Multi-Objective Parameter Fitting in Parametric Probabilistic Hybrid Automata — Learning to Mine and Exploit PAC Formal Models —

Martin Fränzle¹

joint work with

Alessandro Abate (Oxford University, UK), Sebastian Gerwinn (OFFIS e.V., FRG), Joost-Pieter Katoen (RWTH Aachen, FRG), Paul Kröger (CvOU Oldenburg, FRG)

¹ Dpt. of Computing Science · Carl von Ossietzky Universität · Oldenburg, Germany

M. Fränzle · TCQV, Mysore Park, 2016/02/04 · Constraint-Based Parameter Fitting in PPHA · 2/35

But what if

- faithful formal modeling is too complex to be feasible?
- object under investigation is an embedded system that learns part of its behavior only after deployment (and thus, after verification time)?
- object under investigation is an autonomous system which may eventually enter unknown (and thus, impossible to model a priori) environments & unpredictable system configurations?

But what if

- faithful formal modeling is too complex to be feasible?
- object under investigation is an embedded system that learns part of its behavior only after deployment (and thus, after verification time)?
- object under investigation is an autonomous system which may eventually enter unknown (and thus, impossible to model a priori) environments & unpredictable system configurations?

Such applications become increasingly relevant, challenging our approaches to verification.

Example: Safety-critical learning in situ

Predicting direction of driving requires

- detailed knowledge of factual tracks,
- which may not coincide with marked lanes,
- and which may change unexpectedly due to, e.g., construction works.

Example: Safety-critical learning in situ

Predicting direction of driving requires

- detailed knowledge of factual tracks,
- which may not coincide with marked lanes,
- and which may change unexpectedly due to, e.g., construction works.

Industry wants to counter these problems by

- use of high-resolution digital maps, plus
- *machine learning* for (temporarily) adapting the map in situ.

Example: Safety-critical learning in situ

Predicting direction of driving requires

- detailed knowledge of factual tracks,
- which may not coincide with marked lanes,
- and which may change unexpectedly due to, e.g., construction works.

Industry wants to counter these problems by

- use of high-resolution digital maps, plus
- *machine learning* for (temporarily) adapting the map in situ.

How to make sure that machine learning

- doesn't err in interpreting observations and in learning?
- actually learns relevant facts?
- invalidates them when no longer factual?

Example: Unpredictable system configurations

Future cyber-physical systems will be long-term autonomous:

- sustain unattended operation for orders of magnitude longer duration than the typical inter-maintenance period of systems in the respective class,
- thereby have to be guaranteed to stay safe, reliable, operational, ...

Example: Unpredictable system configurations

Future cyber-physical systems will be *long-term autonomous*:

- sustain unattended operation for orders of magnitude longer duration than the typical inter-maintenance period of systems in the respective class,
- thereby have to be guaranteed to stay safe, reliable, operational, ...
- which implies that they

- have to survive arbitrary combinations of multi-point failures, component degradations, component losses, ..., as well as unpredicted environments
- employing behavioral adaptation (e.g., multi-objective parameter fitting), reconfiguration, function substitution, ...

spanning a configuration space

- too large to be verified in advance,
- such that adaptation has to be safeguarded and guided by verification.

The mission:

Applications increasingly call for bridging the gap betw. AI techniques and FMs, e.g.:

Symbolic verification

The mission:

Applications increasingly call for bridging the gap betw. AI techniques and FMs, e.g.:

• Need for mechanically supplying safety certificates for machine learning and similar AI techniques (statically and/or run-time verification)

The mission:

Applications increasingly call for bridging the gap betw. AI techniques and FMs, e.g.:

- Need for mechanically supplying safety certificates for machine learning and similar AI techniques (statically and/or run-time verification)
- May want to exploit AI techniques to bridge the modeling gap
 - when entering unknown / partially known environments, unpredicted system configuration, ...
 - when faced with overly complex modeling task.

The mission: overall and today

Applications increasingly call for bridging the gap betw. AI techniques and FMs, e.g.:

- Need for mechanically supplying safety certificates for machine learning and similar AI techniques (statically and/or run-time verification)
- May want to exploit AI techniques to bridge the modeling gap
 - when entering unknown / partially known environments, unpredicted system configuration, ...
 - when faced with overly complex modeling task.

Traditional symbolic analysis assumes a well-understood, closed-form symbolic representation facilitating constraint-based analysis:

Preoccupation to a fixed representation may prevent some fruitful applications:

• What happens, e.g., if the constraint representation is learnt from samples, thus blending machine learning with constraint solving?

Traditional symbolic analysis assumes a well-understood, closed-form symbolic representation facilitating constraint-based analysis:

Preoccupation to a fixed representation may prevent some fruitful applications:

- What happens, e.g., if the constraint representation is learnt from samples, thus blending machine learning with constraint solving?
- Could we perhaps *automatically* generate/mine PAC formalizations?

Example: Demand-Response Schemes in Smart Grids

A Practical Problem Featuring Hybrid Dynamics

M. Fränzle · TCQV, Mysore Park, 2016/02/04 · Constraint-Based Parameter Fitting in PPHA · 7/35

Demand Response: Supplying Reserve Power by Thermostatically Ctrl.ed Loads (TCLs) [Callaway 2009]

Idea: Control power demand by (marginally) modifying switching thresholds of AC systems.

- On power shortage, provide reserve power by switching off early / switching on late.
- On excess power, consume reserve power by switching off late / switching on early.
- Unnoticeable to residents due to marginal adjustments to switching thresholds.

M. Fränzle · TCQV, Mysore Park, 2016/02/04 · Constraint-Based Parameter Fitting in PPHA · 8/35

Dynamics of a Single Household — Simulation

Dashed lines indicate window opening / closing events.

M. Fränzle · TCQV, Mysore Park, 2016/02/04 · Constraint-Based Parameter Fitting in PPHA · 9/35

Multiple Similar TCLs (N = 50) — Simulation

Externally controlled (power target 55 kW) vs. uncontrolled ensemble. Control strategy: switch off coldest households if power target exceeded.

Multiple Similar TCLs (N = 50) — Simulation

Externally controlled (power target 55 kW) vs. uncontrolled ensemble. Control strategy: switch off coldest households if power target exceeded.

The Formal Model

Parametric Probabilistic HA

M. Fränzle · TCQV, Mysore Park, 2016/02/04 · Constraint-Based Parameter Fitting in PPHA · 11/35

A (discrete time) Parametric Probabilistic HA

Car maneuvre: Keep lane while driving along a road.

- Measurement of position in lane fails with probability 0.5.
- Upon success, do occasional (due to cost associated) corrections of heading angle h by proportional control.
 - Parameter α controls frequency of these corrective actions.
- Two reward / cost variables:
 - C records accumulated cost of corrective steering actions,
 - S records successful stay in lane.

M. Fränzle · TCQV, Mysore Park, 2016/02/04 · Constraint-Based Parameter Fitting in PPHA · 12/35

A (discrete time) Parametric Probabilistic HA

Car maneuvre: Keep lane while driving along a road.

- Measurement of position in lane fails with probability 0.5.
- Upon success, do occasional (due to cost associated) corrections of heading angle h by proportional control.
 - Parameter α controls frequency of these corrective actions.
- Two reward / cost variables:
 - C records accumulated cost of corrective steering actions,
 - S records successful stay in lane.

M. Fränzle · TCQV, Mysore Park, 2016/02/04 · Constraint-Based Parameter Fitting in PPHA · 12/35

A multi-objective design problem

Find parameterization α^* such that

- the system is sufficiently safe: $P(\text{safe}) = \mathcal{E}(S, \alpha^*) \ge \theta_1$, where θ_1 is the safety target;
- at acceptable cost: $\mathcal{E}(C, \alpha^*) \leq \theta_2$, where θ_2 is a cost bound.

M. Fränzle · TCQV, Mysore Park, 2016/02/04 · Constraint-Based Parameter Fitting in PPHA · 13/35

The design problem, abstractly

Given

- **1** a PPHA A, featuring
 - a vector $ec{lpha}=(lpha_1,\ldots,lpha_k)$ of parameters,
 - a vector $\vec{f} = (f_1, \dots, f_n)$ of reward (or cost) functions,
- 2 a constraint ϕ over $\vec{\alpha}$ specifying the possible parameter instances, and
- **3** a constraint C over $\mathcal{E}_{\vec{f}}$ specifying the (multi-objective) design goal,

find (or prove non-existence of) a parameter instance $\vec{\alpha}^* \in \mathbb{R}^k$ that

- 1 satisfies ϕ and
- **2** yields expected *time-bounded rewards* $\mathcal{E}[\vec{f}, \vec{\alpha}^*]$ satisfying C.

M. Fränzle · TCQV, Mysore Park, 2016/02/04 · Constraint-Based Parameter Fitting in PPHA · 14/35

- Substitution of parametric probabilities in the system model by fixed substitute probabilities;
- Introduction of counters into the model counting how frequently such substitutes have been chosen along a simulation run;
- Statistical model checking of the modified model, yielding estimates of the expected costs/rewards in the non-parametric substitute model;
- Exploitation of the re-normalization equations of importance sampling for obtaining a symbolic expression of the (estimated) parameter dependency of the costs/rewards;
- **5** Simplification of that expression by means of merging terms;
- **6** Use of SMT solving over, a.o., higher-order polynomials for determining suitable parameters.

Estimating (Parametric) Expectations by Random Sampling

M. Fränzle · TCQV, Mysore Park, 2016/02/04 · Constraint-Based Parameter Fitting in PPHA · 16/35

Sampling as in traditional SMC [Younes, Simmons 2002-]

 $p(\cdot; \alpha)$ be the parameter-dependent distribution of random variable $x \in X$; let $\alpha^* \models \phi$ be a fixed parameter instance; let $f \in X$ be a hounded unused function

let $f: X \to [a, b]$ be a bounded reward function.

Expectation of f depending on α :

$$\mathcal{E}[f;\alpha] = \sum_{x \in X} f(x)p(x;\alpha) \tag{1}$$

Sampling as in traditional SMC [Younes, Simmons 2002-]

 $p(\cdot; \alpha)$ be the parameter-dependent distribution of random variable $x \in X$; let $\alpha^* \models \phi$ be a fixed parameter instance; let $f \in X$ be a hounded unused function

let $f: X \to [a, b]$ be a bounded reward function.

Expectation of f depending on α :

$$\mathcal{E}[f;\alpha] = \sum_{x \in X} f(x)p(x;\alpha) \tag{1}$$

Estimated expectation of f in α^* :

- **1** Use randomized simulation faithfully representing $p(\cdot, \alpha^*)$ to generate n samples $x_1, \ldots, x_m \in X$.
- 2 Compute the empirical mean

$$\tilde{\mathcal{E}}[f;\alpha^*] = \frac{1}{N} \sum_{i=1}^N f(x_i)$$
(2)

of the sampled f values.

M. Fränzle · TCQV, Mysore Park, 2016/02/04 · Constraint-Based Parameter Fitting in PPHA · 17/35

For large numbers of samples N, grossly outlying estimates are unlikely.

For large numbers of samples N, grossly outlying estimates are unlikely. Hoeffding's inequality [Hoeffding, 1963] yields

$$P\left(\tilde{\mathcal{E}}[f;\alpha^*] - \mathcal{E}[f;\alpha^*] \ge +\varepsilon\right) \le \exp\left(-2\frac{\varepsilon^2 N}{(b_f - a_f)^2}\right) \quad , \qquad (3a)$$
$$P\left(\tilde{\mathcal{E}}[f;\alpha^*] - \mathcal{E}[f;\alpha^*] \le -\varepsilon\right) \le \exp\left(-2\frac{\varepsilon^2 N}{(b_f - a_f)^2}\right) \quad , \qquad (3b)$$

$$P\left(\tilde{\mathcal{E}}[f;\alpha^*] - \mathcal{E}[f;\alpha^*] \le -\varepsilon\right) \le \exp\left(-2\frac{\varepsilon}{(b_f - a_f)^2}\right) \quad . \tag{3b}$$

For large numbers of samples N, grossly outlying estimates are unlikely. Hoeffding's inequality [Hoeffding, 1963] yields

$$P\left(\tilde{\mathcal{E}}[f;\alpha^*] - \mathcal{E}[f;\alpha^*] \ge +\varepsilon\right) \le \exp\left(-2\frac{\varepsilon^2 N}{(b_f - a_f)^2}\right) \quad , \qquad (3a)$$

$$P\left(\tilde{\mathcal{E}}[f;\alpha^*] - \mathcal{E}[f;\alpha^*] \le -\varepsilon\right) \le \exp\left(-2\frac{\varepsilon^2 N}{(b_f - a_f)^2}\right) \quad . \tag{3b}$$

- Thus, SMC can be used for determining (with confidence) whether an instance of a PPHA, i.e., a PHA, satisfies design objective *C*.
 - Build a formula determining whether all the ε neighbourhood of the empirical mean satisfies C; check by SMT solving. E.g.,

unsat? $\mathcal{E}_f \in B_{\varepsilon}(\mathcal{E}[\tilde{f, \alpha^*}]) \land \neg C$

• The multi-objective parameter fitting problem can then in principle be solved by sampling the parameter space.

For large numbers of samples N, grossly outlying estimates are unlikely. Hoeffding's inequality [Hoeffding, 1963] yields

$$P\left(\tilde{\mathcal{E}}[f;\alpha^*] - \mathcal{E}[f;\alpha^*] \ge +\varepsilon\right) \le \exp\left(-2\frac{\varepsilon^2 N}{(b_f - a_f)^2}\right) \quad , \qquad (3a)$$

$$P\left(\tilde{\mathcal{E}}[f;\alpha^*] - \mathcal{E}[f;\alpha^*] \le -\varepsilon\right) \le \exp\left(-2\frac{\varepsilon^2 N}{(b_f - a_f)^2}\right) \quad . \tag{3b}$$

- Thus, SMC can be used for determining (with confidence) whether an instance of a PPHA, i.e., a PHA, satisfies design objective *C*.
 - Build a formula determining whether all the ε neighbourhood of the empirical mean satisfies C; check by SMT solving. E.g.,

unsat? $\mathcal{E}_f \in B_{\varepsilon}(\mathcal{E}[f, \alpha^*]) \land \neg C$

- The multi-objective parameter fitting problem can then in principle be solved by sampling the parameter space.
- But this approach is plagued by the curse of dimensionality; instead need a constructive form of generalizing from samples.

M. Fränzle · TCQV, Mysore Park, 2016/02/04 · Constraint-Based Parameter Fitting in PPHA · 18/35

Importance Sampling

The classical, non-symbolic version

M. Fränzle · TCQV, Mysore Park, 2016/02/04 · Constraint-Based Parameter Fitting in PPHA · 19/35

Importance sampling

An estimate for the expectation of f wrt. distribution $p(\cdot,\alpha)$ can be obtained by sampling X wrt. a different ("proposal") distribution q:

$$\mathcal{E}[f;\alpha] = \sum_{x \in X} f(x)p(x;\alpha)$$

$$= \sum_{x \in X} \underbrace{f(x)\frac{p(x;\alpha)}{q(x)}}_{g(x,\alpha)} q(x)$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \underbrace{f(x_i)\frac{p(x_i;\alpha)}{q(x_i)}}_{q(x_i)} \quad \text{where } x_i \sim q \quad (4a)$$

$$=: \hat{\mathcal{E}}[f;\alpha] \quad (4b)$$
Importance sampling

An estimate for the expectation of f wrt. distribution $p(\cdot, \alpha)$ can be obtained by sampling X wrt. a different ("proposal") distribution q:

$$\mathcal{E}[f;\alpha] = \sum_{x \in X} f(x)p(x;\alpha)$$

$$= \sum_{x \in X} \underbrace{f(x)\frac{p(x;\alpha)}{q(x)}}_{g(x,\alpha)} q(x)$$

$$\approx \frac{1}{N} \underbrace{\sum_{i=1}^{N} f(x_i)\frac{p(x_i;\alpha)}{q(x_i)}}_{g(x_i)} \quad \text{where } x_i \sim q \quad (4a)$$

$$=: \hat{\mathcal{E}}[f;\alpha] \quad (4b)$$

Note that samples $\{x_1, \ldots, x_N\}$ are drawn according to the substitute distribution q; nevertheless, (4a–4b) permits to compute estimates $\hat{\mathcal{E}}[f;\alpha]$ for arbitrary values of α .

Symbolic Importance Sampling

Mining (not yet PAC) Formal Models

Importance sampling in a PPHA

Pursue a simulation with a *concrete* substitute probability q replacing α .

Importance sampling in a PPHA

Pursue a simulation with a *concrete* substitute probability q replacing α .

Assume simulation yields a run taking the α branch n times and the $(1-\alpha)$ branch m times. Then

- the probability of this run is $c \cdot q^n \cdot (1-q)^m$ in the simulation,
- the probability of this run is $c \cdot \alpha^n \cdot (1 \alpha)^m$ in the PPHA, for arbitrary α .

Here, c denotes the accumulated probability of all other choices along the run.

 t_1, \ldots, t_l be the parameter-dependent probability terms in the PPHA A. Let $\#_i t_j$ denote the number of times the t_j branch was taken in run x_i when simulating A with the substitute parameterization q. t_1, \ldots, t_l be the parameter-dependent probability terms in the PPHA A. Let $\#_i t_j$ denote the number of times the t_j branch was taken in run x_i when simulating A with the substitute parameterization q.

A symbolic representation of the parameter dependency of $\hat{\mathcal{E}}[f;\alpha]$ can be obtained from importance sampling (4a–4b):

$$\hat{\mathcal{E}}[f;\alpha] = \underbrace{\frac{1}{N} \sum_{i=1}^{N} f(x_i) \prod_{j=1}^{l} \left(\frac{t_j}{t_j [q/\alpha]}\right)^{\#_i t_j}}_{\eta_f}$$
(5)

Note that $f(x_i)$, $t_j[q/\alpha]$ and $\#_i t_j$ are constants s.t. the only free variables occurring in η_f are the parameters $\alpha_1, \ldots, \alpha_k$ within terms t_1, \ldots, t_l .

- Term η_f in (5) is a large sum of products with multiple occurrences of parameters α_i within different instances of sub-terms t_j .
- Let C be a constraint over $\mathcal{E}_{f_1}, \ldots, \mathcal{E}_{f_n}$ formalizing the design objective.
- Let ϕ be the constraint on admissible parameterizations α .

- Term η_f in (5) is a large sum of products with multiple occurrences of parameters α_i within different instances of sub-terms t_j.
- Let C be a constraint over $\mathcal{E}_{f_1}, \ldots, \mathcal{E}_{f_n}$ formalizing the design objective.
- Let ϕ be the constraint on admissible parameterizations α .

A parameter instance $\alpha \models \phi$ guaranteeing C can now in principle be found — or conversely, the infeasibility of C over ϕ be established — by solving the constraint system

using an appropriate constraint solver.

- Term η_f in (5) is a large sum of products with multiple occurrences of parameters α_i within different instances of sub-terms t_j.
- Let C be a constraint over $\mathcal{E}_{f_1}, \ldots, \mathcal{E}_{f_n}$ formalizing the design objective.
- Let ϕ be the constraint on admissible parameterizations α .

A parameter instance $\alpha \models \phi$ guaranteeing C can now in principle be found — or conversely, the infeasibility of C over ϕ be established — by solving the constraint system

using an appropriate constraint solver.

- Term η_f in (5) is a large sum of products with multiple occurrences of parameters α_i within different instances of sub-terms t_j.
- Let C be a constraint over $\mathcal{E}_{f_1}, \ldots, \mathcal{E}_{f_n}$ formalizing the design objective.
- Let ϕ be the constraint on admissible parameterizations α .

A parameter instance $\alpha \models \phi$ guaranteeing C can now in principle be found — or conversely, the infeasibility of C over ϕ be established — by solving the constraint system

using an appropriate constraint solver.

Caveat: Existence of α satisfying (6) is a necessary, though not sufficient condition for it satisfying the design goal with confidence.

(Will deal with that issue later.)

Finding Feasible Parameter Instances

Polynomial constraint solving of very high order

The shape of the constraint formulae

- Constraint (6), i.e., $\phi \land \left(\bigwedge_{i=1}^{n} \mathcal{E}_{f_i} \in B_{\varepsilon(\|\alpha-q\|,N)}(\eta_{f_i})\right) \land C$, is an arithmetic constraint involving
 - 1 addition, multiplication, exponentiation by (large!) integer constants,
 - 2 the operations found in the terms t_1, \ldots, t_l defining the parameter dependency $p(\alpha)$ of the Markov chain,
 - 3 the operations occurring in the parameter domain constraint ϕ and in the design goal C,
- it can be solved by SMT solvers addressing the corresponding subset of arithmetic, e.g. iSAT. $^{1\ 2}$

²You ought to refine iSAT's standard settings for accuracy, though.

¹iSAT [F., Herde, Ratschan, Schubert, Teige, 2007–] is an algorithms integrating interval constraint propagation and SAT modulo theory for solving constraint systems over $\mathbb{R}, +, *, \sin, \exp, \ldots$

A simple instance of the constraint formulae

EXPR

```
. . .
-- X236 represents 23 sample(s) of average reward -0.434783
 X236 = -28493.9 * alpha**6 * (1-alpha)**10;
-- X235 represents 12 sample(s) of average reward -0.6666667
 X235 = -21845.3 * alpha**6 * (1-alpha)**9;
-- X234 represents 35 sample(s) of average reward -0.2
 X234 = -13107.2 * alpha**9 * (1-alpha)**7;
-- X233 represents 39 sample(s) of average reward -0.0512821
 X233 = -13443.3 * alpha**7 * (1-alpha)**11;
  . . .
-- Computing empirical expectation E.
 E = 0.00025 * (X1 + X2 + X3 + ... + X236 + X237 + X238 + X239);
-- Optimization target is
  (-0.01 \le E) and (E \le 0.0);
-- Parameter constraint is
  (alpha < 0.0125) or (alpha > 0.99);
```

A simple instance of the constraint formulae

EXPR

• • •	
X236 represents 23 sample(s) of avera	Toward -0.434783
X236 = -28493.9 * alpha**6 * (1-alpha)	Terms over parameters can
X235 represents 12 sample(s) of avera	 involve multiple different
X235 = -21845.3 * alpha**6 * (1-alpha)	parameters.
X234 represents 35 sample(s) of avera	
X234 = -13107.2 * alpha**9 * (1-alpha)	transcondants linear, polynomial, and
X233 represents 39 sample(s) of avera	ge reward endental arithmetic.
X233 = -13443.3 * alpha**7 * (1-alpha)**11;	
•••	
Computing empirical expectation E.	Expectations and parameters may be
E = 0.00025 * (X1 + X2 + X3 + + X2)	Linensional.
	- multi-unitensionaly Lite au Poolean
Optimization target is	- subject to arbitrary boolean
$(-0.01 \le E)$ and $(E \le 0.0);$	combinations of constraints,
	- subject to non-polynomial
Parameter constraint is	arithmetic constraints.

-- Parameter constraint is (alpha < 0.0125) or (alpha > 0.99);

$c_1: \qquad (\neg a \lor \neg c \lor d)$

- $c_2: \land (\neg a \lor \neg b \lor c)$
- $c_3: \land (\neg c \lor \neg d)$
- $c_4: \land (b \lor x \ge -2)$
- $c_5: \quad \land \ (x \geq 4 \ \lor \ y \leq 0 \ \lor \ h_3 \geq 6.2)$
- $c_6:\ \wedge\ h_1=x^2$
- $c_7: \wedge h_2 = -2 \cdot y$
- $c_8:\ \wedge\ h_3=h_1+h_2$

- Use Tseitin-style (i.e. definitional) transformation to rewrite input formula into a conjunction of constraints:
 - \triangleright *n*-ary disjunctions of bounds
 - ▷ arithmetic constraints having at most one operation symbol
- Boolean variables are regarded as 0-1 integer variables. Allows identification of literals with bounds on Booleans:

 $\begin{array}{c} b \equiv b \geq 1 \\ \neg b \equiv b \leq 0 \end{array}$

• Float variables h_1, h_2, h_3 are used for decomposition of complex constraint $x^2 - 2y \ge 6.2$.

- $c_1: \qquad (\neg a \lor \neg c \lor d)$
- $c_2: \land (\neg a \lor \neg b \lor c)$
- $c_3: \land (\neg c \lor \neg d)$
- $c_4: \land (b \lor x \ge -2)$
- $c_5: \land (x \ge 4 \lor y \le 0 \lor h_3 \ge 6.2)$
- $c_6: \wedge h_1 = x^2$
- $c_7: \wedge h_2 = -2 \cdot y$
- $c_8:\ \wedge\ h_3=h_1+h_2$

- $c_1: \qquad (\neg a \lor \neg c \lor d)$
- $c_2: \land (\neg a \lor \neg b \lor c)$
- $c_3: \land (\neg c \lor \neg d)$
- $c_4: \land (b \lor x \ge -2)$
- $c_5: \land (x \ge 4 \lor y \le 0 \lor h_3 \ge 6.2)$
- $c_6: \wedge h_1 = x^2$
- $c_7: \wedge h_2 = -2 \cdot y$
- $c_8:\ \wedge\ h_3=h_1+h_2$

- $c_1: \qquad (\neg a \lor \neg c \lor d)$
- $c_2: \land (\neg a \lor \neg b \lor c)$
- $c_3: \land (\neg c \lor \neg d)$
- $c_4: \land (b \lor x \ge -2)$
- $c_5: \land (x \ge 4 \lor y \le 0 \lor h_3 \ge 6.2)$
- $c_6: \wedge h_1 = x^2$
- $c_7: \wedge h_2 = -2 \cdot y$
- $c_8:\ \wedge\ h_3=h_1+h_2$
- $c_9: \land (\neg a \lor \neg c)$

- $c_1: (\neg a \lor \neg c \lor d)$
- $c_2: \land (\neg a \lor \neg b \lor c)$
- $c_3: \land (\neg c \lor \neg d)$
- $c_4: \land (b \lor x \ge -2)$
- $c_5: \land (x \ge 4 \lor y \le 0 \lor h_3 \ge 6.2)$
- $c_6: \wedge h_1 = x^2$
- $c_7: \wedge h_2 = -2 \cdot y$
- $c_8:\ \wedge\ h_3=h_1+h_2$
- $c_9: \land (\neg a \lor \neg c)$

- $c_1: (\neg a \lor \neg c \lor d)$
- $c_2: \land (\neg a \lor \neg b \lor c)$
- $c_3: \land (\neg c \lor \neg d)$
- $c_4: \land (b \lor x \ge -2)$
- $c_5: \land (x \ge 4 \lor y \le 0 \lor h_3 \ge 6.2)$
- $c_6: \wedge h_1 = x^2$
- $c_7: \wedge h_2 = -2 \cdot y$
- $c_8:\ \wedge\ h_3=h_1+h_2$
- $c_9: \land (\neg a \lor \neg c)$

- $c_1: \qquad (\neg a \lor \neg c \lor d)$
- $c_2: \land (\neg a \lor \neg b \lor c)$
- $c_3: \land (\neg c \lor \neg d)$
- $c_4: \land (b \lor x \ge -2)$
- $c_5: \land (x \ge 4 \lor y \le 0 \lor h_3 \ge 6.2)$
- $c_6: \wedge h_1 = x^2$
- $c_7: \wedge h_2 = -2 \cdot y$
- $c_8:\ \wedge\ h_3=h_1+h_2$
- $c_9: \land (\neg a \lor \neg c)$

[Herde, 2010]

- $c_1: \qquad (\neg a \lor \neg c \lor d)$
- $c_2: \land (\neg a \lor \neg b \lor c)$
- $c_3: \land (\neg c \lor \neg d)$
- $c_4: \land (b \lor x \ge -2)$
- $c_5: \land (x \ge 4 \lor y \le 0 \lor h_3 \ge 6.2)$
- c_6 : \wedge $h_1 = x^2$
- $c_7: \wedge h_2 = -2 \cdot y$
- $c_8:\ \wedge\ h_3=h_1+h_2$
- $c_9: \land (\neg a \lor \neg c)$
- $c_{10}: \land (x < -2 \lor y < 3 \lor x > 3)$

← conflict clause = symbolic description of a rectangular region of the search space which is excluded from future search

- $c_1: \qquad (\neg a \lor \neg c \lor d)$
- $c_2: \land (\neg a \lor \neg b \lor c)$
- $c_3: \land (\neg c \lor \neg d)$
- $c_4: \land (b \lor x \ge -2)$
- $c_5: \land (x \ge 4 \lor y \le 0 \lor h_3 \ge 6.2)$
- $c_6: \wedge h_1 = x^2$
- $c_7: \wedge h_2 = -2 \cdot y$
- $c_8:\ \wedge\ h_3=h_1+h_2$
- $c_9: \land (\neg a \lor \neg c)$
- $c_{10}: \land (x < -2 \lor y < 3 \lor x > 3)$

[Herde, 2010]

- $c_1: \qquad (\neg a \lor \neg c \lor d)$
- $c_2: \land (\neg a \lor \neg b \lor c)$
- $c_3: \land (\neg c \lor \neg d)$
- $c_4: \land (b \lor x \ge -2)$
- $c_5: \land (x \ge 4 \lor y \le 0 \lor h_3 \ge 6.2)$
- $c_6: \wedge h_1 = x^2$
- $c_7: \wedge h_2 = -2 \cdot y$
- $c_8:\ \wedge\ h_3=h_1+h_2$
- $c_9: \land (\neg a \lor \neg c)$

 $c_{10}: \ \land \ (x < -2 \ \lor \ y < 3 \ \lor \ x > 3)$

- Continue do split and deduce until either
 ▷ formula turns out to be UNSAT (unresolvable conflict)
 ▷ solver is left with 'sufficiently small' portion of the search space for which it cannot derive any contradiction
- Avoid infinite splitting and deduction:
 - ▷ minimal splitting width
 - ▷ discard a deduced bound if it yields small progress only

Becoming PAC: Iterative Refinement of the Encoding

Dealing with the approximation error incurred by importance sampling

Let P be the user-required confidence and let the number N of samples drawn in each round be selected according to the Hoeffding bound (3).

Correctness

If the algorithm terminates, the following properties hold with confidence $\geq P$:

- **1** If it reports "Feasible" then the parameter instance provided yields expectations satisfying C.
- 2 If it reports "Infeasible" then for any parameter instance satisfying ϕ , the associated expectations violate C.

Discussion

What we did

Solved a complex design-space exploration problem by (iterative) automated learning of a tractable, PAC formal model.

• Approach is based on an alternation of *sampling, generalization, constraint* generation, SMT solving

What we did

Solved a complex design-space exploration problem by (iterative) automated learning of a tractable, PAC formal model.

- Approach is based on an alternation of *sampling*, *generalization*, *constraint generation*, *SMT solving*
- Closed-form representation based on SMT formulae well exists, but
 - exponentially sized formulae,
 - thus not scalable.

What we did

Solved a complex design-space exploration problem by (iterative) automated learning of a tractable, PAC formal model.

- Approach is based on an alternation of *sampling*, *generalization*, *constraint generation*, *SMT solving*
- Closed-form representation based on SMT formulae well exists, but
 - exponentially sized formulae,
 - thus not scalable.

• A prototype implementation of our approach exists (result of an excellent BSc thesis — thank you, Paul).

The major ingredients

The major ingredients

Many more such combinations wait to be explored!
Let us go beyond...

