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Verification of concurrent programs with:

Programs with multiple threads 

Threads can have recursion 

Finite data domain 

Shared memory

Motivation:



Formal models

Programs Model

Recursive Pushdown Systems

Concurrent 
Recursive

Multi-pushdown Systems



Multi-pushdown systems



Multi pushdown Systems
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Stacks
Transitions

1 2 3

1 2 3

Stack 
Alphabets

 

Configuration

1 1 2 3 2 1 2

Turing powerful



Existing underapproximations

Bounded Context    

Bounded Phase     

Ordered MPDS 

Bounded Scope



Bounded context

21 2 23 11

Context is a sequence 
of operations restricted 
to a stack

Reachability is NP-Complete

S. Qadeer J. Rehof



Acceleration



Multi pushdown system

Transitions

M

�

Set of configurations C

Acceleration problem is to compute

Set of sequences of transitions 

{c0 | c �! c0, c 2 C,� 2 ✓⇤}

✓



INITIAL SET OF 
CONFIGURATION

FINITE REPRESENTATION 
REGULAR/RATIONAL

✓

✓

✓

✓

✓

✓

✓
✓

✓

ACCELERATED SET 



INITIAL SET OF 
CONFIGURATION

✓

✓

✓

✓

✓

✓

✓
✓

✓

Stability: Representation of 
initial configuration and the 
accelerated set are the same

Stability



Bounded context analysis as an 
acceleration problem



Multi pushdown system

Transitions

M

�

Set of configurations C
Set of sequences of transitions 

✓ =
[

i1,··· ,ik2[1..n]

�⇤
i1 .�

⇤
i2 . . .�

⇤
ik

{c0 | c �! c, c 2 C,� 2 ✓}
We are interested in the following set



Accelerated set is also regular

Initial configuration 
Regular 

Bounded context acceleration

[

i1,··· ,ik2[1..n]

�⇤
i1 .�

⇤
i2 . . .�

⇤
ik



Accelerated set is also rational

Initial configuration 
Rational 

Bounded context acceleration

[

i1,··· ,ik2[1..n]

�⇤
i1 .�

⇤
i2 . . .�

⇤
ik



Accelerating loop



Multi pushdown system

Transitions

M

�

Set of configurations C
loop 

✓ = {(q, op1, q1)(q1, op2, q2) · · · (qm, opm, q)}

{c0 | c �! c0, c 2 C,� 2 ✓⇤}



Accelerated set is not regular 
but rational

Initial configuration 
Regular 

✓ = {(q, op1, q1)(q1, op2, q2) · · · (qm, opm, q)}



      
Pop1 Push2 Push3

Accelerating loop on regular set is not regular



Accelerating loop on regular set is rational

We will assume that we are 
given a set of finite state 
automata one for each stack  
recognising the regular set 
of configurations

B1 B2 Bn



Accelerating loop on regular set is rational

We will first examine the effect of a loop
on each stack 

1 1 2 3 2 1 2

Stack-1 1 1 1

Stack-2 2 2 2

Stack-3 3



Accelerating loop on regular set is rational

What is the effect of accelerating the loop 
repeatedly?

1 1 2 3 2 1 2

Stack-1 1 1 1

Stack-2 2

Stack-3 3

1

2

3

1

2

3

1 1



Given a loop, its effect can  
be summarised as two words 
for each stack

The first word is what is 
removed from the stack 
at the end of execution 
of the loop

The second word is what is 
appended to the stack at 
the end of loop execution

1 1 2 3 2 1 2

Stack pop word push word

1

2

3

1 1

2✏

✏ 3

1



Stack pop push
1 u1 v1
2 u2 v2
3 u3 v3

Accelerating loop on regular set is rational

Acceleration is possible only 
if pop word is prefix of push  
word or push word is prefix 
of pop word.

u1 1 1

v1 1

CANNOT BE ACCELERATED MORE 
THAN ONCE

Accelerating loop once 
amounts to removing pop 
word and adding push word 
to the stack, what about 
accelerating multiple times?



Stack pop push
1
2
3

Accelerating loop on regular set is rational

ui <pre vi

vi <pre ui

ui = vixi, yi = ✏

vi = uiyi, xi = ✏

u1 v1
v2u2

u3 v3



Accelerating loop j+1 times

Stack pop push

1

2

3

u1x
j
1

u2x
j
2

u3x
j
3 v3y

j
3

v2y
j
2

v1y
j
1



Stack pop push
1 u1 v1
2 u2 v2
3 u3 v3

Accelerating loop on regular set is rational

We construct an 2n tape  
rational automata.

x1

x1

v1u1

w1 w1 w2 w2 wn wn
y1 x2 y2 xn yn

y1 x2 y2 xn yn

u2 v2 un vn



x1

x1

v1u1

w1 w1 w2 w2 wn wn
y1 x2 y2 xn yn

y1 x2 y2 xn yn

u2 v2 un vn

Accelerating loop on regular set is rational

B1 B2 Bn

⇥ ⇥ ⇥



Accelerating loop on rational set is not rational

    
Pop1 Push2



Constrained simple regular 
expression



PRESBURGER FORMULA

w1 w2 · · · · · · wn

CSRE is given by sequence of words and a 
Presburger formula with one free variable per 
every word.

Constrained Simple Regular Expression (1-dim)

 
x1 x2 xn



w1 w2w1 · · · w2 · · · wn wn · · ·
ini1 i2

i1, i2, · · · , in |=  (x1, · · · , xn)

Acceptance in CSRE



PRESBURGER FORMULA

· · · · · ·
Constrained Simple Regular Expression (m-dim)

 

· · · · · ·

w1
1

w2
1

wm
1 wm

2

w1
2

w2
2

w1
n

wm
n

· · · · · ·· · ·

· · ·

· · ·

· · ·

x

1
1

x

1
2· · ·

x

2
1

x

2
2

x

1
n

· · · · · ·



· · · · · · · · ·w1
1 w2

1 w2
1w1

1 wn
1wn

1
in1i11 i21

· · · · · · · · ·
i1m i2m

wn
mwn

mw1
mw1

m

inm

i11, i
2
1, · · · , in1 , · · · , i1m, · · · , inm |=  

Acceptance in m-dim CSRE



Initial configuration 
CSRE 

Accelerated set is also CSRE

STABLE

✓ = {(q, op1, q1)(q1, op2, q2) · · · (qm, opm, q)}



Some properties of CSRE

CSRE are closed under intersection, union and concatenation

Emptiness, membership and inclusion problems  
are decidable.

CSRE is closed under left quotient.



Accelerating loop on  CSRE



Accelerating loop j+1 times

Stack pop word push word

1

2

3

u1x
j
1

u2x
j
2

u3x
j
3 v3y

j
3

v2y
j
2

v1y
j
1



We first left quotient u1, · · · , un

We concatenate yj1, · · · , yjn

We left quotient xj
1, · · · , xj

n

We concatenate v1, · · · , vn
Presburger formula is used to ensure 
concatenation and left quotient is done 
same number of times 



Context switch set



Loops are weak, cannot capture bounded context 
switch

We will introduce notion of context switch set

• ⌧i
• �i

Subset of transitions operating on a stack

Single transition

Context switch set

⇤ = ⌧⇤1 �1⌧
⇤
2 �2 · · · ⌧⇤n�n



????

⇤ = ⌧1�1⌧2�2 · · · ⌧n�n

Constrained Rational  
Language

Constrained Rational  
Language



Constrained Rational Automata



Multi tape automata

q1 q2
q3

q4
qm

⌃1 ⌃2 ⌃3

⌃4 ⌃n

⌧1 ⌧2 ⌧3 · · · ⌧m

Presburger formula �

t1 t2 t3 tm

Constrained Rational Automata (Parikh automata)



CRA are closed under concatenation, union but not under 
intersection

Emptiness and membership problems are decidable.

Some properties of  Constrained Rational Automata (CRA)



Create a pushdown systems, one for each stack. 

MPDS

PDS-1 PDS-2 PDS-n
⌧1 ⌧2 ⌧n



Each of the pushdown system i simulates moves of 
stack-i 
It further has jump transitions corresponding to �1, · · · ,�n

It outputs number of times a jump transition was made.

{(v, w,#j)|(q, v) #j

! (q, v0)}

The following language for any pushdown is rational

We can use Presburger formula to ensure that the 
number of jumps of each PDS match.



THANK YOU


