Constrained Sampling and Counting: When Practice Drives Theory

Supratik Chakraborty

IIT Bombay

Joint work with Kuldeep Meel and Moshe Y. Vardi (Rice University)

Probabilistic Inference

How do we infer useful information from the data filled with uncertainty?

Smart Cities

- Alarm system in every house that responds to either burglary or earthquake
- Every alarm system is connected to the central dispatcher (of course, automated!)
- Suppose one of the alarm goes off
- Important to predict whether its earthquake or burglary

Deriving Useful Inferences

What is the probability of earthquake (E) given that alarm sounded (A)?

$\operatorname{Pr}[$ event \mid evidence]

Bayes' rule to the rescue

$$
\operatorname{Pr}[E \mid A]=\frac{\operatorname{Pr}[E \cap A]}{\operatorname{Pr}[A]}
$$

How do we calculate these

Probabilistic Models

Graphical Models

Graphical Models

Calculating $\operatorname{Pr}[E \cap A]$

B					E	
T			B	E	T	
F					F	
B	E	A	$\begin{aligned} & \operatorname{Pr}(\mathbf{A} \mid \mathrm{E} \\ & \mathbf{B}) \end{aligned}$	A		
T	T	T	0.3			
T	T	F	0.7			
T	F	T	0.4			
T	F	F	0.6			
F	T	T	0.2	$+\operatorname{Pr}[E] * \operatorname{Pr}[B]$	[

Calculating $\operatorname{Pr}[E \cap A]$

Calculating $\operatorname{Pr}[E \cap A]$

Moving from Probability to Logic

- $X=\{A, B, E\}$
- $F=E \wedge A$
- $W(B=0)=0.2, W(B=1)=1-W(B=0)=0.8$
- $W(A=0)=0.1, W(A=1)=0.9$
- $W(E=0 \mid A=0, B=0)=\cdots$
- $W(A=1, E=1, B=1)=W(B=1) * W(E=1) * W(A=1 \mid E=1, B=1)$
- $R_{F}=\{(A=1, E=1, B=0),(A=1, E=1, B=1)\}$
- $W(F)=W(A=1, E=1, B=1)+W(A=1, E=1, B=1)$

$$
W(F)=\operatorname{Pr}[E \cap A]
$$

Probabilistic Inference to WMC to Unweighted Model Counting

Roth, 1996
Weighted Model Counting $\underset{\square}{ }$ Unweighted Model Counting
Polynomial time reductions

Model Counting

- Given a SAT formula F
- R_{F} : Set of all solutions of F
- Problem (\#SAT): Estimate the number of solutions of F $(\# F)$ i.e., what is the cardinality of R_{F} ?
- E.g., F = (a v b)
- $\mathrm{R}_{\mathrm{F}}=\{(0,1),(1,0),(1,1)\}$
- The number of solutions (\#F) $=3$
\#P: The class of counting problems for decision problems in NP!

Dynamic Verification

- Design is simulated with test vectors
- Test vectors represent different verification scenarios
- Results from simulation compared to intended results
- Challenge: Exceedingly large test space!

Constrained-Random Simulation

Sources for Constraints

- Designers:

1. $\mathrm{a}+{ }_{64} 11{ }^{*}{ }_{32} \mathrm{~b}=12$
2. $\mathrm{a}<{ }_{64}(\mathrm{~b} \gg 4)$

- Past Experience:

1. $40<_{64} 34+\mathrm{a}<_{64} 5050$
2. $120<_{64} \mathrm{~b}<_{64} 230$

- Users:

1. $232 *_{32} \mathrm{a}+\mathrm{b}!=1100$
2. $1020<_{64}(\mathrm{~b} / 642)+{ }_{64} \mathrm{a}<_{64} 2200$

Problem: How can we uniformly sample the values of a and b satisfying the above constraints?

Problem Formulation

Set of
Constraints
 \downarrow
Sample satisfying assignments uniformly at random

Scalable Uniform Generation of SAT Witnesses

Agenda

Design Scalable Techniques for
 Uniform Generation and

Model Counting
with Strong Theoretical Guarantees

Agenda

Design Scalable Techniques for
Almost-Uniform Generation and
Approximate-Model Counting with Strong Theoretical Guarantees

Formal Definitions

- F : CNF Formula; R_{F} : Solution Space of F
- Input: $F \quad$ Output: $y \in R_{F}$
- Uniform Generator:
- Guarantee: $\forall y \in R_{F}, \quad \operatorname{Pr}[y$ is output $]=\frac{1}{\left|R_{F}\right|}$
- Almost-Uniform Generator
- Guarantee: $\forall y \in R_{F}, \quad \frac{1}{(1+\varepsilon)\left|R_{F}\right|} \leq \operatorname{Pr}[y$ is output $] \leq \frac{(1+\varepsilon)}{\left|R_{F}\right|}$

Formal Definitions

- F : CNF Formula; R_{F} : Solution Space of F
- Probably Approximately Correct (PAC) Counter
- Input: F Output: C

$$
\operatorname{Pr}\left[\frac{\left|R_{F}\right|}{(1+\varepsilon)} \leq C \leq\left|R_{F}\right|(1+\varepsilon)\right] \geq 1-\delta
$$

Uniform Generation

Rich History of Theoretical Work

- Jerrum, Valiant and Vazirani (1986):
- Uniform Generator: Polynomial time PTM (Probabilistic Turing Machine) given access to \sum_{2}^{P} oracle

Stockmeyer (1983): Deterministic approximate counting in 3rd level of polynomial hierarchy.
Can be used to design a BPP^{\wedge} NP procedure -- too large NP instances No Practical Algorithms

Rich History of Theoretical Work

- Bellare, Goldreich, and Petrank (2000)
- Uniform Generator: Polynomial time PTM given access to NP oracle
- Employs n-universal hash functions

Universal Hashing

- $H(n, m, r)$: Set of r-universal hash functions from $\{0,1\}^{n} \rightarrow$ $\{0,1\}^{m}$

$$
\forall y_{1}, y_{2}, \cdots y_{r}(\text { distinct }) \in\{0,1\}^{n} \text { and } \forall \alpha_{1}, \alpha_{2} \cdots \alpha_{r} \in\{0,1\}^{m}
$$

$$
\operatorname{Pr}\left[h\left(y_{i}=\alpha_{i}\right)\right]=\frac{1}{2^{m}} \quad \text { (Uniformity) }
$$

$$
\operatorname{Pr}\left[h\left(y_{1}=\alpha_{1}\right) \wedge \cdots \wedge\left(h\left(y_{r}\right)=\alpha_{r}\right)\right]=2^{-(m r)}
$$

(Independence)

- (r-1) degree polynomials \rightarrow r-universal hash functions

Concentration Bounds

- t-wise ($t \geq 4$) random variables $X_{1}, X_{2}, \cdots X_{n} \in[0,1]$

$$
X=\sum X_{i} ; \mu=E[X]
$$

$$
\operatorname{Pr}[|X-\mu| \leq A] \geq 1-8\left(\frac{t \mu+t^{2}}{A^{2}}\right)^{\frac{t}{2}}
$$

- For $\mathrm{t}=2$

$$
\operatorname{Pr}[|X-\mu| \leq A] \geq 1-\frac{\sigma^{2}[X]}{A^{2}}
$$

BGP Method

- Polynomial of degree n-1
- SAT Solvers can not handle large polynomials!

- For right choice of m, all the cells are small (\# of solutions $\leq 2 n^{2}$)
- Check if all the cells are small (NP- Query)
- If yes, pick a solution randomly from randomly p ked cell

In practice, the query is too long and can not be handled by SAT Solvers!

To Recap

- Jerrum, Valiant and Vazirani (1986):
- Uniform Generator: Polynomial time PTM given access to \sum_{2}^{P} oracle
- Almost-Uniform Generation is inter-reducible to PAC counting
- Bellare, Goldreich, and Petrank (2000)
- Uniform Generator: Polynomial time PTM given access to NP oracle

Does not work in practice!

Prior Work

Desires

Generator	Relative runtime
State-of-the-art: XORSample'	50000
Ideal Uniform Generator*	10
SAT Solver	1

Experiments over 200+ benchmarks
*: According to EDA experts

Our Contribution

Key Ideas

- For right choice of m, large number of cells are "small"
- "almost all" the cells are "roughly" equal
- Check if a randomly picked cell is "small"
- If yes, pick a solution randomly from randomly picked cell

Key Challenges

- F: Formula X: Set of variables R_{F} : Solution space
- $R_{F, h, \alpha}$: Set of solutions for $F \wedge(h(X)=\alpha)$ where
- $h \in H(n, m, *) ; \alpha \in\{0,1\}^{m}$

1. How large is "small" cell?
2. How much universality do we need?
3. What is the value of m ?

Size of cell

$\operatorname{Pr}[\mathrm{y}$ is output $]=\frac{1}{2^{m}} * \operatorname{Pr}[$ Cell is small $\mid \mathrm{y}$ is in the cell $] * \frac{1}{\text { size of cell }}$

Let Size of cell \in [loThresh, hiThresh], Then:

$$
\begin{gathered}
\frac{1}{2^{m}} * \mathrm{q} * \frac{1}{\text { hiThresh }} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1}{2^{m}} * \mathrm{q} * \frac{1}{\text { loThresh }} \\
\frac{1}{(1+\varepsilon)\left|R_{F}\right|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{(1+\varepsilon)}{\left|R_{F}\right|} \\
\text { hiThresh }=(1+\varepsilon) * \text { pivot } ; \text { loThresh }=\frac{\text { pivot }}{1+\varepsilon} \\
\text { pivot }=k\left(1+\frac{1}{\varepsilon^{2}}\right)
\end{gathered}
$$

Losing Independence

Our desire:

$$
\begin{aligned}
& \operatorname{Pr}\left[\text { loThresh } \leq\left|R_{F, h, \alpha}\right| \leq \text { hiThresh }\right] \geq p\left(\geq \frac{1}{2}\right) \\
& \operatorname{Pr}\left[\frac{\text { pivot }}{1+\varepsilon} \leq\left|R_{F, h, \alpha}\right| \leq(1+\varepsilon) \text { pivot }\right] \geq p\left(\geq \frac{1}{2}\right)
\end{aligned}
$$

Suppose $h \in H(n, m, *)$ and $m=\log \frac{\left|R_{F}\right|}{\text { pivot }}$

$$
\text { Then, } E\left[\left|R_{F, h, \alpha}\right|\right]=\frac{\left|R_{F}\right|}{2^{m}}=\text { pivot }
$$

Concentration bound

How many cells?

- Our desire: $m=\log \frac{\left|R_{F}\right|}{\text { pivot }}$
- But determining $\left|R_{F}\right|$ is expensive (\#P complete)
- How about approximation?
- ApproxMC (F, ε, δ) returns C:

$$
\operatorname{Pr}\left[\frac{\left|R_{F}\right|}{1+\varepsilon} \leq C \leq(1+\varepsilon)\left|R_{F}\right|\right] \geq 1-\delta
$$

- $q=\log C-\log$ pivot
- Concentrate on $m=q-1, q, q+1$

UniGen(F, ε)

1. $\mathrm{C}=\operatorname{ApproxMC}(\mathrm{F}, \varepsilon)$

One time execution

2. Compute pivot, loThresh, hiThresh
3. $q=\log |C|-\log$ pivot
4. for i in $\{\mathrm{q}-1, \mathrm{q}, \mathrm{q}+1\}$:
5. Choose h randomly* from $\mathrm{H}(\mathrm{n}, \mathrm{i}, 3)$
6. Choose α randomly from $\{0,1\}^{m}$
7. If (loThresh $\leq\left|R_{F, h, \alpha}\right| \leq$ hiThresh):
8.

Pick $y \in R_{F, h, \alpha}$ randomly

Run for every sample required

Are we back to JVV?

NOT Really

- JVV makes linear (in n) calls to Approximate counter compared to just 1 in UniGen
-\# of calls to ApproxMC is only 1 regardless of the number of samples required unlike JVV

PAC Counter: ApproxMC(F, $\varepsilon, \delta)$

- For right choice of m, large number of cells are "small"
- "almost all" the cells are "roughly" equal
- Check if a randomly picked cell is "small"
- If yes, then estimate $=\#$ of solutions in cell $* 2^{m}$

ApproxMC(F, $, \delta, \delta)$

ApproxMC(F, $, \delta, \delta)$

ApproxMC(F, $, \delta, \delta)$

ApproxMC(F, $\varepsilon, \delta)$

Key Lemmas

Let $m^{*}=\log \left|R_{F}\right|-\log$ pivot

Lemma 1: The algorithm terminates with $m \in\left[m^{*}-1, m^{*}\right]$ with high probability

Lemma 2: The estimate from a randomly picked cell for $m \in$ [$m^{*}-1, m^{*}$] is correct with high probability

Results: Performance Comparison

Results: Performance Comparison

Can Solve a Large Class of Problems

Large class of problems that lie beyond the exact counters but can be computed by ApproxMC

Mean Error: Only 4\% (allowed: 75\%)

Mean error: 4\% - much smaller than the theoretical guarantee of 75%

Runtime Performance of UniGen

1-2 Orders of Magnitude Faster

Results: Uniformity

- Benchmark: case110.cnf; \#var: 287; \#clauses: 1263
- Total Runs: 4x106; Total Solutions : 16384

Results: Uniformity

- Benchmark: case110.cnf; \#var: 287; \#clauses: 1263
- Total Runs: 4x106; Total Solutions : 16384

So far

- The first scalable approximate model counter
- The first scalable uniform generator
- Outperforms state-of-the-art generators/counters

Are we done?

Where are we?

Generator	Relative runtime
State-of-the-art: XORSample'	50000
UniGen	~ 5000
Ideal Uniform Generator*	10
SAT Solver	1

Experiments over 200+ benchmarks
*: According to EDA experts

XOR-Based Hashing

- Partition 2^{n} space into 2^{m} cells
- Variables: $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots . ., \mathrm{X}_{\mathrm{n}}$
- Pick every variable with prob. $1 / 2$, XOR them and add $0 / 1$ with prob. $1 / 2$
- $\mathrm{X}_{1}+\mathrm{X}_{3}+\mathrm{X}_{6}+\ldots . \mathrm{X}_{\mathrm{n}-1}+0$
- To construct h: $\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- $\alpha \in\{0,1\}^{m} \rightarrow$ Set every XOR equation to 0 or 1 randomly
- The cell: F \wedge XOR (CNF+XOR)

XOR-Based Hashing

- CryptoMiniSAT: Efficient for CNF+XOR
- Avg Length : n/2
- Smaller XORs \rightarrow better performance

How to shorten XOR clauses?

Independent Support

- Set I of variables such that assignments to these uniquely determine assignments to rest of variables (for satisfying assignments)
- If 1 and 2 agree on I then $1=2$
$\cdot \mathrm{c} \leftrightarrow(\mathrm{a} \mathrm{V} \mathrm{b})$; Independent Support I: $\{\mathrm{a}, \mathrm{b}\}$
- Key Idea: Hash only on the independent variables

Independent Support

- Hash only on the Independent Support
- Average size of XOR: $\mathrm{n} / 2$ to |I|/2

Formal Definition

Input Formula: F , Solution space: R_{F}

$\forall \sigma_{1}, \sigma_{2} \in R_{F}$, If σ_{1} and σ_{2} agree on I, then $\sigma_{1}=\sigma_{2}$

$$
\begin{aligned}
F\left(x_{1}, \ldots, x_{n}\right) \wedge & F\left(y_{1}, \ldots, y_{n}\right) \wedge \bigwedge_{i \mid x_{i} \in I}\left(x_{i}=y_{i}\right) \Longrightarrow \bigwedge_{j}\left(x_{j}=y_{j}\right) \\
& \text { where } F\left(y_{1}, \ldots, y_{n}\right)=F\left(x_{1} \rightarrow y_{1}, \ldots, x_{n} \rightarrow y_{n}\right)
\end{aligned}
$$

Minimal Unsatisfiable Subset

- Given $\Psi=H_{1} \wedge H_{2} \cdots H_{m}$
- Find subset $\left\{H_{i 1}, H_{i 2}, \cdots H_{i k}\right\}$ of $\left\{H_{1}, H_{2}, \cdots H_{m}\right\}$ such that $H_{i 1} \wedge H_{i 2} \cdots H_{i k} \wedge \Omega$ is UNSAT

Unsatisfiable subset

- Find minimal subset $\left\{H_{i 1}, H_{i 2}, \cdots H_{i k}\right\}$ of $\left\{H_{1}, H_{2}, \cdots H_{m}\right\}$ such that $H_{i 1} \wedge H_{i 2} \cdots H_{i k}$ is UNSAT

Minimal Unsatisfiable subset

Key Idea

$$
\begin{aligned}
& F\left(x_{1}, \ldots, x_{n}\right) \wedge F\left(y_{1}, \ldots, y_{n}\right) \wedge \bigwedge_{i \mid x_{i} \in I}\left(x_{i}=y_{i}\right) \Longrightarrow \bigwedge_{j}\left(x_{j}=y_{j}\right) \\
& Q_{F, I}=F\left(x_{1}, \ldots, x_{n}\right) \wedge F\left(y_{1}, \ldots, y_{n}\right) \wedge \bigwedge_{i \mid x_{i} \in I}\left(x_{i}=y_{i}\right) \wedge \neg\left(\bigwedge_{j}\left(x_{j}=y_{j}\right)\right) .
\end{aligned}
$$

Theorem: $Q_{F, I}$ is unsatisfiable if and only if I is independent support

Key Idea

$$
\begin{array}{r}
H_{1}=\left\{x_{1}=y_{1}\right\}, \ldots, H_{n}=\left\{x_{n}=y_{n}\right\} \\
\Omega=F\left(x_{1}, \ldots, x_{n}\right) \wedge F\left(y_{1}, \ldots, y_{n}\right) \wedge\left(\neg \bigwedge_{j}\left(x_{j}=y_{j}\right)\right)
\end{array}
$$

$I=\left\{x_{i}\right\}$ is Independent Support iff $H^{I} \wedge \Omega$ is unsatisfiable where $H^{I}=\left\{H_{i} \mid x_{i} \in I\right\}$

Group-Oriented Minimal Unsatisfiable Subset

- Given $\Psi=H_{1} \wedge H_{2} \cdots H_{m} \wedge \Omega$
- Find subset $\left\{H_{i 1}, H_{i 2}, \cdots H_{i k}\right\}$ of $\left\{H_{1}, H_{2}, \cdots H_{m}\right\}$ such that $H_{i 1} \wedge$ $H_{i 2} \cdots H_{i k} \wedge \Omega$ is UNSAT

Group Oriented Unsatisfiable subset

- Find minimal subset $\left\{H_{i 1}, H_{i 2}, \cdots H_{i k}\right\}$ of $\left\{H_{1}, H_{2}, \cdots H_{m}\right\}$ such that $H_{i 1} \wedge H_{i 2} \cdots H_{i k} \wedge \Omega$ is UNSAT

Group Oriented Minimal Unsatisfiable subset

Minimal Independent Support

$$
\begin{array}{r}
H_{1}=\left\{x_{1}=y_{1}\right\}, \ldots, H_{n}=\left\{x_{n}=y_{n}\right\} \\
\Omega=F\left(x_{1}, \ldots, x_{n}\right) \wedge F\left(y_{1}, \ldots, y_{n}\right) \wedge\left(\neg \bigwedge_{j}\left(x_{j}=y_{j}\right)\right)
\end{array}
$$

$I=\left\{x_{i}\right\}$ is minimal Independent Support iff H^{I} is minimal unsatisfiable subset where $H^{I}=\left\{H_{i} \mid x_{i} \in\right.$ I\}

Key Idea

Minimal
Independent
Support (MIS)

Minimal
Unsatisfiable Subset (MUS)

Impact on Sampling and Counting Techniques

What about complexity

- Computation of MUS: $F P^{N P}$
- Why solve a $F P^{N P}$ for almost-uniform generation/approximate counter (PTIME PTM with NP Oracle)

Settling the debate through practice!

Performance Impact on Approximate Model Counting

\square ApproxMC \square IApproxMC

Performance Impact on Uniform Sampling

\square UniGen \square UniGen1

Where are we?

Generator	Relative runtime
State-of-the-art: XORSample'	50000
UniGen	5000
UniGen1	470
Ideal Uniform Generator*	10
SAT Solver	1

Back to basics

\# of solutions in "small" cell \in [loThresh, hiThresh] We pick one solution
"Wastage" of loThresh solutions
Pick loThresh samples!

3-Universal and Independence of Samples

3-Universal hash functions:

- Choose hash function randomly
- For arbitrary distribution on solutions=> All cells are roughly equal in expectation
- But:
- While each input is hashed uniformly
- And each 3 -solutions set is hashed independently
- A 4-solutions set might not be hashed independently

Balancing Independence

For $h \in H(n, m, 3)$

- Choosing up to 3 samples => Full independence among samples
- Choosing loThresh (>> 3) samples => Loss of independence

Why care about Independence

Convergence requires multiplication of probabilities

If every sample is independent => Faster convergence

The principle of principled compromise!

- Choosing up to 3 samples => Full independence among samples
- Choosing loThresh (>> 3) samples => Loss of independence - "Almost-Independence" among samples
- Still provides strong theoretical guarantees of coverage

Strong Guarantees

- $\quad L=\#$ of samples $<\left|R_{F}\right|$

$$
\frac{L}{(1+\varepsilon)\left|R_{F}\right|} \leq \operatorname{Pr}[\text { y is output }] \leq 1.02(1+\varepsilon) \frac{L}{\left|R_{F}\right|}
$$

- Polynomial Constant number of SAT calls per sample
- After one call to ApproxMC

Bug-finding effectiveness

bug frequency $\mathrm{f}=\frac{|B|}{\left|R_{F}\right|}$

	UniGen	UniGen2
relative number of SAT calls	$\frac{3 \cdot h i \text { Thresh }(1+\nu)(1+\varepsilon)}{0.52}$	$\frac{3 \cdot \text { hiThresh }}{0.62 \cdot l o \text { Thresh }} \frac{(1+\widehat{\nu})(1+\varepsilon)}{1-\widehat{\nu}}$

Simply put, \#of SAT calls for UniGen2 << \# of SAT calls for UniGen

Bug-finding effectiveness

$$
\text { bug frequency } f=1 / 10^{4}
$$

find bug with probability $\geq 1 / 2$

	UniGen	UniGen2
Expected number of SAT calls	4.35×10^{7}	3.38×10^{6}

An order of magnitude difference!

~20 times faster than UniGen1

Where are we?

Generator	Relative runtime
State-of-the-art: XORSample'	50000
UniGen	5000
UniGen1	470
UniGen2	20
Ideal Uniform Generator*	10
SAT Solver	1

The Final Push....

- UniGen requires one time computation of ApproxMC
- Generation of samples in fully distributed fashion (Previous algorithms lacked the above property)
- New paradigms!

Current Paradigm of Simulation-based Verification

New Paradigm of Simulationbased Verification

Simulator

- Preprocessing needs to be done only once
- No communication required between different copies of the test generator
- Fully distributed!

Closing in...

Generator	Relative runtime
State-of-the-art: XORSample'	50000
UniGen	5000
UniGen1	470
UniGen2	20
Multi-core UniGen2	10 (two cores)
Ideal Uniform Generator*	10
SAT Solver	1

So what happened....

Sampling and
 Counting
 Important
 Applications

New Applications (Theory drives practice)

Beautiful Theory But does not work in practice

Theoretical Contributions (Practice drives theory)

Future Directions

Extension to More Expressive domains

- Efficient hashing schemes
- Extending bit-wise XOR to richer constraint domains provides guarantees but no advantage of SMT progress
- Solvers to handle F + Hash efficiently
- CryptoMiniSAT has fueled progress for SAT domain
- Similar solvers for other domains?

Handling Distributions

- Given: CNF formula F and Weight function W over assignments
- Weighted Counting: sum the weight of solutions
- Weighted Sampling: Sample according to weight of solution
- Wide range of applications in Machine Learning
- Extending universal hashing works only in theory so far

