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0 +3x16 + 1x04 + 0 =52
(0,0)225(s,0) (,0.9) (5,0) (0,0.9)
-1 +0.9 —0.1 +0.9 --+ = 400(A not reached)

0.9, 0.1,— 0.9,

400 if A not reached
Cost of a play: .
accumulated cost up to A otherwise
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Strategies and objectives

Strategy for each player: mapping of finite runs to a delay and an action
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Strategy for each player: mapping of finite runs to a delay and an action

Goal of player o: reach A and minimize accumulated cost
Goal of player a: avoid A or, if not possible, maximize accumulated cost



Adding stochastic features

» to model probabilistic behaviours

> Probabilistic timed automata model (PRISM, UPPAAL—PRO)
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Stochastic Timed Games (STGs)

8 8 8 Stochastic player O

Classical players ¢, O

x =2 x<1 x<3 Prescribed probability
X<2 _ x=2 distributions from O
- O
x <2
x=2
X 0

» Players ¢, O play according to standard strategies
» Player O plays according to fixed probability distributions

> choose a delay according to some distribution
> choose an action according to some discrete distribution
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x =2 x<1 x <3
x <2 x=2
=~ STsal
S0 S1 S4 S5
X\ZU
x=2
x:=0

. goto s; when x =1
O : goto s; when x =2

» From the game and strategies, we obtain a Markov chain

—_—> (517 1)

(s3,

(s

(s4

(545

1)
1)
1) —— (55, 2)

2)

.2)

(565 2)

(s6:3)



Attaching probabilities to delays
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» The exponential distribution, as in continuous time Markov chains,
with delays in [0, 00)

A.exp(—At), ift>0,

density function t = .
, otherwise.

» For bounded intervals, the uniform distribution,

‘% ift >0,

0, otherwise.

density function t = {



Semantics of STGs

» STGs having only the stochastic player O : % player games.

» Path 7(sp 33)
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» Path 7(sp 33)

> {So T1—7>51 S1 7—2—’52 S ‘

n<2,n+n<7,n =1}

» Compute P(7(so >3))

/

(SOvO)

N

8/35



Semantics of STGs

8/35

» STGs having only the stochastic player O : % player games.

> a P(r(s; 3 dus, (t

» Path 77(50 33) ft€/(50,61) ( ( t )) 0( )

T1,€1 72,6 > o= Psg+t(el)
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Semantics of STGs

8/35

» STGs having only the stochastic player O : % player games.

> a P(n(s: 2))d s (t
- Path n(s 55) Fty e )09
= Psy+t( €1
« discrete distribution over

. transitions enabled at so + t, given
> Compute P(m(so -3)) by weights on transitions

> I(so,e) = {7 | s =5}

> L, distribution over /(so)
/ > I(s0) = U. I(s0, )

| ) $ so+t i St

(SOvO)

N

v

> {So T1—7>51 S1 7—2—’52 S ‘

n<2,n+n<7,n =1}

v



The % player model
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P(r(50 % - ) = ficsqm) Porte(€)B(n(sc - 4))dugt

» n-dimensional integral

» For infinite runs:
Cyl(7(so A 64)) ={p.p | p€ (s o E;)}

» PP is extended in a standard and unique way to the o-algebra Q2
generated by the cylinders.

> For every state s, P is a probability measure over (Runs(s), Q(s))



An Example
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x<1l e
x<2
x<1 e x>1, &
M ®
x:=0
x<1

<
x<2, e

-1
P(r((A,0), e16)) = /0 P(( 5 dpyao)(t)

:/0. %(/1 %dM(B,O)(U)) dpi(a0)(t)

1/t %211 1
STUSTOIEEE

di(a0) uniform distribution over [0,1], dy(g,0) uniform distribution over
[0,2].



1% player and 2% player models

» Extend using standard strategies for other players ¢ and O
x <1 x <2

x<1
x =0,
5 x <1l e 5 =0, e3 /5‘2\ @:)eﬁ‘x:2
x <2 65

» Strategy profile A = (Ax, Am) with Az = (0, e3) and

N (0.5, €1) if(sp, ) is such that v < 0.5,
- (0, e1) otherwise.
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2% player Example
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x <1 x <2

x<1
x =0,
— X < Lerdrg Z0% (%) @:)eﬁ,XZQ
x <265
77

If p = (50,0) "= ( 51,0.5) 2§ (s,,0.5), then
1 0.5 1 tes
Pr(p; eserezeq) = — ZPa(p 25 (s0,0), ereses))dt
t

15/, 2
1 /951 e s
= 2P Ap = (50, 0) (51,0.5), e3eq))dt
t=0
1 [%%1

T 15 t02

=Tz / —dt')dt
1.5 0215 o 2 36

“Pa(p 25 (s0,0) 7257 (51,0.5) 25 (s, 0.5),

6‘4))dt



Models

1 _ .
» 5 player game = pure stochastic process

» CTMC = timed automata with one clock, reset on all transitions.
Exponential distributions, with a rate per location.

» PTA = subclass of 1% player games, where no time elapse happens
in stochastic nodes. So, only discrete probabilities based on weights
of outgoing edges.
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Synthesis and Reachability Problems

Games
» O % player game
» O, O 1% player game
» O, O, O 2% player game
Reachability

» Qualitative (reach with probability > r, r € {0,1})
» Quantitative (reach with probability > r, r € [0, 1])

Synthesis

Given a game G, an untimed safety property ¢, and a rational threshold
r, does { have a strategy )\<> against all possible strategies A\ of O such

that IP’(Q,\Q,,\D ‘: (p) > r?
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The STG Landscape
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» Safety : Decidability for %, 1% as well as 2% player games

> Reachability :

Model Qual.Reach Quant.Reach
1 1 clock D! D?
2 PRYer M Clocks | DY (reactive) Open
121 olaver 1 clock D3 D (Initialized)
2 P&y n clocks | D (reactive) U
21 olaver 1 clock Open D (Initialized)
2 Py M clocks Open U3, U(Time bounded)

[Bertrand, Bouyer, Brihaye, Menet, Baier, GréBer, and Jurdzinski, 2014]
2|Initialized, [Bertrand, Bouyer, Brihaye, and Markey, 2008]

3[Bouyer and Forejt, 2009]




Thick and Thin Paths
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Thick and Thin:

x<1le x=1e
~@ @@
\\I:j =0,e3

®

> e1e3 thin, e1e thick

x<1e x=1,
@@t

-
®

» Both e e, €13 thick

@



Q u a | Ita t I Ve Sy n t h eS I S [Bertrand, Bouyer, Brihaye, Menet, Baier, GroBer, and Jurdzinski, 2014]

Given state s, s = ¢ iff P({p € Runs(s) | p E ¢}) =1

For ease of notations, we use colors in place of propositions.

x<1 x<1l e x2>3,¢e x<1 x<1
/XZO\K x=0,¢e
S; ) S: <1
»@ 1\X<1155/<> 3P xS
e, x<1

A O( — O(red)), but P(A E O( — O(red))) =1
» Probability of thick paths > 0, while probability of thin paths is 0.
» For safety, if all thick paths satisfy the property, that is good!

17/35



Timed Region Graph : Thick and Thin

.. 9

&
A
2
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Almost sure satisfaction : Safety

Work on the thick graph Thick(.4), obtained by removing the thin edges.

Every infinite path in Thick(.A) satisfies safety property ¢ from state (s)
iff ./1, S F::HD @.
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Large Satisfaction
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» Connecting probabilistic semantics and topological semantics

» Algorithmic solutions to almost sure satisfaction using the thick
graph

Topology on Infinite Runs of A

Let s be a state of A. T-A topology on Runs(A, s).
» Basic open sets : ), Runs(A, s), as well as Cyl(r) for thick paths 7

» Meagre sets : countable union of nowhere dense (A = () sets
» Large : Complement is meagre

» Topological games characterizing largeness



Banach-Mazur Games

Let (A, T) be a toplological space and B a family of subsets of A
satisfying
» Forall BeB, B+#0
» For every open set O of A, B C O for some B € B.
Game: Pick some set C C A.
» Player 1 picks some B; € B
> Player 2 responds with some B, € B, B, C By
» Repeat
Player 1 wins iff ()22, B; N C # (. Else, player 2 wins.

[Oxtoby, 1957]

Player 2 wins a Banach-Mazur game with target set C iff C is meagre
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Large Satisfaction

x<1 x<1le x23 e x<1 x<1
X =0 x=0,e5
S; ) 5 <1
*@/X—\\_ly 1\X<1,e5/(C 3P xS
e, x<1

Is C = J,(elex(eses)”) large?
» Player 1 starts with Cyl(e]") or Cyl(ef'e;) for some n € N.
» Player 2 responds with Cyl(ef'e;) or Cyl(efezes)
» Game continues picking only thick edges, and converges into a run
of C and player 1 wins.

» C is hence large
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Large and Almost sure : Safety Properties

> Given a safety property ¢, if the set of paths satisfying ¢ is large,
then ¢ is true almost surely.

> If = is large, then there is a thick prefix violating ¢

> Large and almost sure satisfaction coincide; result extends to 2%
player case.
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Large and Almost sure : Safety Properties

v

Given a safety property ¢, if the set of paths satisfying ¢ is large,
then ¢ is true almost surely.

v

If = is large, then there is a thick prefix violating ¢

v

Large and almost sure satisfaction coincide; result extends to 2%
player case.

» However, this does not help for general properties.

x<le
~@ @

1)e1,x <1

O(red) is violated by a thick path, but it is true almost surely!

23/35



Qualitative Reachability : % player
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y=2,¢e 1<y<2e l
S - S1 So

x> 2 e

x:=0

» ¢ = < blue is satisfied by every fair and thick path.



Qualitative Reachability : % player

y=2,¢e 1<y<2e
S S1 So

x> 2 e
x:=0

» ¢ = < blue is satisfied by every fair and thick path.
> However, P4(7(so, (e3e465)“)) > 0. Hence, P 4(sp = fair) < 1.

> If the underlying system is such that P 4(sp |= fair) = 1, then
checking all BSCCs in Thick(.A) suffice!
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Qualitative Reachability : % player

y=2,¢e 1<y<2e
S S1 So

x> 2 e

x:=0

» ¢ = < blue is satisfied by every fair and thick path.
However, P 4(7(so, (e3ese5)“)) > 0. Hence, P4(so |= fair) < 1.

If the underlying system is such that P 4(sp |= fair) = 1, then
checking all BSCCs in Thick(.A) suffice!

1-clock % player automata has this nice property.

v

v

v

v

Result extends to 11 player case, but 23 case is open!
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Quant. Reachability : 13 player (> 1 cl.)

v

Suprisingly undecidable with 4 clocks and uniform distributions

v

Non-halting of 2-counter machine iff reachability with probability
= % Extends to all objectives %

» () simulates a computation of the two-counter machine, encodes

counter values in clocks x; = 55, % = 5

O checks for cheating, using probabilities

v
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Increment ¢;

; 1 _ 1
Y » Start with x; = 57, X2 = 55
> x3=x4=0
a=tlbet ) Time o<t <1 spent at B
x2=1,{x2} CjZiE) » xy=tat C
1
> X = 5 — t at é
{xa} ' = 1 9 '
o f x =1 5 0<><1,><3<1fc X_0>|St:2c1+1-
T TN T {«} /' » Check done by GetProb
x =1, {x} {x} » Probability to
________ continue=Probability to

I check:%
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The Check widget :

GetProb

> At Eo,xlzﬁ:l:e

> Pg (O(P1)) = 3(1 - 2¢)

> Pe,(O(P2)) = 3(1+ 2¢)

> Ppi(O(T3 or T4)) =1(1 + 2¢)
> Ppo(O(T1or T2))=2(1 - 2¢)

> Pg,(O(Target))=3(1-4€*) < &



Zero Test : ¢

» Probability to reach
target=Probability to
continue:%
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Putting things together

Player O has a strategy to reach the (set of) target locations in G with
probability % iff the two counter machine does not halt.

» If the machine does not halt,

P(T)=3m+ G)Pm+GPm+-+G) m+...
> =5(1-4€) < 3
> ¢; = 0 iff O faithful
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Quantitative Reachability:l% player, 1 clock

> Initialized 1-clock, 13 player STG G, with /(s) = RT, any bounded
cycle has a reset, exponential distribution at all locations.
Reachability to some ¢ node.
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Quantitative Reachability : 1% player, 1-clock
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Quantitative Reachability : 1% player, 1-clock
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Time-bounded Quantitative Reachability

P,({p € Run(G, so,0) | p visits T within A time units)} < p

The timed-bounded quantitative reachability problem is undecidable for
21 STGs with > 7 clocks.

» Simulation of instruction k takes time 2%

> Reachability with probability > % iff the two counter machine halts,
and ¢ simulates faithfully
» [ checks correctness of simulation using the power of probabilities
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Many Open Questions....

Model Qual.Reach Quant.Reach
1 1 clock D D

2 PRYer T Clocks D(reactive) Open
11 oimver |_Lclock D D (Initialized)

2 P&y n clocks | D (reactive) U
21 olaver 1 clock Open D (Initialized)

2 Py n clocks Open U, U(Time bounded)
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Thankyou
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