
Acceleration in multi pushdown systems

(TACAS’16)

Prakash Saivasan

Joint work with

Narayan Kumar K
Mohamed Faouzi Atig

Verification of concurrent programs with:

Programs with multiple threads

Threads can have recursion

Finite data domain

Shared memory

Motivation:

Formal models

Programs Model

Recursive Pushdown Systems

Concurrent
Recursive

Multi-pushdown Systems

Multi-pushdown systems

Multi pushdown Systems

push1

push2

push3

pop2

State

Stacks
Transitions

1 2 3

1 2 3

Stack
Alphabets

Configuration

1 1 2 3 2 1 2

Turing powerful

Existing underapproximations

Bounded Context

Bounded Phase

Ordered MPDS

Bounded Scope

Bounded context

21 2 23 11

Context is a sequence
of operations restricted
to a stack

Reachability is NP-Complete

S. Qadeer J. Rehof

Acceleration

Multi pushdown system

Transitions

M

�

Set of configurations C

Acceleration problem is to compute

Set of sequences of transitions

{c0 | c �! c0, c 2 C,� 2 ✓⇤}

✓

INITIAL SET OF
CONFIGURATION

FINITE REPRESENTATION
REGULAR/RATIONAL

✓

✓

✓

✓

✓

✓

✓
✓

✓

ACCELERATED SET

INITIAL SET OF
CONFIGURATION

✓

✓

✓

✓

✓

✓

✓
✓

✓

Stability: Representation of
initial configuration and the
accelerated set are the same

Stability

Bounded context analysis as an
acceleration problem

Multi pushdown system

Transitions

M

�

Set of configurations C
Set of sequences of transitions

✓ =
[

i1,··· ,ik2[1..n]

�⇤
i1 .�

⇤
i2 . . .�

⇤
ik

{c0 | c �! c, c 2 C,� 2 ✓}
We are interested in the following set

Accelerated set is also regular

Initial configuration
Regular

Bounded context acceleration

[

i1,··· ,ik2[1..n]

�⇤
i1 .�

⇤
i2 . . .�

⇤
ik

Accelerated set is also rational

Initial configuration
Rational

Bounded context acceleration

[

i1,··· ,ik2[1..n]

�⇤
i1 .�

⇤
i2 . . .�

⇤
ik

Accelerating loop

Multi pushdown system

Transitions

M

�

Set of configurations C
loop

✓ = {(q, op1, q1)(q1, op2, q2) · · · (qm, opm, q)}

{c0 | c �! c0, c 2 C,� 2 ✓⇤}

Accelerated set is not regular
but rational

Initial configuration
Regular

✓ = {(q, op1, q1)(q1, op2, q2) · · · (qm, opm, q)}

Pop1 Push2 Push3

Accelerating loop on regular set is not regular

Accelerating loop on regular set is rational

We will assume that we are
given a set of finite state
automata one for each stack
recognising the regular set
of configurations

B1 B2 Bn

Accelerating loop on regular set is rational

We will first examine the effect of a loop
on each stack

1 1 2 3 2 1 2

Stack-1 1 1 1

Stack-2 2 2 2

Stack-3 3

Accelerating loop on regular set is rational

What is the effect of accelerating the loop
repeatedly?

1 1 2 3 2 1 2

Stack-1 1 1 1

Stack-2 2

Stack-3 3

1

2

3

1

2

3

1 1

Given a loop, its effect can
be summarised as two words
for each stack

The first word is what is
removed from the stack
at the end of execution
of the loop

The second word is what is
appended to the stack at
the end of loop execution

1 1 2 3 2 1 2

Stack pop word push word

1

2

3

1 1

2✏

✏ 3

1

Stack pop push
1 u1 v1
2 u2 v2
3 u3 v3

Accelerating loop on regular set is rational

Acceleration is possible only
if pop word is prefix of push
word or push word is prefix
of pop word.

u1 1 1

v1 1

CANNOT BE ACCELERATED MORE
THAN ONCE

Accelerating loop once
amounts to removing pop
word and adding push word
to the stack, what about
accelerating multiple times?

Stack pop push
1
2
3

Accelerating loop on regular set is rational

ui <pre vi

vi <pre ui

ui = vixi, yi = ✏

vi = uiyi, xi = ✏

u1 v1
v2u2

u3 v3

Accelerating loop j+1 times

Stack pop push

1

2

3

u1x
j
1

u2x
j
2

u3x
j
3 v3y

j
3

v2y
j
2

v1y
j
1

Stack pop push
1 u1 v1
2 u2 v2
3 u3 v3

Accelerating loop on regular set is rational

We construct an 2n tape
rational automata.

x1

x1

v1u1

w1 w1 w2 w2 wn wn
y1 x2 y2 xn yn

y1 x2 y2 xn yn

u2 v2 un vn

x1

x1

v1u1

w1 w1 w2 w2 wn wn
y1 x2 y2 xn yn

y1 x2 y2 xn yn

u2 v2 un vn

Accelerating loop on regular set is rational

B1 B2 Bn

⇥ ⇥ ⇥

Accelerating loop on rational set is not rational

Pop1 Push2

Constrained simple regular
expression

PRESBURGER FORMULA

w1 w2 · · · · · · wn

CSRE is given by sequence of words and a
Presburger formula with one free variable per
every word.

Constrained Simple Regular Expression (1-dim)

x1 x2 xn

w1 w2w1 · · · w2 · · · wn wn · · ·
ini1 i2

i1, i2, · · · , in |= (x1, · · · , xn)

Acceptance in CSRE

PRESBURGER FORMULA

· · · · · ·
Constrained Simple Regular Expression (m-dim)

· · · · · ·

w1
1

w2
1

wm
1 wm

2

w1
2

w2
2

w1
n

wm
n

· · · · · ·· · ·

· · ·

· · ·

· · ·

x

1
1

x

1
2· · ·

x

2
1

x

2
2

x

1
n

· · · · · ·

· · · · · · · · ·w1
1 w2

1 w2
1w1

1 wn
1wn

1
in1i11 i21

· · · · · · · · ·
i1m i2m

wn
mwn

mw1
mw1

m

inm

i11, i
2
1, · · · , in1 , · · · , i1m, · · · , inm |=

Acceptance in m-dim CSRE

Initial configuration
CSRE

Accelerated set is also CSRE

STABLE

✓ = {(q, op1, q1)(q1, op2, q2) · · · (qm, opm, q)}

Some properties of CSRE

CSRE are closed under intersection, union and concatenation

Emptiness, membership and inclusion problems
are decidable.

CSRE is closed under left quotient.

Accelerating loop on CSRE

Accelerating loop j+1 times

Stack pop word push word

1

2

3

u1x
j
1

u2x
j
2

u3x
j
3 v3y

j
3

v2y
j
2

v1y
j
1

We first left quotient u1, · · · , un

We concatenate yj1, · · · , yjn

We left quotient xj
1, · · · , xj

n

We concatenate v1, · · · , vn
Presburger formula is used to ensure
concatenation and left quotient is done
same number of times

Context switch set

Loops are weak, cannot capture bounded context
switch

We will introduce notion of context switch set

• ⌧i
• �i

Subset of transitions operating on a stack

Single transition

Context switch set

⇤ = ⌧⇤1 �1⌧
⇤
2 �2 · · · ⌧⇤n�n

????

⇤ = ⌧1�1⌧2�2 · · · ⌧n�n

Constrained Rational
Language

Constrained Rational
Language

Constrained Rational Automata

Multi tape automata

q1 q2
q3

q4
qm

⌃1 ⌃2 ⌃3

⌃4 ⌃n

⌧1 ⌧2 ⌧3 · · · ⌧m

Presburger formula �

t1 t2 t3 tm

Constrained Rational Automata (Parikh automata)

CRA are closed under concatenation, union but not under
intersection

Emptiness and membership problems are decidable.

Some properties of Constrained Rational Automata (CRA)

Create a pushdown systems, one for each stack.

MPDS

PDS-1 PDS-2 PDS-n
⌧1 ⌧2 ⌧n

Each of the pushdown system i simulates moves of
stack-i
It further has jump transitions corresponding to �1, · · · ,�n

It outputs number of times a jump transition was made.

{(v, w,#j)|(q, v) #j

! (q, v0)}

The following language for any pushdown is rational

We can use Presburger formula to ensure that the
number of jumps of each PDS match.

THANK YOU

