On Stochastic Timed Games

TCQV 2016, Mysuru

Shankara Narayanan Krishna

February 2, 2016

Timed Games

> 2-player game on TA Controller, Environment target locations reachability objectives

Timed Games

2-player game on TA Controller, Environment target locations reachability objectives

Timed Games

2-player game on TA Controller, Environment target locations reachability objectives
$(0,0) \xrightarrow{0, \downarrow}(0,0)$

Timed Games

2-player game on TA Controller, Environment target locations reachability objectives

$$
(0,0) \xrightarrow{0, \downarrow}(0,0) \xrightarrow{1.6, \rightarrow}(\square, 1.6)
$$

Timed Games

2-player game on TA Controller, Environment target locations reachability objectives

$$
(0,0) \xrightarrow{0, \downarrow}(0,0) \xrightarrow{1.6, \rightarrow}(\square, 1.6) \xrightarrow{.4, \rightarrow}(\Delta, 2)
$$

Timed Games

2-player game on TA Controller, Environment target locations reachability objectives

$$
\begin{gathered}
(\mathrm{o}, 0) \xrightarrow{0, \downarrow}(\mathrm{o}, 0) \xrightarrow{1.6, \rightarrow}(\square, 1.6) \xrightarrow{\text {.4, }}(\triangle, 2) \\
0
\end{gathered}+3 \times 1.6+1 \times 0.4+0=5.2
$$

Timed Games

2-player game on TA Controller, Environment target locations reachability objectives

$$
\begin{aligned}
& \begin{array}{c}
(\mathrm{O}, 0) \xrightarrow{0, \downarrow}(\mathrm{o}, 0) \xrightarrow{1.6, \rightarrow}(\square, 1.6) \xrightarrow{.4, \rightarrow}(\triangle, 2) \\
0+3 \times 1.6+1 \times 0.4+0=5.2
\end{array} \\
& (0,0) \xrightarrow[-1]{1, \rightarrow}(\square, 0) \xrightarrow[+0.9]{0.9, \leftarrow}(0,0.9) \xrightarrow[-0.1]{0.1, \rightarrow}(\square, 0) \xrightarrow[+0.9]{0.9, \leftarrow}(0,0.9) \quad \cdots \quad=+\infty(\triangle \text { not reached })
\end{aligned}
$$

Timed Games

2-player game on TA Controller, Environment target locations reachability objectives

$$
\begin{aligned}
& \begin{array}{c}
(\mathrm{O}, 0) \xrightarrow{0, \downarrow}(\mathrm{o}, 0) \xrightarrow{1.6, \rightarrow}(\square, 1.6) \xrightarrow{.4, \rightarrow}(\triangle, 2) \\
0+3 \times 1.6+1 \times 0.4+0=5.2
\end{array} \\
& (0,0) \xrightarrow[-1]{1, \rightarrow}(\square, 0) \xrightarrow[+0.9]{0.9, \leftarrow}(0,0.9) \xrightarrow[-0.1]{0.1, \rightarrow}(\square, 0) \xrightarrow[+0.9]{0.9, \leftarrow}(0,0.9) \cdots \quad \cdots \quad=+\infty(\triangle \text { not reached })
\end{aligned}
$$

Cost of a play: $\begin{cases}+\infty & \text { if } \triangle \text { not reached } \\ \text { accumulated cost up to } \triangle & \text { otherwise }\end{cases}$

Strategies and objectives

Strategy for each player: mapping of finite runs to a delay and an action

Strategies and objectives

Strategy for each player: mapping of finite runs to a delay and an action Goal of player o: reach \triangle and minimize accumulated cost
Goal of player ©: avoid \triangle or, if not possible, maximize accumulated cost

Adding stochastic features

- to model probabilistic behaviours

- Probabilistic timed automata model (PRISM, UPPAAL-PRO)

Stochastic Timed Games (STGs)

> Stochastic player \bigcirc Classical players \diamond, \square Prescribed probability distributions from \bigcirc

- Players \diamond, \square play according to standard strategies
- Player \bigcirc plays according to fixed probability distributions
- choose a delay according to some distribution
- choose an action according to some discrete distribution

A Play

\diamond : goto s_{1} when $x=1$
\square : goto s_{5} when $x=2$

- From the game and strategies, we obtain a Markov chain

Attaching probabilities to delays

- The exponential distribution, as in continuous time Markov chains, with delays in $[0, \infty)$

$$
\text { density function } \mathrm{t}= \begin{cases}\lambda \cdot \exp (-\lambda \mathrm{t}), & \text { if } \mathrm{t} \geqslant 0 \\ 0, & \text { otherwise }\end{cases}
$$

- For bounded intervals, the uniform distribution,

$$
\text { density function } t= \begin{cases}\frac{1}{\Pi \mid} & \text { if } t \geqslant 0 \\ 0, & \text { otherwise }\end{cases}
$$

Semantics of STGs

- STGs having only the stochastic player $O: \frac{1}{2}$ player games.

- Path $\pi\left(s_{0} \xrightarrow{e_{2}} \underset{\rightarrow}{\text { en }}\right)$

Semantics of STGs

- STGs having only the stochastic player $O: \frac{1}{2}$ player games.

- Path $\pi\left(s_{0} \xrightarrow{e_{1}}\right)$
- $\left\{s_{0} \xrightarrow{\tau_{1}, e_{1}} s_{1} \xrightarrow{\tau_{2}, e_{2}} s_{2} \mid\right.$
$\left.\tau_{1} \leqslant 2, \tau_{1}+\tau_{2} \leqslant 7, \tau_{2} \geqslant 1\right\}$

Semantics of STGs

- STGs having only the stochastic player $O: \frac{1}{2}$ player games.

- Path $\pi\left(s_{0} \xrightarrow{e_{1}}\right)$
- $\left\{s_{0} \xrightarrow{\tau_{1}, e_{1}} s_{1} \xrightarrow{\tau_{2}, e_{2}} s_{2} \mid\right.$ $\left.\tau_{1} \leqslant 2, \tau_{1}+\tau_{2} \leqslant 7, \tau_{2} \geqslant 1\right\}$
- Compute $\mathbb{P}\left(\pi\left(s_{0} \xrightarrow{e_{9}}\right)\right)$
- $\int_{t \in I\left(s_{0}, e_{1}\right)} \alpha \mathbb{P}\left(\pi\left(s_{t} \xrightarrow{\text { eq }}\right)\right) d \mu_{s_{0}}(t)$
- $\alpha=p_{s_{0}+t}\left(e_{1}\right)$
- α discrete distribution over transitions enabled at $s_{0}+t$, given by weights on transitions

Semantics of STGs

- STGs having only the stochastic player $O: \frac{1}{2}$ player games.

- Path $\pi\left(s_{0} \xrightarrow{e_{9}} \underset{\rightarrow}{e_{3}}\right)$
- $\left\{s_{0} \xrightarrow{\tau_{1}, e_{1}} s_{1} \xrightarrow{\tau_{2}, e_{2}} s_{2} \mid\right.$
$\left.\tau_{1} \leqslant 2, \tau_{1}+\tau_{2} \leqslant 7, \tau_{2} \geqslant 1\right\}$
- Compute $\mathbb{P}\left(\pi\left(s_{0} \xrightarrow{e_{l}} \boldsymbol{q}\right)\right)$

- $\int_{t \in I\left(s_{0}, e_{1}\right)} \alpha \mathbb{P}\left(\pi\left(s_{t} \xrightarrow{\text { eq }}\right)\right) d \mu_{s_{0}}(t)$
- $\alpha=p_{s_{0}+t}\left(e_{1}\right)$
- α discrete distribution over transitions enabled at $s_{0}+t$, given by weights on transitions
- $I\left(s_{0}, e_{1}\right)=\left\{\tau \mid s_{0} \xrightarrow{\tau, e_{1}}\right\}$
- $\mu_{s_{0}}$ distribution over $I\left(s_{0}\right)$
- $I\left(s_{0}\right)=\bigcup_{e} I\left(s_{0}, e\right)$
- $s_{0} \xrightarrow{t} s_{0}+t \xrightarrow{e_{1}} s_{t}$

The $\frac{1}{2}$ player model

$\mathbb{P}\left(\pi\left(s_{0} \xrightarrow{e_{l}} \ldots \xrightarrow{e_{\boldsymbol{n}}}\right)\right)=\int_{t \in I\left(s_{0}, e_{1}\right)} p_{s_{0}+t}\left(e_{1}\right) \mathbb{P}\left(\pi\left(s_{t} \xrightarrow{e_{3}} \ldots \xrightarrow{e_{\boldsymbol{M}}}\right)\right) d \mu_{s_{0}} t$

- n-dimensional integral
- For infinite runs:

$$
\operatorname{Cyl}\left(\pi\left(s_{0} \xrightarrow{e_{1}} \ldots \xrightarrow{e_{n}}\right)\right)=\left\{\rho . \rho^{\prime} \mid \rho \in \pi\left(s_{0} \xrightarrow{e_{l}} \ldots \xrightarrow{e_{n}}\right)\right\}
$$

- \mathbb{P} is extended in a standard and unique way to the σ-algebra Ω generated by the cylinders.
- For every state s, \mathbb{P} is a probability measure over $(\operatorname{Runs}(s), \Omega(s))$

An Example

$$
\begin{aligned}
& \underbrace{x \leqslant 1, e_{3}}_{x \leqslant 1} \\
& \mathcal{P}\left(\pi\left((A, 0), e_{1} e_{2}\right)\right)=\int_{0}^{1} \frac{\mathcal{P}\left(\pi\left((B, 0), e_{2}\right)\right)}{2} d \mu_{(A, 0)}(t) \\
& =\int_{0}^{1} \frac{1}{2}\left(\int_{1}^{2} \frac{1}{2} d \mu_{(B, 0)}(u)\right) d \mu_{(A, 0)}(t) \\
& \left.\left.=\frac{1}{2} \int_{0}^{1}\left(\int_{1}^{2} \frac{1}{2} \frac{1}{2} d u\right)\right) d t\right)=\frac{1}{8}
\end{aligned}
$$

$d \mu_{(A, 0)}$ uniform distribution over $[0,1], d \mu_{(B, 0)}$ uniform distribution over [0,2].

$1 \frac{1}{2}$ player and $2 \frac{1}{2}$ player models

- Extend using standard strategies for other players \diamond and \square

- Strategy profile $\Lambda=\left(\lambda_{\diamond}, \lambda_{\square}\right)$ with $\lambda_{\square}=\left(0, e_{3}\right)$ and

$$
\lambda_{\diamond}=\left\{\begin{array}{l}
\left(0.5, e_{1}\right) \text { if }\left(s_{0}, \nu\right) \text { is such that } \nu \leqslant 0.5, \\
\left(0, e_{1}\right) \text { otherwise. }
\end{array}\right.
$$

$2 \frac{1}{2}$ player Example

If $\rho=\left(s_{0}, 0\right) \xrightarrow{0.5, e_{1}}\left(s_{1}, 0.5\right) \xrightarrow{0, e_{3}}\left(s_{2}, 0.5\right)$, then
$\left.\mathbb{P}_{\wedge}\left(\rho, e_{4} e_{1} e_{3} e_{4}\right)=\frac{1}{1.5} \int_{t=0}^{0.5} \frac{1}{2} \mathbb{P}_{\wedge}\left(\rho \xrightarrow{t, e_{4}}\left(s_{0}, 0\right), e_{1} e_{3} e_{4}\right)\right) d t$

$$
\begin{aligned}
& \left.=\frac{1}{1.5} \int_{t=0}^{0.5} \frac{1}{2} \mathbb{P}_{\Lambda}\left(\rho \xrightarrow{t, e_{4}}\left(s_{0}, 0\right) \xrightarrow{0.5, e_{1}}\left(s_{1}, 0.5\right), e_{3} e_{4}\right)\right) d t \\
& \left.=\frac{1}{1.5} \int_{t=0}^{0.5} \frac{1}{2} \mathbb{P}_{\Lambda}\left(\rho \xrightarrow{t, e_{4}}\left(s_{0}, 0\right) \xrightarrow{0.5, e_{1}}\left(s_{1}, 0.5\right) \xrightarrow{0, e_{3}}\left(s_{2}, 0.5\right), e_{4}\right)\right) d t \\
& =\frac{1}{1.5} \int_{t=0}^{0.5} \frac{1}{2}\left(\frac{1}{1.5} \int_{t^{\prime}=0}^{0.5} \frac{1}{2} d t^{\prime}\right) d t=\frac{1}{36}
\end{aligned}
$$

Models

- $\frac{1}{2}$ player game $=$ pure stochastic process
- CTMC = timed automata with one clock, reset on all transitions. Exponential distributions, with a rate per location.
- PTA $=$ subclass of $1 \frac{1}{2}$ player games, where no time elapse happens in stochastic nodes. So, only discrete probabilities based on weights of outgoing edges.

Synthesis and Reachability Problems

Games

-

$\frac{1}{2}$ player game

- 0 ,
$\bullet \bigcirc, \diamond, \square$
$1 \frac{1}{2}$ player game
$2 \frac{1}{2}$ player game

Reachability

- Qualitative (reach with probability $\bowtie r, r \in\{0,1\}$)
- Quantitative (reach with probability $\bowtie r, r \in[0,1]$)

Synthesis

Given a game \mathcal{G}, an untimed safety property φ, and a rational threshold r, does \diamond have a strategy λ_{\diamond} against all possible strategies λ_{\square} of \square such that $\mathbb{P}\left(\mathcal{G}_{\lambda_{\diamond}, \lambda_{\square}}=\varphi\right) \bowtie r$?

The STG Landscape

- Safety: Decidability for $\frac{1}{2}, 1 \frac{1}{2}$ as well as $2 \frac{1}{2}$ player games
- Reachability :

Model		Qual.Reach	Quant.Reach
$\frac{1}{2}$ player	1 clock	D^{1}	D^{2}
	n clocks	D^{1} (reactive)	Open
$1 \frac{1}{2}$ player	1 clock	D^{3}	D (Initialized)
	n clocks	D (reactive)	U
$2 \frac{1}{2}$ player	1 clock	Open	D (Initialized)
	n clocks	Open	$\mathrm{U}^{3}, \mathrm{U}$ (Time bounded)

[^0]
Thick and Thin Paths

Thick and Thin:

- $e_{1} e_{3}$ thin, $e_{1} e_{2}$ thick

- Both $e_{1} e_{2}, e_{1} e_{3}$ thick

Qualitative Synthesis

Given state $s, s \models \varphi$ iff $\mathbb{P}(\{\rho \in \operatorname{Runs}(s) \mid \rho \models \varphi\})=1$
For ease of notations, we use colors in place of propositions.

$\mathcal{A} \not \models \square($ green $\rightarrow \diamond($ red $))$, but $\mathbb{P}(\mathcal{A} \models \square($ green $\rightarrow \diamond($ red $)))=1$

- Probability of thick paths >0, while probability of thin paths is 0 .
- For safety, if all thick paths satisfy the property, that is good!

Timed Region Graph: Thick and Thin

Almost sure satisfaction: Safety

Work on the thick graph Thick (\mathcal{A}), obtained by removing the thin edges.

Every infinite path in $\operatorname{Thick}(\mathcal{A})$ satisfies safety property φ from state $\imath(s)$ iff $\mathcal{A}, s \models_{\mathbb{P}} \varphi$.

Large Satisfaction

- Connecting probabilistic semantics and topological semantics
- Algorithmic solutions to almost sure satisfaction using the thick graph

Topology on Infinite Runs of \mathcal{A}

Let s be a state of \mathcal{A}. $\mathcal{T}_{s}^{\mathcal{A}}$ topology on $\operatorname{Runs}(\mathcal{A}, s)$.

- Basic open sets : \emptyset, $\operatorname{Runs}(\mathcal{A}, s)$, as well as $\operatorname{Cyl}(\pi)$ for thick paths π
- Meagre sets : countable union of nowhere dense $(\dot{\bar{A}}=\emptyset)$ sets
- Large : Complement is meagre
- Topological games characterizing largeness

Banach-Mazur Games

Let (A, \mathcal{T}) be a toplological space and \mathcal{B} a family of subsets of A satisfying

- For all $B \in \mathcal{B}, \dot{B} \neq \emptyset$
- For every open set O of $A, B \subseteq O$ for some $B \in \mathcal{B}$.

Game: Pick some set $C \subseteq A$.

- Player 1 picks some $B_{1} \in \mathcal{B}$
- Player 2 responds with some $B_{2} \in \mathcal{B}, B_{2} \subseteq B_{1}$
- Repeat

Player 1 wins iff $\bigcap_{i=1}^{\infty} B_{i} \cap C \neq \emptyset$. Else, player 2 wins.
[Oxtoby, 1957]
Player 2 wins a Banach-Mazur game with target set C iff C is meagre

Large Satisfaction

Is $C=\bigcup_{i}\left(e_{1}^{i} e_{2}\left(e_{4} e_{5}\right)^{\omega}\right)$ large?

- Player 1 starts with $\operatorname{Cyl}\left(e_{1}^{n}\right)$ or $\operatorname{Cyl}\left(e_{1}^{n} e_{2}\right)$ for some $n \in \mathbb{N}$.
- Player 2 responds with $\operatorname{Cyl}\left(e_{1}^{n} e_{2}\right)$ or $\operatorname{Cyl}\left(e_{1}^{n} e_{2} e_{4}\right)$
- Game continues picking only thick edges, and converges into a run of C and player 1 wins.
- C is hence large

Large and Almost sure: Safety Properties

- Given a safety property φ, if the set of paths satisfying φ is large, then φ is true almost surely.
- If $\neg \varphi$ is large, then there is a thick prefix violating φ
- Large and almost sure satisfaction coincide; result extends to $2 \frac{1}{2}$ player case.

Large and Almost sure: Safety Properties

- Given a safety property φ, if the set of paths satisfying φ is large, then φ is true almost surely.
- If $\neg \varphi$ is large, then there is a thick prefix violating φ
- Large and almost sure satisfaction coincide; result extends to $2 \frac{1}{2}$ player case.
- However, this does not help for general properties.

$\diamond(r e d)$ is violated by a thick path, but it is true almost surely!

Qualitative Reachability: $\frac{1}{2}$ player

- $\varphi=\diamond$ blue is satisfied by every fair and thick path.

Qualitative Reachability: $\frac{1}{2}$ player

- $\varphi=\diamond$ blue is satisfied by every fair and thick path.
- However, $\mathbb{P}_{\mathcal{A}}\left(\pi\left(s_{0},\left(e_{3} e_{4} e_{5}\right)^{\omega}\right)\right)>0$. Hence, $\mathbb{P}_{\mathcal{A}}\left(s_{0} \models\right.$ fair $)<1$.
- If the underlying system is such that $\mathbb{P}_{\mathcal{A}}\left(s_{0}=\right.$ fair $)=1$, then checking all BSCCs in $\operatorname{Thick}(\mathcal{A})$ suffice!

Qualitative Reachability: $\frac{1}{2}$ player

- $\varphi=\diamond$ blue is satisfied by every fair and thick path.
- However, $\mathbb{P}_{\mathcal{A}}\left(\pi\left(s_{0},\left(e_{3} e_{4} e_{5}\right)^{\omega}\right)\right)>0$. Hence, $\mathbb{P}_{\mathcal{A}}\left(s_{0} \models\right.$ fair $)<1$.
- If the underlying system is such that $\mathbb{P}_{\mathcal{A}}\left(s_{0} \models\right.$ fair $)=1$, then checking all BSCCs in Thick (\mathcal{A}) suffice!
- 1-clock $\frac{1}{2}$ player automata has this nice property.
- Result extends to $1 \frac{1}{2}$ player case, but $2 \frac{1}{2}$ case is open!

Quant. Reachability: $1 \frac{1}{2}$ player ($>1 \mathrm{cl}$.)

- Suprisingly undecidable with 4 clocks and uniform distributions
- Non-halting of 2-counter machine iff reachability with probability $=\frac{1}{2}$. Extends to all objectives $\bowtie \frac{1}{2}$.
$-\diamond$ simulates a computation of the two-counter machine, encodes counter values in clocks $x_{1}=\frac{1}{2^{c_{1}}}, x_{2}=\frac{1}{2^{c_{2}}}$
- O checks for cheating, using probabilities

Increment c_{1}

- Start with $x_{1}=\frac{1}{2^{c_{1}}}, x_{2}=\frac{1}{2^{c_{2}}}$
- $x_{3}=x_{4}=0$
- Time $0<t<1$ spent at B
- $x_{1}=t$ at C
- $x_{1}=\frac{1}{2^{c_{1}}}-t$ at ℓ_{j}
- Is $t=\frac{1}{2^{c_{1}+1}}$?
- Check done by GetProb
- Probability to continue=Probability to check $=\frac{1}{2}$

The Check widget: GetProb

- At $E_{0}, x_{1}=\frac{1}{2^{c_{1}+1}} \pm \epsilon$
- $\mathbb{P}_{E_{0}}(\diamond(P 1))=\frac{1}{2}(1-2 \epsilon)$
- $\mathbb{P}_{E_{0}}(\diamond(P 2))=\frac{1}{2}(1+2 \epsilon)$
- $\mathbb{P}_{P_{1}}(\diamond(T 3$ or $T 4))=\frac{1}{2}(1+2 \epsilon)$
- $\mathbb{P}_{P_{2}}(\diamond(T 1$ or $T 2))=\frac{1}{2}(1-2 \epsilon)$
- $\mathbb{P}_{E_{0}}(\diamond($ Target $))=\frac{1}{2}\left(1-4 \epsilon^{2}\right) \leqslant \frac{1}{2}$

Zero Test: c_{1}

- Probability to reach target=Probability to continue $=\frac{1}{2}$

Putting things together

Player \diamond has a strategy to reach the (set of) target locations in \mathcal{G} with probability $\frac{1}{2}$ iff the two counter machine does not halt.

- If the machine does not halt,

$$
\mathbb{P}(T)=\frac{1}{2} \cdot \eta_{1}+\left(\frac{1}{2}\right)^{2} \cdot \eta_{2}+\left(\frac{1}{2}\right)^{3} \cdot \eta_{3}+\cdots+\left(\frac{1}{2}\right)^{k} \cdot \eta_{k}+\ldots
$$

- $\eta_{j}=\frac{1}{2}\left(1-4 \epsilon_{j}^{2}\right) \leqslant \frac{1}{2}$
- $\epsilon_{j}=0$ iff \diamond faithful

Quantitative Reachability: $1 \frac{1}{2}$ player, 1 clock

- Initialized 1-clock, $1 \frac{1}{2}$ player STG \mathcal{G}, with $I(s)=\mathbb{R}^{+}$, any bounded cycle has a reset, exponential distribution at all locations. Reachability to some \diamond node.

Quantitative Reachability:1六 player, 1 clock

- Initialized 1-clock, $1 \frac{1}{2}$ player STG \mathcal{G}, with $I(s)=\mathbb{R}^{+}$, any bounded cycle has a reset, exponential distribution at all locations. Reachability to some \diamond node.

Quantitative Reachability:1六 player, 1 clock

- Initialized 1-clock, $1 \frac{1}{2}$ player STG \mathcal{G}, with $I(s)=\mathbb{R}^{+}$, any bounded cycle has a reset, exponential distribution at all locations. Reachability to some \diamond node.

Quantitative Reachability: $1 \frac{1}{2}$ player, 1 -clock

Quantitative Reachability: $1 \frac{1}{2}$ player, 1 -clock

Quantitative Reachability: $1 \frac{1}{2}$ player, 1 -clock

Quantitative Reachability: $1 \frac{1}{2}$ player, 1 -clock

Time-bounded Quantitative Reachability

$\mathbb{P}_{\sigma}\left(\left\{\rho \in \operatorname{Run}\left(\mathcal{G}, s_{0}, \sigma\right) \mid \rho\right.\right.$ visits T within Δ time units $\left.)\right\} \bowtie p$

The timed-bounded quantitative reachability problem is undecidable for $2 \frac{1}{2}$ STGs with $\geqslant 7$ clocks.

- Simulation of instruction k takes time $\frac{1}{2^{k}}$
- Reachability with probability $\bowtie \frac{1}{2}$ iff the two counter machine halts, and \diamond simulates faithfully
- \square checks correctness of simulation using the power of probabilities

Many Open Questions....

Model		Qual.Reach	Quant.Reach
$\frac{1}{2}$ player	1 clock	D	D
	n clocks	D (reactive)	Open
$1 \frac{1}{2}$ player	1 clock	D	D (Initialized)
	n clocks	D (reactive)	U
$2 \frac{1}{2}$ player	1 clock	Open	D (Initialized)
	n clocks	Open	U, U (Time bounded)

Thankyou

References I

Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics. In Fifth International Conference on the Quantitative Evaluaiton of Systems (QEST 2008), 14-17 September 2008, Saint-Malo, France, pages 55-64, 2008. doi: 10.1109/QEST.2008.19. URL http://dx.doi.org/10.1109/QEST.2008.19.
Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, Quentin Menet, Christel Baier, Marcus Größer, and Marcin Jurdzinski. Stochastic timed automata. Logical Methods in Computer Science, 10(4), 2014. doi: 10.2168/LMCS-10(4:6)2014. URL http://dx.doi.org/10.2168/LMCS-10(4:6) 2014.
Patricia Bouyer and Vojtech Forejt. Reachability in stochastic timed games. In Automata, Languages and Programming, 36th Internatilonal Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part II, pages 103-114, 2009. doi: 10.1007/978-3-642-02930-1_9. URL http://dx.doi.org/10.1007/978-3-642-02930-1_9.
John C. Oxtoby. The banach mazur game and banach category theorem. Annals of Mathematical Studies, 39, 1957.

[^0]: ${ }^{1}$ [Bertrand, Bouyer, Brihaye, Menet, Baier, Größer, and Jurdzinski, 2014]
 ${ }^{2}$ Initialized, [Bertrand, Bouyer, Brihaye, and Markey, 2008]
 ${ }^{3}$ [Bouyer and Forejt, 2009]

