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Timed Games

-1

3 1

1

x 6 2

0

0

x 6 2

x = 1

x := 0

x = 0

x < 1

x = 2

1 < x < 2

2-player game on TA
Controller, Environment

target locations
reachability objectives

( , 0)
0,↓−−→( , 0)

1.6,→−−−−→( , 1.6)
.4,→−−−→(4, 2)

0 + 3× 1.6 + 1× 0.4 + 0 = 5.2

( , 0)
1,→−−−→( , 0)

0.9,←−−−−→( , 0.9)
0.1,→−−−−→( , 0)

0.9,←−−−−→( , 0.9) · · ·
−1 +0.9 −0.1 +0.9 · · · = +∞(4 not reached)

Cost of a play:

{
+∞ if 4 not reached

accumulated cost up to 4 otherwise
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Strategies and objectives

-1

3 1

1

x 6 2

0

f

x 6 2

x = 1

x := 0

x = 0

x < 1

x = 2

1 < x < 2

Strategy for each player: mapping of finite runs to a delay and an action

Goal of player : reach 4 and minimize accumulated cost
Goal of player : avoid 4 or, if not possible, maximize accumulated cost
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Adding stochastic features

I to model probabilistic behaviours

s0 s1

x 6 2

s2 lost

s3 delivered

send

x := 0

0.1

0.9

I Probabilistic timed automata model (PRISM, UPPAAL−PRO)
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Stochastic Timed Games (STGs)

x 6 2

x = 2 x 6 1

x 6 2 x = 2

x = 2

x := 0

x 6 3

Stochastic player
Classical players ,
Prescribed probability

distributions from

I Players , play according to standard strategies

I Player plays according to fixed probability distributions
I choose a delay according to some distribution
I choose an action according to some discrete distribution
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A Play

s0 s1

s2 s3

s4 s5

s6

x 6 2

x = 2 x 6 1

x 6 2 x = 2

x = 2

x := 0

x 6 3
: goto s1 when x = 1
: goto s5 when x = 2

I From the game and strategies, we obtain a Markov chain

(s0, 0) (s1, 1)

(s3, 1)

(s2, 2)

(s4, 1)

(s4, 1.1)

(s4, 2)

(s5, 2)

(s6, 2)

(s6, 3)
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Attaching probabilities to delays

I The exponential distribution, as in continuous time Markov chains,
with delays in [0,∞)

density function t =

{
λ.exp(−λt), if t > 0,

0, otherwise.

I For bounded intervals, the uniform distribution,

density function t =

{
1
|l| if t > 0,

0, otherwise.
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Semantics of STGs

I STGs having only the stochastic player : 1
2 player games.

s0 s1 s2

s3 s4

x 6 2, e1

y := 0

x = 1, e3

x 6 7, e2

y > 1

x > 5, e3

I Path π(s0
e1→ e2→)

I {s0
τ1,e1→ s1

τ2,e2→ s2 |
τ1 6 2, τ1 + τ2 6 7, τ2 > 1}

I Compute P(π(s0
e1→ e2→))

(s0, 0)

s1

s3

I
∫
t∈I (s0,e1)

α P(π(st
e2→))dµs0(t)

I α = ps0+t(e1)

I α discrete distribution over
transitions enabled at s0 + t, given
by weights on transitions

I I (s0, e1) = {τ | s0
τ,e1→}

I µs0 distribution over I (s0)

I I (s0) =
⋃

e I (s0, e)

I s0
t→ s0 + t

e1→ st
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The 1
2 player model

P(π(s0
e1→ · · · en→)) =

∫
t∈I (s0,e1)

ps0+t(e1)P(π(st
e2→ · · · en→))dµs0t

I n-dimensional integral

I For infinite runs:

Cyl(π(s0
e1→ · · · en→)) = {ρ.ρ′ | ρ ∈ π(s0

e1→ · · · en→)}

I P is extended in a standard and unique way to the σ-algebra Ω
generated by the cylinders.

I For every state s, P is a probability measure over (Runs(s),Ω(s))
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An Example

A

x 6 1

B

x 6 2

D
x 6 1, e1

x := 0

x 6 1, e3

x > 1, e2

x 6 2, e4

P(π((A, 0), e1e2)) =

∫ 1

0

P(π((B, 0), e2))

2
dµ(A,0)(t)

=

∫ 1

0

1

2
(

∫ 2

1

1

2
dµ(B,0)(u)) dµ(A,0)(t)

=
1

2

∫ 1

0

(

∫ 2

1

1

2

1

2
du)) dt) =

1

8

dµ(A,0) uniform distribution over [0,1], dµ(B,0) uniform distribution over
[0,2].
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11
2 player and 21

2 player models

I Extend using standard strategies for other players and

s0

x < 1

s1

x 6 1

s2

x 6 2

s3
x < 1, e1

x = 0, e2

x > 0, e3

x 6 1, e4

x := 0

x < 2, e5

e6, x = 2

I Strategy profile Λ = (λ , λ ) with λ = (0, e3) and

λ =

{
(0.5, e1) if(s0, ν) is such that ν 6 0.5,

(0, e1) otherwise.
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21
2 player Example

s0

x < 1

s1

x 6 1

s2

x 6 2

s3
x < 1, e1

x = 0, e2

x > 0, e3

x 6 1, e4

x := 0

x < 2, e5

e6, x = 2

If ρ = (s0, 0)
0.5,e1→ (s1, 0.5)

0,e3→ (s2, 0.5), then

PΛ(ρ, e4e1e3e4) =
1

1.5

∫ 0.5

t=0

1

2
PΛ(ρ

t,e4→ (s0, 0), e1e3e4))dt

=
1

1.5

∫ 0.5

t=0

1

2
PΛ(ρ

t,e4→ (s0, 0)
0.5,e1→ (s1, 0.5), e3e4))dt

=
1

1.5

∫ 0.5

t=0

1

2
PΛ(ρ

t,e4→ (s0, 0)
0.5,e1→ (s1, 0.5)

0,e3→ (s2, 0.5), e4))dt

=
1

1.5

∫ 0.5

t=0

1

2
(

1

1.5

∫ 0.5

t′=0

1

2
dt ′)dt =

1

36
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Models

I 1
2 player game = pure stochastic process

I CTMC = timed automata with one clock, reset on all transitions.
Exponential distributions, with a rate per location.

I PTA = subclass of 1 1
2 player games, where no time elapse happens

in stochastic nodes. So, only discrete probabilities based on weights
of outgoing edges.
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Synthesis and Reachability Problems

Games

I 1
2 player game

I , 1 1
2 player game

I , , 2 1
2 player game

Reachability

I Qualitative (reach with probability ./ r , r ∈ {0, 1})
I Quantitative (reach with probability ./ r , r ∈ [0, 1])

Synthesis

Given a game G, an untimed safety property ϕ, and a rational threshold
r , does have a strategy λ against all possible strategies λ of such

that P(Gλ ,λ |= ϕ) ./ r?
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The STG Landscape

I Safety : Decidability for 1
2 , 1

1
2 as well as 2 1

2 player games

I Reachability :

Model Qual.Reach Quant.Reach

1
2 player

1 clock D 1 D 2

n clocks D1 (reactive) Open

1 1
2 player

1 clock D 3 D (Initialized)
n clocks D (reactive) U

2 1
2 player

1 clock Open D (Initialized)
n clocks Open U3, U(Time bounded)

1[Bertrand, Bouyer, Brihaye, Menet, Baier, Größer, and Jurdzinski, 2014]
2Initialized, [Bertrand, Bouyer, Brihaye, and Markey, 2008]
3[Bouyer and Forejt, 2009]
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Thick and Thin Paths

Thick and Thin:

s0 s1 s2

s3

x 6 1, e1 x = 1, e2

x = 0, e3

I e1e3 thin, e1e2 thick

s0 s1 s2

s3

x 6 1, e2 x = 1, e3

x = 2, e4

I Both e1e2, e1e3 thick
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Qualitative Synthesis [Bertrand, Bouyer, Brihaye, Menet, Baier, Größer, and Jurdzinski, 2014]

Given state s, s |= ϕ iff P({ρ ∈ Runs(s) | ρ |= ϕ}) = 1

For ease of notations, we use colors in place of propositions.

s0

x 6 1

s1 s2

x 6 1

s3

x 6 1x 6 1, e2

e1, x 6 1

x = 1, e3

x > 3, e4

x := 0
x 6 1, e5

x = 0, e6
e7, x 6 1

A 2 2(green→ 3(red)), but P(A |= 2(green→ 3(red))) = 1

I Probability of thick paths > 0, while probability of thin paths is 0.

I For safety, if all thick paths satisfy the property, that is good!
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Timed Region Graph : Thick and Thin

s0, 0

s0, (0, 1)

s0, 1

s1, 0

s1, (0, 1)

s1, 1

s2, 0 s3, 0

s3, (0, 1)

s3, 1

e2

e1

e1

e1

e2

e2

e1

e2

e2

e2

e1

e2e2

e3

e4

e4

e4

e5

e5

e5

e6
e7

e7

e7e7

e7

e7
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Almost sure satisfaction : Safety

Work on the thick graph Thick(A), obtained by removing the thin edges.

Every infinite path in Thick(A) satisfies safety property ϕ from state ı(s)
iff A, s |=P ϕ.
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Large Satisfaction

I Connecting probabilistic semantics and topological semantics

I Algorithmic solutions to almost sure satisfaction using the thick
graph

Topology on Infinite Runs of A
Let s be a state of A. T A

s topology on Runs(A, s).

I Basic open sets : ∅, Runs(A, s), as well as Cyl(π) for thick paths π

I Meagre sets : countable union of nowhere dense (Å = ∅) sets

I Large : Complement is meagre

I Topological games characterizing largeness
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Banach-Mazur Games

Let (A, T ) be a toplological space and B a family of subsets of A
satisfying

I For all B ∈ B, B̊ 6= ∅
I For every open set O of A, B ⊆ O for some B ∈ B.

Game: Pick some set C ⊆ A.

I Player 1 picks some B1 ∈ B
I Player 2 responds with some B2 ∈ B,B2 ⊆ B1

I Repeat

Player 1 wins iff
⋂∞

i=1 Bi ∩ C 6= ∅. Else, player 2 wins.

[Oxtoby, 1957]

Player 2 wins a Banach-Mazur game with target set C iff C is meagre
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Large Satisfaction

s0

x 6 1

s1 s2

x 6 1

s3

x 6 1x 6 1, e2

e1, x 6 1

x = 1, e3

x > 3, e4

x := 0
x 6 1, e5

x = 0, e6
e7, x 6 1

Is C =
⋃

i (e
i
1e2(e4e5)ω) large?

I Player 1 starts with Cyl(en1 ) or Cyl(en1 e2) for some n ∈ N.

I Player 2 responds with Cyl(en1 e2) or Cyl(en1 e2e4)

I Game continues picking only thick edges, and converges into a run
of C and player 1 wins.

I C is hence large
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Large and Almost sure : Safety Properties

I Given a safety property ϕ, if the set of paths satisfying ϕ is large,
then ϕ is true almost surely.

I If ¬ϕ is large, then there is a thick prefix violating ϕ

I Large and almost sure satisfaction coincide; result extends to 2 1
2

player case.

I However, this does not help for general properties.

s0 s1
x 6 1, e2

e1, x 6 1

3(red) is violated by a thick path, but it is true almost surely!
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Qualitative Reachability : 1
2 player

s2

y < 1

s1 s0 s3 s4

y < 1

x > 2, e5

x := 0

y = 2, e4

y := 0

1 < y < 2, e3 y < 1, e1 e2, y = 1

y := 0
x > 1, e0

x := 0

I ϕ = 3 blue is satisfied by every fair and thick path.

I However, PA(π(s0, (e3e4e5)ω)) > 0. Hence, PA(s0 |= fair) < 1.

I If the underlying system is such that PA(s0 |= fair) = 1, then
checking all BSCCs in Thick(A) suffice!

I 1-clock 1
2 player automata has this nice property.

I Result extends to 1 1
2 player case, but 2 1

2 case is open!
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Quant. Reachability : 11
2 player (> 1 cl.)

I Suprisingly undecidable with 4 clocks and uniform distributions

I Non-halting of 2-counter machine iff reachability with probability
= 1

2 . Extends to all objectives ./ 1
2 .

I simulates a computation of the two-counter machine, encodes
counter values in clocks x1 = 1

2c1
, x2 = 1

2c2

I checks for cheating, using probabilities
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Increment c1

`ix1 = 1
2c1 B C x4 = 0

D

`j

GetProb

x1 = 1

{x1, x4}

x2 = 1, {x2}

0 < x1, x3 < 1

{x4}

{x1}

{x2}

x2 = 1, {x2}

x3 = 1 {x3, x4}

I Start with x1 = 1
2c1
, x2 = 1

2c2

I x3 = x4 = 0

I Time 0 < t < 1 spent at B

I x1 = t at C

I x1 = 1
2c1
− t at `j

I Is t = 1
2c1+1 ?

I Check done by GetProb

I Probability to
continue=Probability to
check= 1

2
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The Check widget : GetProb

E0x4 6 2

T1T2

T3T4

R1R2

R3R4

E1E2

E3E4

G H

G1 H1

IJ

I1J1

P1

x4 6 2

P2

x4 6 2

x1 > 1 ∧ x4 6 1x3 > 2 ∧ x4 6 2

x1 6 1x4 > 1 ∧ x3 6 2

x4 = 2 {x2, x4} x4 = 2 {x2, x4}

x4 = 2 {x2, x4} x4 = 2 {x2, x4}

x3 = 3, {x3} x3 = 3, {x3}

x3 = 3, {x3} x3 = 3, {x3}

x1 = 3 {x1, x2} x1 = 3 {x1, x2}

x1 = 3 {x1, x2}x1 = 3 {x1, x2}

x4 = 1 {x2, x4} x4 = 1 {x2, x4}

x4 = 1 {x2, x4} x4 = 1 {x2, x4}

x1 6 1x4 > 1 ∧ x3 6 2

x1 > 1 ∧ x4 6 1x3 > 2 ∧ x4 6 2

x1 6 1x4 > 1 ∧ x3 6 2

x1 > 1 ∧ x4 6 1x3 > 2 ∧ x4 6 2

I At E0, x1 = 1
2c1+1 ± ε

I PE0 (3(P1)) = 1
2 (1− 2ε)

I PE0 (3(P2)) = 1
2 (1 + 2ε)

I PP1(3(T3 or T4)) = 1
2 (1 + 2ε)

I PP2(3(T1 or T2))= 1
2 (1− 2ε)

I PE0 (3(Target))= 1
2 (1−4ε2) 6 1

2
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Zero Test : c1

`ix1 = 1
2c1
, x4 = 0

B1

x4 = 0

B2

x4 = 0

T

T

`j

`k

x1 = 1

x1 < 1

I Probability to reach
target=Probability to
continue= 1

2
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Putting things together

Player has a strategy to reach the (set of) target locations in G with
probability 1

2 iff the two counter machine does not halt.

I If the machine does not halt,
P(T )= 1

2 .η1 + ( 1
2 )2.η2 + ( 1

2 )3.η3 + · · ·+ ( 1
2 )k .ηk + . . .

I ηj = 1
2 (1− 4ε2

j ) 6 1
2

I εj = 0 iff faithful
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Quantitative Reachability:11
2 player, 1 clock

I Initialized 1-clock, 1 1
2 player STG G, with I (s) = R+, any bounded

cycle has a reset, exponential distribution at all locations.
Reachability to some node.

A B

C

D

E

0 < x 6 1

e4

e3

x 6 1

e1

x > 1
x := 0

e2

x > 1

x 6 1 e7

e8, x 6 1
x := 0

e5

x > 1
x := 0

e6

x < 1
x := 0

A, 0 B,(0,1) D,(0,1)

C,0

A,(0,1)

E,0 B,0

E,∞

e4 e7

e8

e1

e3e1
e2

e3

e4

e5

e6

e5

e7
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Quantitative Reachability:11
2 player, 1 clock

I Initialized 1-clock, 1 1
2 player STG G, with I (s) = R+, any bounded

cycle has a reset, exponential distribution at all locations.
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Quantitative Reachability:11
2 player, 1 clock

I Initialized 1-clock, 1 1
2 player STG G, with I (s) = R+, any bounded

cycle has a reset, exponential distribution at all locations.
Reachability to some node.

A B

C

D

E

0 < x 6 1

e4

e3

x 6 1

e1

x > 1
x := 0

e2

x > 1

x 6 1 e7
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x := 0

e5

x > 1
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e6

x < 1
x := 0
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Quantitative Reachability : 11
2 player, 1-clock

A, 0 B,(0,1) D,(0,1)

C,0

A,(0,1)

E,0 B,0

E,∞

e4 e7

e8

e1

e3e1
e2

e3

e4

e5

e6

e5

e7

A, 0

D,(0,1)

C,0

E,0 B,0

E,∞

e8

e1e3

e7

e5

e6

e2

e4e7

e4e5

e3e1

e3e4e7

e3e4e5
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Quantitative Reachability : 11
2 player, 1-clock
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Quantitative Reachability : 11
2 player, 1-clock
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Quantitative Reachability : 11
2 player, 1-clock
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Time-bounded Quantitative Reachability

Pσ({ρ ∈ Run(G, s0, σ) | ρ visits T within ∆ time units)} ./ p

The timed-bounded quantitative reachability problem is undecidable for
2 1

2 STGs with > 7 clocks.

I Simulation of instruction k takes time 1
2k

I Reachability with probability ./ 1
2 iff the two counter machine halts,

and simulates faithfully

I checks correctness of simulation using the power of probabilities
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Many Open Questions....

Model Qual.Reach Quant.Reach

1
2 player

1 clock D D
n clocks D(reactive) Open

1 1
2 player

1 clock D D (Initialized)
n clocks D (reactive) U

2 1
2 player

1 clock Open D (Initialized)
n clocks Open U, U(Time bounded)
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Thankyou
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