Translating LTL to Probabilistic Automata

Dileep Kini Mahesh Viswanathan

University of Illinois, Urbana-Champaign

Mysore Park Workshop, February 2016

Need for new translations

Linear Temporal Logic (LTL) [Pnueli 1977]

Syntax

$$\varphi ::= p | \neg p | \varphi \land \varphi | \varphi \lor \varphi$$
$$X\varphi | \varphi U\varphi | \varphi R\varphi$$

Boolean operators

Temporal operators

A ►

글 🕨 🖌 글

э

Need for new translations

Linear Temporal Logic (LTL) [Pnueli 1977]

Syntax

$$\varphi ::= p | \neg p | \varphi \land \varphi | \varphi \lor \varphi$$
$$X\varphi | \varphi U\varphi | \varphi R \varphi$$

Boolean operators

Temporal operators

イロト イポト イヨト イヨト

Semantics

For $\alpha \in (2^{\mathcal{P}})^{\omega}$, $\alpha[i:\infty]$ is the suffix starting at position i

Need for new translations

Linear Temporal Logic (LTL) [Pnueli 1977]

Syntax

$$\varphi ::= p | \neg p | \varphi \land \varphi | \varphi \lor \varphi$$
$$X\varphi | \varphi U\varphi | \varphi R \varphi$$

Boolean operators

Temporal operators

A D > A D > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3 N K 3 N

Semantics

For $\alpha \in (2^{P})^{\omega}$, $\alpha[i:\infty]$ is the suffix starting at position *i* and $\alpha[0]$ is the first element of sequence.

Need for new translations

Linear Temporal Logic (LTL) [Pnueli 1977]

Syntax

$$\varphi ::= p | \neg p | \varphi \land \varphi | \varphi \lor \varphi$$
$$X\varphi | \varphi U\varphi | \varphi R \varphi$$

Boolean operators

Temporal operators

イロト イポト イヨト イヨト

Semantics

For $\alpha \in (2^{P})^{\omega}$, $\alpha[i:\infty]$ is the suffix starting at position *i* and $\alpha[0]$ is the first element of sequence.

• $\alpha \models p$ iff $p \in \alpha[0]$

Need for new translations

Linear Temporal Logic (LTL) [Pnueli 1977]

Syntax

$$\varphi ::= p | \neg p | \varphi \land \varphi | \varphi \lor \varphi$$
$$X\varphi | \varphi U\varphi | \varphi R \varphi$$

Boolean operators

Temporal operators

イロト イポト イヨト イヨト

Semantics

For $\alpha \in (2^{P})^{\omega}$, $\alpha[i:\infty]$ is the suffix starting at position *i* and $\alpha[0]$ is the first element of sequence.

- $\alpha \models p$ iff $p \in \alpha[0]$
- $\alpha \models X \varphi$ iff $\alpha[1:\infty] \models \varphi$

Need for new translations

Linear Temporal Logic (LTL) [Pnueli 1977]

Syntax

$$\varphi ::= p | \neg p | \varphi \land \varphi | \varphi \lor \varphi$$
$$X\varphi | \varphi U\varphi | \varphi R\varphi$$

Boolean operators Temporal operators

イロン 不得と イヨン イヨン

Semantics

For $\alpha \in (2^{P})^{\omega}$, $\alpha[i:\infty]$ is the suffix starting at position *i* and $\alpha[0]$ is the first element of sequence.

• $\alpha \models p$ iff $p \in \alpha[0]$

•
$$\alpha \models X \varphi$$
 iff $\alpha[1:\infty] \models \varphi$

• $\alpha \models \varphi \ U \ \psi$ iff there is j such that $\alpha[j : \infty] \models \psi$ and for all i < j $\alpha[i : \infty] \models \varphi$

Need for new translations

Linear Temporal Logic (LTL) [Pnueli 1977]

Syntax

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi$$
$$X\varphi \mid \varphi U\varphi \mid \varphi R\varphi$$

Boolean operators Temporal operators

イロン 不得と イヨン イヨン

Semantics

For $\alpha \in (2^{P})^{\omega}$, $\alpha[i:\infty]$ is the suffix starting at position *i* and $\alpha[0]$ is the first element of sequence.

• $\alpha \models p$ iff $p \in \alpha[0]$

•
$$\alpha \models X \varphi$$
 iff $\alpha[1:\infty] \models \varphi$

- $\alpha \models \varphi \ U \ \psi$ iff there is j such that $\alpha[j : \infty] \models \psi$ and for all i < j $\alpha[i : \infty] \models \varphi$
- $\alpha \models \varphi \ R \ \psi$ iff either for every *i*, $\alpha[i:\infty] \models \psi$ or

Need for new translations

Linear Temporal Logic (LTL) [Pnueli 1977]

Syntax

$$\varphi ::= p | \neg p | \varphi \land \varphi | \varphi \lor \varphi$$
$$X\varphi | \varphi U\varphi | \varphi R\varphi$$

Boolean operators Temporal operators

イロン 不得と イヨン イヨン

Semantics

For $\alpha \in (2^{P})^{\omega}$, $\alpha[i:\infty]$ is the suffix starting at position *i* and $\alpha[0]$ is the first element of sequence.

• $\alpha \models p$ iff $p \in \alpha[0]$

•
$$\alpha \models X \varphi$$
 iff $\alpha[1:\infty] \models \varphi$

• $\alpha \models \varphi \ U \ \psi$ iff there is j such that $\alpha[j : \infty] \models \psi$ and for all i < j $\alpha[i : \infty] \models \varphi$

• $\alpha \models \varphi R \psi$ iff either for every $i, \alpha[i:\infty] \models \psi$ or there is j such that $\alpha[j:\infty] \models \varphi$ and for all $i < j \alpha[i:\infty] \models \psi$

Need for new translations

Translating LTL to Automata

Theorem (Sistla-Vardi-Wolper 1985)

For every LTL formula φ , there is a nondeterministic Büchi automaton \mathcal{M} of size $O(2^{|\varphi|})$ such that $\mathcal{L}(\mathcal{M}) = \llbracket \varphi \rrbracket$

Need for new translations

Translating LTL to Automata

Theorem (Sistla-Vardi-Wolper 1985)

For every LTL formula φ , there is a nondeterministic Büchi automaton \mathcal{M} of size $O(2^{|\varphi|})$ such that $\mathcal{L}(\mathcal{M}) = \llbracket \varphi \rrbracket$

Applications

Gave first non-elementary decision procedure for

• Satisfiability and validity of LTL

Need for new translations

Translating LTL to Automata

Theorem (Sistla-Vardi-Wolper 1985)

For every LTL formula φ , there is a nondeterministic Büchi automaton \mathcal{M} of size $O(2^{|\varphi|})$ such that $\mathcal{L}(\mathcal{M}) = \llbracket \varphi \rrbracket$

Applications

Gave first non-elementary decision procedure for

- Satisfiability and validity of LTL
- Verifying system designs

Why translate LTL to probabilistic automata?

Need for new translations

Understanding the power of randomization

Kini-Viswanathan LTL to Probabilistic Automata

Need for new translations

Understanding the power of randomization

Need for new translations

Understanding the power of randomization

- Nondeterminism, in the context of finite automata, reasonably well understood
 - Nondeterminism (in most cases) provides no additional computational power,

Need for new translations

Understanding the power of randomization

- Nondeterminism, in the context of finite automata, reasonably well understood
 - Nondeterminism (in most cases) provides no additional computational power, but nondeterministic machines can have exponentially fewer states.

Understanding the power of randomization

- Nondeterminism, in the context of finite automata, reasonably well understood
 - Nondeterminism (in most cases) provides no additional computational power, but nondeterministic machines can have exponentially fewer states.
- What about probabilistic automata?

Understanding the power of randomization

- Nondeterminism, in the context of finite automata, reasonably well understood
 - Nondeterminism (in most cases) provides no additional computational power, but nondeterministic machines can have exponentially fewer states.
- What about probabilistic automata?
 - Probabilistic finite state machines can solve problems that cannot be solved on deterministic/nondeterministic automata

Understanding the power of randomization

- Nondeterminism, in the context of finite automata, reasonably well understood
 - Nondeterminism (in most cases) provides no additional computational power, but nondeterministic machines can have exponentially fewer states.
- What about probabilistic automata?
 - Probabilistic finite state machines can solve problems that cannot be solved on deterministic/nondeterministic automata
 - What about from the perspective of memory/states?

Need for new translations

Applications

Translation from LTL to nondeterministic automata not good for certain applications

- Monitoring
- Solving games
- MDP model checking

∃ >

Need for new translations

Applications

Translation from LTL to nondeterministic automata not good for certain applications

- Monitoring
- Solving games
- MDP model checking

For such applications one usually translates the logic to deterministic automata.

Need for new translations

Applications

Translation from LTL to nondeterministic automata not good for certain applications

- Monitoring
- Solving games
- MDP model checking

For such applications one usually translates the logic to deterministic automata.

Can probabilistic automata help?

Need for new translations

Applications

Translation from LTL to nondeterministic automata not good for certain applications

- Monitoring
- Solving games
- MDP model checking

For such applications one usually translates the logic to deterministic automata.

Can probabilistic automata help?

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Dynamic Analysis of Systems

э

∃ >

< 同 ▶

∃ ▶

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Dynamic Analysis of Systems

< 同 ▶

글 🖌 🖌 글 🕨

э

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Dynamic Analysis of Systems

• Monitor passively observes system behavior

A ►

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Dynamic Analysis of Systems

 Monitor passively observes system behavior which is an unbounded stream of events

∃ >

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Dynamic Analysis of Systems

 Monitor passively observes system behavior which is an unbounded stream of events

/⊒ > < ∃ >

 Alarm raised when a problem is discovered

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Dynamic Analysis of Systems

- Monitor passively observes system behavior which is an unbounded stream of events
- Alarm raised when a problem is discovered; correctness indicated implicitly by the absence of alarms

.⊒ . ►

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Dynamic Analysis of Systems

- Monitor passively observes system behavior which is an unbounded stream of events
- Alarm raised when a problem is discovered; correctness indicated implicitly by the absence of alarms
- Application: Discovery of errors and intrusions in deployed systems

.⊒ . ►

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Monitoring

Image: Image:

문 🛌 문

I ≡ ▶ < </p>

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Randomized Monitoring

э

∃ >

< 同 ▶

∃ ▶

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Randomized Monitoring

 The monitor has access to private source of randomness

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Randomized Monitoring

- The monitor has access to private source of randomness
- The system itself is not probabilistic

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Finite State Probabilistic Monitors (FPM) [Chadha-Sistla-V. 2008]

Definition

A FPM over alphabet Σ is $\mathcal{M} = (Q, q_s, q_r, \delta)$, where Q is a finite set of states, $q_s \in Q$ is the initial state, $q_r \in Q$ is the absorbing reject state, and $\delta : Q \times \Sigma \times Q \rightarrow [0, 1]$ is such that for any $q \in Q$ and $a \in \Sigma$, $\sum_{q' \in Q} \delta(q, a, q') = 1$.
Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Acceptance/Rejection Probability

For $\alpha \in \Sigma^{\omega}$, let $\alpha[0:j]$ denote the prefix of length j + 1. The probability of rejecting and accepting α is defined as follows.

$$\operatorname{rej}(\alpha) = \lim_{j \to \infty} \delta_{\alpha[0:j]}(q_s, q_r)$$

< ∃ >

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Acceptance/Rejection Probability

For $\alpha \in \Sigma^{\omega}$, let $\alpha[0:j]$ denote the prefix of length j + 1. The probability of rejecting and accepting α is defined as follows.

$$\operatorname{rej}(\alpha) = \lim_{j \to \infty} \delta_{\alpha[0:j]}(q_s, q_r)$$
$$\operatorname{acc}(\alpha) = 1 - \operatorname{rej}(\alpha)$$

< ∃ >

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Acceptance/Rejection Probability

For $\alpha \in \Sigma^{\omega}$, let $\alpha[0:j]$ denote the prefix of length j + 1. The probability of rejecting and accepting α is defined as follows.

$$\operatorname{rej}(\alpha) = \lim_{j \to \infty} \delta_{\alpha[0:j]}(q_s, q_r)$$
$$\operatorname{acc}(\alpha) = 1 - \operatorname{rej}(\alpha)$$

Given $\lambda \in [0, 1]$, $\mathcal{L}_{>\lambda}(\mathcal{M})$ is the set of words α accepted with probability $> \lambda$.

A B > A B >

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Strong and Weak Monitors

Property L is monitorable

• strongly if there is an \mathcal{M} such that $\mathcal{L}_{=1}(\mathcal{M}) = L$

- **→** → **→**

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Strong and Weak Monitors

Property L is monitorable

• strongly if there is an \mathcal{M} such that $\mathcal{L}_{=1}(\mathcal{M}) = L$; no false alarms

/⊒ > < ∃ >

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Strong and Weak Monitors

Property L is monitorable

- strongly if there is an \mathcal{M} such that $\mathcal{L}_{=1}(\mathcal{M}) = L$; no false alarms
- weakly if there is an $\mathcal M$ such that $\mathcal L_{>0}(\mathcal M)=L$

< ∃ >

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Strong and Weak Monitors

Property L is monitorable

- strongly if there is an \mathcal{M} such that $\mathcal{L}_{=1}(\mathcal{M}) = L$; no false alarms
- weakly if there is an \mathcal{M} such that $\mathcal{L}_{>0}(\mathcal{M}) = L$; no missed alarms

• = • •

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Expressive Power of Randomized Monitors

Deterministic Monitoring [Schneider]

Properties monitored deterministically are safety properties

L ⊆ Σ^ω is a safety property if α ∉ L iff there is a prefix α[0 : i] such that α[0 : i]Σ^ω ⊆ L.

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Expressive Power of Randomized Monitors

Deterministic Monitoring [Schneider]

Properties monitored deterministically are safety properties

L ⊆ Σ^ω is a safety property if α ∉ L iff there is a prefix α[0 : i] such that α[0 : i]Σ^ω ⊆ L.

Randomized Monitoring [Chadha-Sistla-V. 2008]

Strong There is FPM M such that $L = \mathcal{L}_{=1}(M)$ iff L is a regular, safety property.

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Expressive Power of Randomized Monitors

Deterministic Monitoring [Schneider]

Properties monitored deterministically are safety properties

L ⊆ Σ^ω is a safety property if α ∉ L iff there is a prefix α[0 : i] such that α[0 : i]Σ^ω ⊆ L.

Randomized Monitoring [Chadha-Sistla-V. 2008]

Strong There is FPM M such that $L = \mathcal{L}_{=1}(M)$ iff L is a regular, safety property.

Weak There are FPMs \mathcal{M} such that $\mathcal{L}_{>0}(\mathcal{M})$ is a non-regular, persistence property.

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Expressive Power of Randomized Monitors

Deterministic Monitoring [Schneider]

Properties monitored deterministically are safety properties

L ⊆ Σ^ω is a safety property if α ∉ L iff there is a prefix α[0 : i] such that α[0 : i]Σ^ω ⊆ L.

Randomized Monitoring [Chadha-Sistla-V. 2008]

- Strong There is FPM M such that $L = \mathcal{L}_{=1}(M)$ iff L is a regular, safety property.
 - Weak There are FPMs \mathcal{M} such that $\mathcal{L}_{>0}(\mathcal{M})$ is a non-regular, persistence property.
 - *L* is a persistence property if it is a countable union of safety properties, i.e., "eventually always"-type properties

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Safe LTL [Sistla 1985]

$\varphi ::= p |\neg p | \varphi \land \varphi | \varphi \lor \varphi |$ $X\varphi | \varphi R \varphi | \varphi U \varphi$

Boolean operators Restricted to *R*

<ロト <部ト < 注ト < 注ト

э

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Safe LTL [Sistla 1985]

$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid$ $X\varphi \mid \varphi R \varphi \mid \varphi \cup \varphi$

Boolean operators Restricted to *R*

э

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Strong Monitors for Safe LTL

Proposition (Kini-V. 2014)

For every Safe LTL formula φ , there is \mathcal{M}_{φ} of size $O(2^{|\varphi|})$ such that $\llbracket \varphi \rrbracket = \mathcal{L}_{=1}(\mathcal{M})$.

- 4 同 6 4 日 6 4 日 6

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Strong Monitors for Safe LTL

Proposition (Kini-V. 2014)

For every Safe LTL formula φ , there is \mathcal{M}_{φ} of size $O(2^{|\varphi|})$ such that $\llbracket \varphi \rrbracket = \mathcal{L}_{=1}(\mathcal{M})$.

Proof.

- Construct nondeterministic Büchi automaton using [Vardi 1996]-method for ¬φ; the automaton has a single, absorbing accept state.
- Assign arbitrary probability to nondeterministic choices, and make accept state the unique reject state of FPM.

I ≡ ▶ < </p>

- 4 🗗 ▶

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Weak Monitors for Safe LTL

Theorem (Kini-V. 2014)

There are Safe LTL formulas φ such that the smallest FPM \mathcal{M} with $\mathcal{L}_{>0}(\mathcal{M}) = \llbracket \varphi \rrbracket$ has at least doubly exponential states.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Weak Monitors for Safe LTL

Theorem (Kini-V. 2014)

There are Safe LTL formulas φ such that the smallest FPM \mathcal{M} with $\mathcal{L}_{>0}(\mathcal{M}) = \llbracket \varphi \rrbracket$ has at least doubly exponential states.

Weak monitors are computationally more powerful than strong monitors but only as "efficient" as deterministic monitors for Safe LTL.

- 4 同 6 4 日 6 4 日 6

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Weakly monitoring LTL(G)

LTL(G)

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid$$
$$X\varphi \mid G\varphi$$

Boolean operations Restricted to *G*

< 日 > < 同 > < 三 > < 三 >

э

where $G \varphi \equiv \perp R \varphi$

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Weakly monitoring LTL(G)

LTL(G)

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid$$
$$X\varphi \mid G\varphi$$

Boolean operations Restricted to *G*

• □ ▶ • □ ▶ • □ ▶ • □

where $G\varphi \equiv \perp R \varphi$

• [Alur-LaTorre 2004] Smallest deterministic machines for LTL(G) has doubly exponential states.

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Weakly monitoring LTL(G)

LTL(G)

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid$$
$$X\varphi \mid G\varphi$$

Boolean operations Restricted to *G*

< ロ > < 同 > < 回 > < 回 >

where $G\varphi \equiv \perp R \varphi$

- [Alur-LaTorre 2004] Smallest deterministic machines for LTL(G) has doubly exponential states.
- [Kini-V. 2014] For every LTL(G) formula φ there is an FPM \mathcal{M} such that $\mathcal{L}_{>0}(\mathcal{M}) = \llbracket \varphi \rrbracket$ and \mathcal{M} has $O(2^{|\varphi|})$ states.

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Communication Complexity [Yao 1982]

Setup

Problem described by function $f : X \times Y \rightarrow \{0, 1\}$, where X, Y are finite sets.

- Alice is given input $x \in X$ and Bob is given input $y \in Y$
- Alice and Bob arbitrary computational devices and can toss coins
- Alice and Bob can send and receive messages

Goal

How bits need to be communicated for Bob to compute f(x, y)?

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Set Membership

Problem

For a set S, take $X = 2^S$ and Y = S. Define $g^S : X \times Y \to \{0, 1\}$ such that $g^S(x, y) = 1$ iff $y \in x$.

< ∃ >

< 17 ▶

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Set Membership

Problem

For a set S, take $X = 2^S$ and Y = S. Define $g^S : X \times Y \to \{0, 1\}$ such that $g^S(x, y) = 1$ iff $y \in x$.

One Round Randomized Protocol

In this model, both Alice and Bob can toss coins, but Bob has to compute the answer based on single message sent by Alice.

R^{A→B}_ϵ(*f*) is the fewest number of bits that Alice needs to send to Bob so that Bob can compute *f* with error at most *ϵ*.

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Set Membership

Problem

For a set S, take $X = 2^S$ and Y = S. Define $g^S : X \times Y \to \{0, 1\}$ such that $g^S(x, y) = 1$ iff $y \in x$.

One Round Randomized Protocol

In this model, both Alice and Bob can toss coins, but Bob has to compute the answer based on single message sent by Alice.

R^{A→B}_ϵ(f) is the fewest number of bits that Alice needs to send to Bob so that Bob can compute f with error at most ϵ.

Theorem (Kremer-Nisan-Ron 1995)

 $R_{\epsilon}^{A \to B}(g^S) = \Omega(2^{|S|}).$

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Hard Property to Weakly Monitor

For alphabet $\Sigma = \{0, 1, \#, \$\}$ define the following languages

$$\begin{split} S_n &= (\#(0+1)^n)^+ \$(0+1)^n & \text{membership query} \\ R'_n &= \{(\#(0+1)^n)^* (\#w) (\#(0+1)^n)^* \$w \mid w \in (0+1)^n\} & \text{positive query} \\ R_n - S_n \setminus R'_n & \text{negative query} \\ L_n &= R_n^{\wedge} + R_n^* (\#(0+1)^n)^{\omega} \end{split}$$

(日) (同) (三) (三)

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Hard Property to Weakly Monitor

For alphabet $\Sigma = \{0, 1, \#, \$\}$ define the following languages

$$\begin{split} S_n &= (\#(0+1)^n)^+ \$(0+1)^n & \text{membership query} \\ R'_n &= \{(\#(0+1)^n)^* (\#w) (\#(0+1)^n)^* \$w \mid w \in (0+1)^n\} & \text{positive query} \\ R_n &- S_n \setminus R'_n & \text{negative query} \\ L_n &= R^{\omega}_n + R^*_n (\#(0+1)^n)^{\omega} \end{split}$$

[Kupferman-Rosenberg 2010] There is φ_n such that $\llbracket \varphi_n \rrbracket = L_n$ and $|\varphi_n| = n \log n$

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Protocol from Monitor

Lemma

For any ϵ and \mathcal{M}_n such that $\mathcal{L}_{>0}(\mathcal{M}_n) = L_n$, there is a state q_{ϵ} , reachable through an input in R_n^* such that every $\beta \in L_n$ is accepted with probability $\geq 1 - \epsilon$ from q_{ϵ} .

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Protocol from Monitor

Lemma

For any ϵ and \mathcal{M}_n such that $\mathcal{L}_{>0}(\mathcal{M}_n) = L_n$, there is a state q_{ϵ} , reachable through an input in R_n^* such that every $\beta \in L_n$ is accepted with probability $\geq 1 - \epsilon$ from q_{ϵ} .

Protocol

For $S = (0+1)^n$, a protocol for g^S from \mathcal{M}_n is as follows.

- Let w_x be input corresponding to Alice's input x. Alice runs *M_n* on w_x from q_e and sends the state q reached to Bob.
- 2 Bob checks if $y(\#0^n)^{\omega}$ is accepted from q

Randomized Monitoring Safe LTL to FPM Lower Bound Proof

Protocol from Monitor

Lemma

For any ϵ and \mathcal{M}_n such that $\mathcal{L}_{>0}(\mathcal{M}_n) = L_n$, there is a state q_{ϵ} , reachable through an input in R_n^* such that every $\beta \in L_n$ is accepted with probability $\geq 1 - \epsilon$ from q_{ϵ} .

Protocol

For $S = (0+1)^n$, a protocol for g^S from \mathcal{M}_n is as follows.

- Let w_x be input corresponding to Alice's input x. Alice runs *M_n* on w_x from q_e and sends the state q reached to Bob.
- 2 Bob checks if $y(\#0^n)^{\omega}$ is accepted from q

Bits communicated = $\log |\mathcal{M}_n| \ge 2^n$

LTL \ *GU* Construction Details Conclusions

Fragments of LTL

LTL(F, G)

 $\varphi ::= p |\neg p | \varphi \land \varphi | \varphi \lor \varphi |$ $X\varphi | F\varphi | G\varphi$

where ${\it F} \varphi \equiv \top \; {\it U} \; \varphi$

Boolean operations Restricted to *F* and *G*

э

LTL \ *GU* Construction Details Conclusions

Fragments of LTL

LTL(F, G)

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid$$
$$X\varphi \mid F\varphi \mid G\varphi$$

Boolean operations Restricted to F and G

э

where $\mathit{F} \varphi \equiv \top ~ \mathit{U} ~ \varphi$

LTL \ GU [Kretinsky-Esparza 2012]

$$\psi ::= \varphi \mid \psi \land \psi \mid \psi \lor \psi \mid \qquad \qquad \varphi \in LTL(F, G)$$
$$X\psi \mid \psi \cup \psi \qquad \qquad \qquad U \text{ above } G$$

LTL \ *GU* Construction Details Conclusions

Probabilistic Büchi Automata [Baier-Größer 2005]

LTL \ *GU* Construction Details Conclusions

Probabilistic Büchi Automata [Baier-Größer 2005]

A PBA is like an FPM except that it does not have a reject state and instead as final states.

- An execution is accepting if it visits some final state infinitely often
- The acceptance probability of a word α, acp(α), is the measure of all accepting executions on α.

LTL \ *GU* Construction Details Conclusions

Probabilistic Büchi Automata [Baier-Größer 2005]

A PBA is like an FPM except that it does not have a reject state and instead as final states.

- An execution is accepting if it visits some final state infinitely often
- The acceptance probability of a word α, acp(α), is the measure of all accepting executions on α.
- $\mathcal{L}_{>0}(\mathcal{M})$ and $\mathcal{L}_{=1}(\mathcal{M})$ defined similarly.

LTL \ *GU* Construction Details Conclusions

PBA for LTL \setminus *GU*

Theorem (Kini-V. 2015)

For every φ in LTL \ GU there is a PBA \mathcal{M}_{φ} such that \mathcal{M}_{φ} has $O(2^{|\varphi|})$ states and $\mathcal{L}_{>0}(\mathcal{M}) = \llbracket \varphi \rrbracket$.

(日) (同) (三) (三)

LTL \ GU Construction Details Conclusions

Simplifying Assumptions

• Focus on LTL(F, G)

Kini-Viswanathan LTL to Probabilistic Automata

- 4 同 6 4 日 6 4 日 6

э
LTL \ GU Construction Details Conclusions

Simplifying Assumptions

- Focus on LTL(*F*, *G*)
- Also, assume there are no X operators

< 同 ▶

I ≡ ▶ < </p>

LTL \ GU Construction Details Conclusions

Limit Deterministic Automata

Courcoubetis-Yannakakis 1995

Limit deterministic automata: Nondeterministic automata such that every state reachable from a final state is deterministic

< ∃ >

LTL \ GU Construction Details Conclusions

Limit Deterministic Automata

Courcoubetis-Yannakakis 1995

Limit deterministic automata: Nondeterministic automata such that every state reachable from a final state is deterministic

Theorem (Baier-Größer 2005)

Let \mathcal{N} be a nondeterministic Büchi automaton. Let \mathcal{M} be the PBA obtained assigning some probabilities to the nondeterministic choices. Then $\mathcal{L}_{>0}(\mathcal{M}) = \mathcal{L}(\mathcal{N})$.

LTL \ GU Construction Details Conclusions

Limit Deterministic Automata

Courcoubetis-Yannakakis 1995

Limit deterministic automata: Nondeterministic automata such that every state reachable from a final state is deterministic

Theorem (Baier-Größer 2005)

Let \mathcal{N} be a nondeterministic Büchi automaton. Let \mathcal{M} be the PBA obtained assigning some probabilities to the nondeterministic choices. Then $\mathcal{L}_{>0}(\mathcal{M}) = \mathcal{L}(\mathcal{N})$.

We will construct a limit deterministic automaton for LTL \setminus GU.

LTL \ GU Construction Details Conclusions

"Standard" LTL to NBA translation

Idea: Automaton guesses which temporal subformulas are true at each step.

17 ▶

A B + A B +

LTL \ GU Construction Details Conclusions

"Standard" LTL to NBA translation

Idea: Automaton guesses which temporal subformulas are true at each step. Consider $\varphi = G(a \lor Fb)$.

A B + A B +

A D

LTL \ GU Construction Details Conclusions

"Standard" LTL to NBA translation

Idea: Automaton guesses which temporal subformulas are true at each step. Consider $\varphi = G(a \lor Fb)$.

$$\left(q_{0}:\left\{ arphi,Fb
ight\}
ight)$$

< A >

(*) *) *) *)

LTL \ GU Construction Details Conclusions

"Standard" LTL to NBA translation

Idea: Automaton guesses which temporal subformulas are true at each step. Consider $\varphi = G(a \lor Fb)$.

* E > * E >

A D

LTL \ GU Construction Details Conclusions

"Standard" LTL to NBA translation

Idea: Automaton guesses which temporal subformulas are true at each step. Consider $\varphi = G(a \lor Fb)$.

< ∃ →

LTL \ GU Construction Details Conclusions

"Standard" LTL to NBA translation

Idea: Automaton guesses which temporal subformulas are true at each step. Consider $\varphi = G(a \lor Fb)$.

.⊒ . ►

LTL \ GU Construction Details Conclusions

"Standard" LTL to NBA translation

Idea: Automaton guesses which temporal subformulas are true at each step. Consider $\varphi = G(a \lor Fb)$.

- **→** → **→**

LTL \ GU Construction Details Conclusions

"Standard" LTL to NBA translation

Idea: Automaton guesses which temporal subformulas are true at each step. Consider $\varphi = G(a \lor Fb)$.

Automaton is not limit deterministic!

★ ∃ >

A D

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)

Observation

For any formula φ over propositions P, any word $w \in (2^P)^{\omega}$ satisfies exactly one of the following

$$G \varphi \quad F \varphi \wedge \neg G \varphi \quad \neg F \varphi$$

< 日 > < 同 > < 三 > < 三 >

LTL \ GU Construction Details Conclusions

What does this mean for F, G subformulas?

$G \varphi \quad F \varphi \wedge \neg G \varphi \quad \neg F \varphi$

Kini-Viswanathan LTL to Probabilistic Automata

3

LTL \ GU Construction Details Conclusions

What does this mean for F, G subformulas?

$$G \varphi \quad F \varphi \wedge \neg G \varphi \quad \neg F \varphi$$

	A	В	С
$G\psi$			
$F\psi$			

< 日 > < 同 > < 三 > < 三 >

LTL \ GU Construction Details Conclusions

What does this mean for F, G subformulas?

$$G\varphi \quad F\varphi \wedge \neg G\varphi \quad \neg F\varphi$$

	A	В	С
$G\psi$	${f G}\psi$		
${\sf F}\psi$			

LTL \ GU Construction Details Conclusions

What does this mean for F, G subformulas?

$$G\varphi \quad F\varphi \wedge \neg G\varphi \quad \neg F\varphi$$

	A	В	С
$G\psi$	$G\psi$	$ eg G\psi\wedge FG\psi$	
${m F}\psi$			

< 日 > < 同 > < 三 > < 三 >

LTL \ GU Construction Details Conclusions

What does this mean for F, G subformulas?

$$G\varphi \quad F\varphi \wedge \neg G\varphi \quad \neg F\varphi$$

	А	В	С
$G\psi$	$G\psi$	$ eg G\psi\wedge FG\psi$	$ eg FG\psi$
${\sf F}\psi$			

- 4 同 6 4 日 6 4 日 6

LTL \ GU Construction Details Conclusions

What does this mean for F, G subformulas?

$$G\varphi \quad F\varphi \wedge \neg G\varphi \quad \neg F\varphi$$

	A	В	С
$G\psi$	$G\psi$	$ eg G\psi\wedge FG\psi$	$\neg FG\psi$
${\sf F}\psi$	$\neg F\psi$		

- 4 同 6 4 日 6 4 日 6

LTL \ GU Construction Details Conclusions

What does this mean for F, G subformulas?

$$G\varphi \quad F\varphi \wedge \neg G\varphi \quad \neg F\varphi$$

	A	В	С
$G\psi$	${f G}\psi$	$ eg G\psi\wedge FG\psi$	$ eg FG\psi$
${m F}\psi$	$\neg F\psi$	$F\psi\wedge\neg GF\psi$	

-

____ ▶

3) 3

LTL \ GU Construction Details Conclusions

What does this mean for F, G subformulas?

$$\begin{array}{ccc} G\varphi & F\varphi \wedge \neg G\varphi & \neg F\varphi \end{array}$$

	A	В	С
$G\psi$	${old G}\psi$	$ eg G\psi\wedge FG\psi$	$\neg FG\psi$
${\sf F}\psi$	$\neg F\psi$	$F\psi\wedge\neg GF\psi$	${\it GF}\psi$

.⊒ . ►

____ ▶

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)

• A state is a guess about how often each *F*, *G* subformula holds.

example

э

< 日 > < 同 > < 三 > < 三 >

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)Overview

- A state is a guess about how often each *F*, *G* subformula holds.
- The automaton checks if the guess is sound

example

э

< 日 > < 同 > < 三 > < 三 >

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)Overview

- A state is a guess about how often each *F*, *G* subformula holds.
- The automaton checks if the guess is sound
 - A guess is sound if every Gψ ∈ π_A is true and every Fψ ∉ π_A is true.

example

< 🗇 🕨

A B + A B +

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)Evaluation

	A	В	С
${f G}\psi$	$G\psi$	$ eg G\psi\wedge FG\psi$	$\neg FG\psi$
$F\psi$	$\neg F\psi$	$F\psi\wedge\neg GF\psi$	${\it GF}\psi$

æ

<ロト <部ト < 注ト < 注ト

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)

	A	В	С
$G\psi$	$G\psi$	$ eg G\psi\wedge FG\psi$	$\neg FG\psi$
${\sf F}\psi$	$\neg F\psi$	$F\psi\wedge\neg GF\psi$	${\it GF}\psi$

The evaluation of φ denoted by $[\varphi]^{\pi}_{\nu}$ is the truth of φ at present with respect to the guess π and input $\nu \in 2^{P}$.

Image: A image: A

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)

	A	В	С
${old G}\psi$	$G\psi$	$ eg G\psi\wedge FG\psi$	$\neg FG\psi$
${\sf F}\psi$	$\neg F\psi$	$F\psi\wedge\neg GF\psi$	${\it GF}\psi$

The evaluation of φ denoted by $[\varphi]^{\pi}_{\nu}$ is the truth of φ at present with respect to the guess π and input $\nu \in 2^{P}$.

 \bullet truth of propositions obtained from input ν

< A >

- ∢ ≣ ▶

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)

	A	В	С
$G\psi$	$G\psi$	$ eg G\psi\wedge FG\psi$	$\neg FG\psi$
${\sf F}\psi$	$\neg F\psi$	$F\psi\wedge\neg GF\psi$	${\it GF}\psi$

The evaluation of φ denoted by $[\varphi]^{\pi}_{\nu}$ is the truth of φ at present with respect to the guess π and input $\nu \in 2^{P}$.

- \bullet truth of propositions obtained from input ν
- boolean connectives evaluated using their semantics

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)

	A	В	С
$G\psi$	$G\psi$	$ eg G\psi\wedge FG\psi$	$\neg FG\psi$
$F\psi$	$\neg F\psi$	$F\psi\wedge\neg GF\psi$	${\it GF}\psi$

The evaluation of φ denoted by $[\varphi]_{\nu}^{\pi}$ is the truth of φ at present with respect to the guess π and input $\nu \in 2^{P}$.

- $\bullet\,$ truth of propositions obtained from input $\nu\,$
- boolean connectives evaluated using their semantics
- $[G\psi]^{\pi}_{\nu}$ is true iff $G\psi \in \pi_A$ and $[F\psi]^{\pi}_{\nu}$ is true iff $F\psi \notin \pi_A$.

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)

	A	В	С
${\it G}\psi$	${old G}\psi$	$ eg G\psi\wedge FG\psi$	$ eg FG\psi$
${\sf F}\psi$	$\neg F\psi$	$F\psi\wedge\neg GF\psi$	${\it GF}\psi$

$$\pi \qquad \xrightarrow{\nu} \qquad \rho$$

<ロ> <同> <同> < 同> < 同>

æ

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)

$$\begin{array}{c|c} A & B & C \\ \hline G\psi & G\psi & \neg G\psi \wedge FG\psi & \neg FG\psi \\ \hline F\psi & \neg F\psi & F\psi \wedge \neg GF\psi & GF\psi \\ \end{array}$$

$$\begin{array}{ccc} \pi & \xrightarrow{\nu} & \rho \\ G\psi \in \pi_A & G\psi \in \rho_A \end{array}$$

Ensure ψ is true by evaluating it

< 日 > < 同 > < 三 > < 三 >

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)

$$\begin{array}{ccc} \pi & \xrightarrow{\nu} & \rho \\ G\psi \in \pi_B & G\psi \in \rho_A \cup \rho_B \end{array}$$

No need to check $G\psi$ is false

< 日 > < 同 > < 三 > < 三 >

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)

$$\begin{array}{ccc} \pi & \xrightarrow{\nu} & \rho \\ G\psi \in \pi_C & & G\psi \in \rho_C \end{array}$$

No need to check $FG\psi$ is false

< 日 > < 同 > < 三 > < 三 >

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)

$$\begin{array}{c|c} A & B & C \\ \hline G\psi & G\psi & \neg G\psi \wedge FG\psi & \neg FG\psi \\ \hline F\psi & \neg F\psi & F\psi \wedge \neg GF\psi & GF\psi \\ \end{array}$$

$$\begin{array}{ccc} \pi & \xrightarrow{\nu} & \rho \\ F\psi \in \pi_A & F\psi \in \rho_A \end{array}$$

No need to check $F\psi$ is false

< 日 > < 同 > < 三 > < 三 >

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)

$$\begin{array}{ccc} \pi & \xrightarrow{\nu} & \rho \\ F\psi \in \pi_B & F\psi \in \rho_A \cup \rho_B \end{array}$$

If ${\it F}\psi$ moves to ${\it A}$ ensure ψ is true

< 日 > < 同 > < 三 > < 三 >

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)

	A	В	С
${\sf G}\psi$	${\sf G}\psi$	$ eg G\psi\wedge FG\psi$	$ eg FG\psi$
$F\psi$	$\neg F\psi$	$F\psi\wedge\neg GF\psi$	${\it GF}\psi$

π	$\xrightarrow{\nu}$	ho
$F\psi\in\pi_C$		$F\psi\in ho_C$

Check that ψ holds infinitely often: use a counter!

< 日 > < 同 > < 三 > < 三 >
LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)States

An automaton state is a pair (π, n)

Kini-Viswanathan LTL to Probabilistic Automata

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)

An automaton state is a pair (π, n)

• π is current guess for φ

Kini-Viswanathan LTL to Probabilistic Automata

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)States

An automaton state is a pair (π, n)

- π is current guess for φ
- $n \in \{0, 1, \dots, k\}$ where k is the number of F formulas in π_C

(日) (同) (三) (三)

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)

Transitions should help check if the guess is sound

$$(\pi, m) \xrightarrow{\nu} (\rho, n)$$

Image: A = A

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)Transitions

Transitions should help check if the guess is sound

$$(\pi, m) \xrightarrow{\nu} (\rho, n)$$

• $\pi_A \subseteq \rho_A$ $\pi_B \supseteq \rho_B$ $\pi_C = \rho_C$ (component π_B is non-increasing)

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)Transitions

Transitions should help check if the guess is sound

$$(\pi, m) \xrightarrow{\nu} (\rho, n)$$

• $\pi_A \subseteq \rho_A$ $\pi_B \supseteq \rho_B$ $\pi_C = \rho_C$ (component π_B is non-increasing)

• for $G\psi\in\pi_A$, $[\psi]^{\pi}_{\nu}$ is true

▲□ ► ▲ □ ► ▲

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)Transitions

Transitions should help check if the guess is sound

$$(\pi, m) \xrightarrow{\nu} (\rho, n)$$

- $\pi_A \subseteq \rho_A$ $\pi_B \supseteq \rho_B$ $\pi_C = \rho_C$ (component π_B is non-increasing)
- for $G\psi \in \pi_A$, $[\psi]^{\pi}_{\nu}$ is true
- for $F\psi \in \pi_B$, $[\psi]^{\pi}_{\nu}$ is false implies $F\psi \in \rho_B$

< ロト < 同ト < 三ト <

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)Transitions

Transitions should help check if the guess is sound

$$(\pi, m) \xrightarrow{\nu} (\rho, n)$$

- $\pi_A \subseteq \rho_A$ $\pi_B \supseteq \rho_B$ $\pi_C = \rho_C$ (component π_B is non-increasing)
- for $G\psi\in\pi_A$, $[\psi]^\pi_{\nu}$ is true
- for $F\psi \in \pi_B$, $[\psi]^{\pi}_{\nu}$ is false implies $F\psi \in \rho_B$ (delayed forever?)

・ロト ・同ト ・ヨト ・ヨト

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)Transitions

Transitions should help check if the guess is sound

$$(\pi, m) \xrightarrow{\nu} (\rho, n)$$

- $\pi_A \subseteq \rho_A$ $\pi_B \supseteq \rho_B$ $\pi_C = \rho_C$ (component π_B is non-increasing)
- for $G\psi\in\pi_A$, $[\psi]^\pi_{
 u}$ is true
- for $F\psi \in \pi_B$, $[\psi]^{\pi}_{\nu}$ is false implies $F\psi \in \rho_B$ (delayed forever?)
- increment counter if m = 0 or the m^{th} *F*-formula in π_C evaluates to true

・ロト ・同ト ・ヨト ・ヨト

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)

Büchi Condition: A state $(\pi, 0)$ is final if π_B is empty.

Kini-Viswanathan LTL to Probabilistic Automata

(日) (同) (三) (三)

э

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)Acceptance Condition

Büchi Condition: A state $(\pi, 0)$ is final if π_B is empty.

• empty π_B ensure obligations are eventually met

Kini-Viswanathan LTL to Probabilistic Automata

▲□ ► < □ ► </p>

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)Acceptance Condition

Büchi Condition: A state $(\pi, 0)$ is final if π_B is empty.

- empty π_B ensure obligations are eventually met
- Büchi condition ensures counter incremented infinitely often

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)Acceptance Condition

Büchi Condition: A state $(\pi, 0)$ is final if π_B is empty.

- empty π_B ensure obligations are eventually met
- Büchi condition ensures counter incremented infinitely often

Together they ensure that every guess in an accepting run is sound.

LTL \ GU Construction Details Conclusions

Construction for LTL(F, G)

A transition $(\pi, 0) \xrightarrow{\nu} (\rho, n)$ is initial if $[\varphi]^{\pi}_{\nu}$ is true. Since initial guess is sound in an accepting run, the truth of φ is ensured.

- 4 同 6 4 日 6 4 日 6

LTL \ GU Construction Details Conclusions

Construction for LTL(F, g)

Limit determinism is ensured because

- Once π_B becomes empty, the guess π cannot change across transitions
- Counter is incremented deterministically

LTL \ GU Construction Details Conclusions

Example

Consider
$$\varphi = G(a \lor Fb)$$

Kini-Viswanathan LTL to Probabilistic Automata

<ロ> <同> <同> < 回> < 回>

LTL \ GU Construction Details Conclusions

Example

Consider
$$\varphi = G(a \lor Fb)$$

$$\left(q_{0}:\langle \varphi \,|\, \textit{Fb} \,|\, \text{-}\,
angle,\, \mathbf{0}
ight)$$

Kini-Viswanathan LTL to Probabilistic Automata

<ロ> <同> <同> < 回> < 回>

LTL \ GU Construction Details Conclusions

Example

Consider
$$\varphi = G(a \lor Fb)$$

イロン イロン イヨン イヨン

LTL \ GU Construction Details Conclusions

Example

æ

- 4 聞 と 4 臣 と 4 臣 と

LTL \ GU Construction Details Conclusions

Example

æ

- 4 聞 と 4 臣 と 4 臣 と

LTL \ GU Construction Details Conclusions

Example

Consider
$$\varphi = G(a \lor Fb)$$

・ロン ・部 と ・ ヨ と ・ ヨ と …

LTL \ GU Construction Details Conclusions

Example

(日) (同) (三) (三)

LTL \ GU Construction Details Conclusions

Example

Kini-Viswanathan LTL to Probabilistic Automata

< 17 ▶

(*) *) *) *)

LTL \ GU Construction Details Conclusions

Example

æ

LTL \ GU Construction Details Conclusions

Markov Decision Processes

• States divided into probabilistic and nondeterministic. From a probabilistic state, the next state is chosen by tossing a coin, and from a nondeterministic state, the next state is chosen nondeterministically

LTL \ GU Construction Details Conclusions

Markov Decision Processes

- States divided into probabilistic and nondeterministic. From a probabilistic state, the next state is chosen by tossing a coin, and from a nondeterministic state, the next state is chosen nondeterministically
- Models (closed) concurrent, stochastic programs

LTL \ GU Construction Details Conclusions

Markov Decision Processes

- States divided into probabilistic and nondeterministic. From a probabilistic state, the next state is chosen by tossing a coin, and from a nondeterministic state, the next state is chosen nondeterministically
- Models (closed) concurrent, stochastic programs
- Nondeterminism resolved by a scheduler

LTL \ GU Construction Details Conclusions

Model Checking Problem

Given and MDP A and LTL formula φ , is there a scheduler S such that the set of executions of A^S that satisfy φ has probability > 0?

LTL \ GU Construction Details Conclusions

Model Checking Problem

Given and MDP A and LTL formula φ , is there a scheduler S such that the set of executions of A^S that satisfy φ has probability > 0?

• [Courcoubetis-Yannakakis 1995] The problem is 2EXPTIME-complete for LTL specs

LTL \ GU Construction Details Conclusions

Model Checking Problem

Given and MDP A and LTL formula φ , is there a scheduler S such that the set of executions of A^S that satisfy φ has probability > 0?

- [Courcoubetis-Yannakakis 1995] The problem is 2EXPTIME-complete for LTL specs
- Upper bound relies on analyzing the cross-product of the MDP with a limit deterministic automaton for φ.

LTL \ GU Construction Details Conclusions

Model Checking Problem

Given and MDP A and LTL formula φ , is there a scheduler S such that the set of executions of A^S that satisfy φ has probability > 0?

- [Courcoubetis-Yannakakis 1995] The problem is 2EXPTIME-complete for LTL specs
- Upper bound relies on analyzing the cross-product of the MDP with a limit deterministic automaton for φ .
- [Kini-V. 2015] The problem is EXPTIME-complete for LTL \setminus *GU* specs

LTL \ GU Construction Details Conclusions

Wrapup

• Ideas can be generalized to construct limit deterministic automata for full LTL

(日) (同) (三) (三)

3

LTL \ GU Construction Details Conclusions

Wrapup

• Ideas can be generalized to construct limit deterministic automata for full LTL but it is doubly exponential size

□→ < □→</p>

LTL \ GU Construction Details Conclusions

Wrapup

- Ideas can be generalized to construct limit deterministic automata for full LTL but it is doubly exponential size
- Can it be improved?

.⊒ . ►

A D

LTL \ GU Construction Details Conclusions

Wrapup

- Ideas can be generalized to construct limit deterministic automata for full LTL but it is doubly exponential size
- Can it be improved?
 - No lower bound proof, but unlikely

LTL \ *GU* Construction Details Conclusions

Wrapup

- Ideas can be generalized to construct limit deterministic automata for full LTL but it is doubly exponential size
- Can it be improved?
 - No lower bound proof, but unlikely
- Implementation of translation http://web.engr.illinois.edu/ kini2/buchifier/