Acceleration in multi pushdown systems (TACAS'16)

Prakash Saivasan

Joint work with

Mohamed Faouzi Atig Narayan Kumar K

MOTIVATION:

Verification of concurrent programs with:

Programs with multiple threads

Threads can have recursion

Finite data domain

Shared memory

FORMAL MODELS

Programs	Model	
Recursive	Pushdown Systems	
Concurrent Recursive	Multi-pushdown Systems	

Multi-pushdown systems

MULTI PUSHDOWN SYSTEMS

Existing underapproximations

Bounded Context

- Bounded Phase
- Ordered MPDS
- Bounded Scope

BOUNDED CONTEXT

<u>Context is a sequence</u> of operations restricted to a stack

S. Qadeer J. Rehof

Reachability is NP-Complete

- Multi pushdown system M
 Transitions Δ
 Set of configurations C
 Set of sequences of transitions θ
- Acceleration problem is to compute

 $\{c' \mid c \xrightarrow{o} c', c \in \mathcal{C}, \sigma \in \theta^*\}$

Stability

Stability: Representation of initial configuration and the accelerated set are the same

Bounded context analysis as an acceleration problem

- Multi pushdown system M
 Transitions Δ
 Set of configurations C
- Set of sequences of transitions

$$\theta = \bigcup_{i_1, \cdots, i_k \in [1..n]} \Delta_{i_1}^* \ldots \Delta_{i_2}^* \ldots \Delta_{i_k}^*$$

We are interested in the following set

 $\{c' \mid c \xrightarrow{\sigma} c, c \in \mathcal{C}, \sigma \in \theta\}$

Bounded context acceleration

 $\bigcup_{i_1,\cdots,i_k\in[1..n]} \Delta_{i_1}^* \ldots \Delta_{i_2}^* \ldots \Delta_{i_k}^*$

Initial configuration Regular

Accelerated set is also regular

Bounded context acceleration

 $\bigcup_{i_1,\cdots,i_k\in[1..n]} \Delta_{i_1}^* \ldots \Delta_{i_2}^* \ldots \Delta_{i_k}^*$

Initial configuration Rational

Accelerated set is also rational

Accelerating loop

Multi pushdown system M
Transitions Δ
Set of configurations C
loop θ = {(q, op₁, q₁)(q₁, op₂, q₂) ··· (q_m, op_m, q)}

$\{c' \mid c \xrightarrow{\sigma} c', c \in \mathcal{C}, \sigma \in \theta^*\}$

$\theta = \{ (q, op_1, q_1)(q_1, op_2, q_2) \cdots (q_m, op_m, q) \}$

Initial configuration Regular

Accelerated set is not regular but rational

Accelerating loop on regular set is not regular

 B_2

We will assume that we are given a set of finite state automata one for each stack recognising the regular set of configurations

• We will first examine the effect of a loop on each stack

What is the effect of accelerating the loop repeatedly?

$\begin{array}{c} 1 \\ 2 \\ 3 \end{array} \begin{array}{c} \epsilon \\ \epsilon \\ \end{array} \end{array}$	Stack	pop word	push word
$\begin{array}{c} 2 \\ 3 \end{array} \in \end{array} $	1		
3 E	2	ϵ	
	3	ϵ	

Given a loop, its effect can be summarised as two words for each stack

The first word is what is removed from the stack at the end of execution of the loop

The second word is what is appended to the stack at the end of loop execution

CANNOT BE ACCELERATED MORE

THAN ONCE

Stack	рор	push
1	u1	v1
2	u2	v2
3	u3	v3

1

u1

v1

Accelerating loop once amounts to removing pop word and adding push word to the stack, what about accelerating multiple times?

Acceleration is possible only if pop word is prefix of push word or push word is prefix of pop word.

Stack	рор	push
1	u_1	v_1
2	u_2	v_2
3	u_3	v_3

$$u_i <_{pre} v_i$$
$$v_i = u_i y_i, x_i = \epsilon$$

$$v_i <_{pre} u_i$$

 $u_i = v_i x_i, y_i = \epsilon$

Accelerating loop j+1 times

Stack	рор	push
1	$u_1 x_1^j$	$v_1 y_1^j$
2	$u_2 x_2^j$	$v_2 y_2^j$
3	$u_3 x_3^j$	$v_3y_3^j$

Stack	рор	push
1	u1	v1
2	u2	v2
3	u3	v3

We construct an 2n tape rational automata.

Accelerating loop on rational set is not rational

 $Push_2$ Pop_1

Constrained simple regular expression

Constrained Simple Regular Expression (1-dim)

CSRE is given by sequence of words and a Presburger formula with one free variable per every word.

Acceptance in CSRE

 $i_1, i_2, \cdots, i_n \models \Psi(x_1, \cdots, x_n)$

Constrained Simple Regular Expression (m-dim)

Acceptance in m-dim CSRE

$$i_1^1, i_1^2, \cdots, i_1^n, \cdots, i_m^1, \cdots, i_m^n \models \Psi$$

$\theta = \{ (q, op_1, q_1)(q_1, op_2, q_2) \cdots (q_m, op_m, q) \}$

Initial configuration CSRE

Accelerated set is also CSRE

CSRE are closed under intersection, union and concatenation

Emptiness, membership and inclusion problems are decidable.

CSRE is closed under left quotient.

Accelerating loop on CSRE

Accelerating loop j+1 times

Stack	pop word	push word
1	$u_1 x_1^j$	$v_1y_1^j$
2	$u_2 x_2^j$	$v_2 y_2^j$
3	$u_3 x_3^j$	$v_3y_3^j$

- We first left quotient u_1, \cdots, u_n
- We left quotient x_1^j, \cdots, x_n^j
- We concatenate y_1^j, \cdots, y_n^j
- We concatenate v_1, \cdots, v_n
- Presburger formula is used to ensure concatenation and left quotient is done same number of times

Context switch set

Context switch set

- Loops are weak, cannot capture bounded context switch
- We will introduce notion of context switch set

$$\Lambda = \tau_1^* \sigma_1 \tau_2^* \sigma_2 \cdots \tau_n^* \sigma_n$$

- au_i Subset of transitions operating on a stack
- σ_i Single transition

$\Lambda = \tau_1 \sigma_1 \tau_2 \sigma_2 \cdots \tau_n \sigma_n$

Constrained Rational Language

??

Constrained Rational Language

Constrained Rational Automata

Constrained Rational Automata (Parikh automata)

Some properties of Constrained Rational Automata (CRA)

- CRA are closed under concatenation, union but not under intersection
- Emptiness and membership problems are decidable.

Create a pushdown systems, one for each stack.

- Each of the pushdown system i simulates moves of stack-i
- It further has jump transitions corresponding to $\sigma_1, \cdots, \sigma_n$
- It outputs number of times a jump transition was made.
- The following language for any pushdown is rational

$$\{(v,w,\#^j)|(q,v)\stackrel{\#^j}{\to}(q,v')\}$$

We can use Presburger formula to ensure that the number of jumps of each PDS match. THANK YOU