1, then checking all BSCCs in Thick(A) suffice!

Qualitative Reachability : $\frac{1}{2}$ player

• $\varphi = \diamondsuit$ blue is satisfied by every fair and thick path.

- ► However, $\mathbb{P}_{\mathcal{A}}(\pi(s_0, (e_3e_4e_5)^{\omega})) > 0$. Hence, $\mathbb{P}_{\mathcal{A}}(s_0 \models \mathsf{fair}) < 1$.
- If the underlying system is such that P_A(s₀ ⊨ fair) = 1, then checking all BSCCs in Thick(A) suffice!
- 1-clock $\frac{1}{2}$ player automata has this nice property.
- Result extends to 1¹/₂ player case, but 2¹/₂ case is open!

Quant. Reachability : $1\frac{1}{2}$ player (> 1 cl.)

- Suprisingly undecidable with 4 clocks and uniform distributions
- Non-halting of 2-counter machine iff reachability with probability = ¹/₂. Extends to all objectives ⋈ ¹/₂.
- ▶ ♦ simulates a computation of the two-counter machine, encodes counter values in clocks x₁ = ¹/_{2^{c1}}, x₂ = ¹/_{2^{c2}}
- Checks for cheating, using probabilities

Increment c₁

The Check widget : GetProb

- At E_0 , $x_1 = \frac{1}{2^{c_1+1}} \pm \epsilon$
- $\mathbb{P}_{E_0}(\Diamond(P1)) = \frac{1}{2}(1-2\epsilon)$
- $\mathbb{P}_{E_0}(\Diamond(P2)) = \frac{1}{2}(1+2\epsilon)$
- $\mathbb{P}_{P1}(\diamondsuit(T3 \text{ or } T4)) = \frac{1}{2}(1+2\epsilon)$
- $\mathbb{P}_{P2}(\diamondsuit(T1 \text{ or } T2)) = \frac{1}{2}(1-2\epsilon)$
- $\mathbb{P}_{E_0}(\diamondsuit(\mathsf{Target})) = \frac{1}{2}(1 4\epsilon^2) \leq \frac{1}{2}$

Zero Test : c_1

 Probability to reach target=Probability to continue=¹/₂

Player \diamond has a strategy to reach the (set of) target locations in \mathcal{G} with probability $\frac{1}{2}$ iff the two counter machine does not halt.

If the machine does not halt,
$$\mathbb{P}(T) = \frac{1}{2} \cdot \eta_1 + (\frac{1}{2})^2 \cdot \eta_2 + (\frac{1}{2})^3 \cdot \eta_3 + \dots + (\frac{1}{2})^k \cdot \eta_k + \dots$$
 $\eta_j = \frac{1}{2} (1 - 4\epsilon_j^2) \leq \frac{1}{2}$
 $\epsilon_j = 0$ iff \diamondsuit faithful

Initialized 1-clock, 1¹/₂ player STG G, with I(s) = ℝ⁺, any bounded cycle has a reset, exponential distribution at all locations. Reachability to some ◊ node.

Initialized 1-clock, 1¹/₂ player STG G, with I(s) = ℝ⁺, any bounded cycle has a reset, exponential distribution at all locations. Reachability to some ◊ node.

Initialized 1-clock, 1¹/₂ player STG G, with I(s) = ℝ⁺, any bounded cycle has a reset, exponential distribution at all locations. Reachability to some ◊ node.

C,**0**

 $\mathbb{P}_{\sigma}(\{\rho \in \mathit{Run}(\mathcal{G}, \mathit{s}_{0}, \sigma) \mid \rho \text{ visits } T \text{ within } \Delta \text{ time units})\} \bowtie \rho$

The timed-bounded quantitative reachability problem is undecidable for $2\frac{1}{2}$ STGs with \geqslant 7 clocks.

- Simulation of instruction k takes time $\frac{1}{2^k}$
- ► Reachability with probability ▷ ¹/₂ iff the two counter machine halts, and ◊ simulates faithfully
- checks correctness of simulation using the power of probabilities

Model		Qual.Reach	Quant.Reach
$\frac{1}{2}$ player	1 clock	D	D
	n clocks	D(reactive)	Open
$1\frac{1}{2}$ player	1 clock	D	D (Initialized)
	n clocks	D (reactive)	U
$2\frac{1}{2}$ player	1 clock	Open	D (Initialized)
	n clocks	Open	U, U(Time bounded)

Thankyou

- Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Nicolas Markey.
 Quantitative model-checking of one-clock timed automata under probabilistic semantics. In *Fifth International Conference on the Quantitative Evaluaiton of Systems (QEST 2008), 14-17 September 2008, Saint-Malo, France*, pages 55–64, 2008. doi: 10.1109/QEST.2008.19. URL
 http://dx.doi.org/10.1109/QEST.2008.19.
- Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, Quentin Menet, Christel Baier, Marcus Größer, and Marcin Jurdzinski. Stochastic timed automata. *Logical Methods in Computer Science*, 10(4), 2014. doi: 10.2168/LMCS-10(4:6)2014. URL http://dx.doi.org/10.2168/LMCS-10(4:6)2014.
- Patricia Bouyer and Vojtech Forejt. Reachability in stochastic timed games. In Automata, Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part II, pages 103–114, 2009. doi: 10.1007/978-3-642-02930-1_9. URL http://dx.doi.org/10.1007/978-3-642-02930-1_9.
- John C. Oxtoby. The banach mazur game and banach category theorem. Annals of Mathematical Studies, 39, 1957.