Acceleration in multi pusbdown systems (TACAS'16)

Prakash Saivasan

Joint work with
Mohamed Faouzi Atig
Narayan Kumar K

MOTIVATION:

Verification of concurrent programs with:

- Programs with multiple threads
- Threads can have recursion
-Finite data domain
-Shared memory

FORMAL MODELS

Programs	Model
Recursive	Pushdown Systems
Concurrent Recursive	Multi-pushdown Systems

Multi-pushdown systems

MULTI PUSHDOWN SYSTEMS

Existing underapproximations

- Bounded Context
- Bounded Phase
- Ordered MPDS
- Bounded Scope

BOUNDED CONTEXT

Context is a sequence of operations restricted to a stack

S. Qadeer J. Rehof

Reachability is NP-Complete

Acceleration

- Multi pushdown system \mathcal{M}
- Transitions Δ
- Set of configurations \mathcal{C}
- Set of sequences of transitions θ

Acceleration problem is to compute

$$
\left\{c^{\prime} \mid c \xrightarrow{\sigma} c^{\prime}, c \in \mathcal{C}, \sigma \in \theta^{*}\right\}
$$

Stability

Bounded context analysis as an acceleration problem

- Multi pushdown system \mathcal{M}
-Transitions Δ
- Set of configurations \mathcal{C}
- Set of sequences of transitions

$$
\theta=\bigcup_{i_{1}, \cdots, i_{k} \in[1 . . n]} \Delta_{i_{1}}^{*} \cdot \Delta_{i_{2}}^{*} \ldots \Delta_{i_{k}}^{*}
$$

- We are interested in the following set

$$
\left\{c^{\prime} \mid c \xrightarrow{\sigma} c, c \in \mathcal{C}, \sigma \in \theta\right\}
$$

Bounded context acceleration

Accelerated set is also regular

Bounded context acceleration

$$
\bigcup_{i_{1}, \cdots, i_{k} \in[1 . . n]} \Delta_{i_{1}}^{*} \cdot \Delta_{i_{2}}^{*} \ldots \Delta_{i_{k}}^{*}
$$

Initial configuration Rational

Accelerated set is also rational

Accelerating loop

- Multi pushdown system \mathcal{M}
- Transitions Δ
- Set of configurations \mathcal{C}
- loop $\theta=\left\{\left(q, o p_{1}, q_{1}\right)\left(q_{1}, o p_{2}, q_{2}\right) \cdots\left(q_{m}, o p_{m}, q\right)\right\}$
$\left\{c^{\prime} \mid c \xrightarrow{\sigma} c^{\prime}, c \in \mathcal{C}, \sigma \in \theta^{*}\right\}$

$$
\theta=\left\{\left(q, o p_{1}, q_{1}\right)\left(q_{1}, o p_{2}, q_{2}\right) \cdots\left(q_{m}, o p_{m}, q\right)\right\}
$$

Initial configuration Regular

Accelerated set is not regular but rational

Accelerating loop on regular set is not regular

Accelerating loop on regular set is rational

We will assume that we are given a set of finite state automata one for each stack recognising the regular set of configurations

Accelerating loop on regular set is rational

- We will first examine the effect of a loop on each stack

$$
0000000
$$

Stack-1

Stack-2

(2) (2) (2)

Stack-3 \square

Accelerating loop on regular set is rational

- What is the effect of accelerating the loop repeatedly?

$$
0000000
$$

Stack-1 부웅

Stack-2 (2) 2 $2 \hat{1}$

Stack-3 \&

Given a loop, its effect can be summarised as two words for each stack

The first word is what is removed from the stack at the end of execution of the loop

The second word is what is appended to the stack at the end of loop execution

Accelerating loop on regular set is rational

Accelerating loop on regular set is rational

Stack	pop	push
1	u_{1}	v_{1}
2	u_{2}	v_{2}
3	u_{3}	v_{3}

$$
u_{i}<p r e v_{i}
$$

$$
v_{i}=u_{i} y_{i}, x_{i}=\epsilon
$$

$$
v_{i}<p r e u_{i}
$$

$$
u_{i}=v_{i} x_{i}, y_{i}=\epsilon
$$

Accelerating loop j+1 times

Stack	pop	push
1	$u_{1} x_{1}^{j}$	$v_{1} y_{1}^{j}$
2	$u_{2} x_{2}^{j}$	$v_{2} y_{2}^{j}$
3	$u_{3} x_{3}^{j}$	$v_{3} y_{3}^{j}$

Accelerating loop on regular set is rational

Stack	pop	push
1	u 1	v 1
2	u 2	v 2
3	u 3	v 3

We construct an 2 n tape rational automata.

u1	v1	u2	v2
;	!	!	!
x1	y1	x2	y2
x1	y1	x2	y2
w1	w1	w2	w2

Accelerating loop on regular set is rational

u1	v1	u2	v2	un	vn
!	!	\vdots	!	!	!
x1	y1	x2	y2	xn	yn
x1	y1	x2	y2	xn	yn
w1	w1	w2	w2	wn	wn
X		X		X	
B_{1}		B_{2}		B_{n}	

Accelerating loop on rational set is not rational

Constrained simple regular expression

Constrained Simple Regular Expression (1-dim)

$$
\begin{array}{ccccc}
w_{1} & w_{2} & \cdots & \cdots & w_{n} \\
\hline x_{1} & x_{2} \\
& & x_{n} \\
& \text { PRESBURGER FORMULA } \Psi & \\
\hline
\end{array}
$$

CSRE is given by sequence of words and a Presburger formula with one free variable per every word.

Acceptance in CSRE

$$
\begin{gathered}
w_{1} w_{1} \cdots w_{2} w_{2} \cdots, w_{n} \\
i_{1} \\
\quad i_{1}, i_{2}, \cdots, i_{n} \models \Psi\left(x_{1}, \cdots, x_{n}\right)
\end{gathered}
$$

Constrained Simple Regular Expression (m-dim)

Acceptance in m-dim CSRE

$$
i_{1}^{1}, i_{1}^{2}, \cdots, i_{1}^{n}, \cdots, i_{m}^{1}, \cdots, i_{m}^{n} \models \Psi
$$

STABLE

$$
\theta=\left\{\left(q, o p_{1}, q_{1}\right)\left(q_{1}, o p_{2}, q_{2}\right) \cdots\left(q_{m}, o p_{m}, q\right)\right\}
$$

Initial configuration CSRE

Accelerated set is also CSRE

Some properties of CSRE

- CSRE are closed under intersection, union and concatenation
- Emptiness, membership and inclusion problems are decidable.
- CSRE is closed under left quotient.

Accelerating loop on CSRE

Accelerating loop j+1 times

Stack	pop word	push word
1	$u_{1} x_{1}^{j}$	$v_{1} y_{1}^{j}$
2	$u_{2} x_{2}^{j}$	$v_{2} y_{2}^{j}$
3	$u_{3} x_{3}^{j}$	$v_{3} y_{3}^{j}$

- We first left quotient u_{1}, \cdots, u_{n}
- We left quotient $x_{1}^{j}, \cdots, x_{n}^{j}$
- We concatenate $y_{1}^{j}, \cdots, y_{n}^{j}$
- We concatenate v_{1}, \cdots, v_{n}
- Presburger formula is used to ensure concatenation and left quotient is done same number of times

Context switch set

Context switch set

- Loops are weak, cannot capture bounded context switch
- We will introduce notion of context switch set

$$
\Lambda=\tau_{1}^{*} \sigma_{1} \tau_{2}^{*} \sigma_{2} \cdots \tau_{n}^{*} \sigma_{n}
$$

- $\quad \tau_{i}$ Subset of transitions operating on a stack
- σ_{i} Single transition

$\Lambda=\tau_{1} \sigma_{1} \tau_{2} \sigma_{2} \cdots \tau_{n} \sigma_{n}$

??

Constrahied Rational Language

Constrained Rational Language

Constrained Rational Automata

Constrained Rational Automata (Parikh automata)

Multi tape automata

$$
\begin{array}{|ccc|}
\hline \Sigma_{1} & \Sigma_{2} & \Sigma_{3} \\
\Sigma_{4} & & \Sigma_{n} \\
\hline
\end{array}
$$

$$
\begin{array}{ccccc}
\tau_{1} & \tau_{2} & \tau_{3} & \ldots & \tau_{m}
\end{array}
$$

$$
\begin{array}{llll}
t_{1} & t_{2} & t_{3} & t_{m}
\end{array}
$$

Presburger formula Φ

Some properties of Constrained Rational Automata (CRA)

- CRA are closed under concatenation, union but not under intersection
- Emptiness and membership problems are decidable.
- Create a pushdown systems, one for each stack.

- Each of the pushdown system i simulates moves of stack-i
- It further has jump transitions corresponding to $\sigma_{1}, \cdots, \sigma_{n}$
- It outputs number of times a jump transition was made.
- The following language for any pushdown is rational

$$
\left\{\left(v, w, \#^{j}\right) \mid(q, v) \xrightarrow{\#^{j}}\left(q, v^{\prime}\right)\right\}
$$

- We can use Presburger formula to ensure that the number of jumps of each PDS match.

THANK YOU

