
Constrained Sampling
and Counting: When
Practice Drives Theory

Supratik Chakraborty

IIT Bombay

Joint work with Kuldeep Meel and Moshe Y. Vardi

(Rice University)

Probabilistic Inference

2

Interest

in topic

Trust in

Speaker

Availabili

ty

Attend

Talk

Modeling Attendance for

Today’s Talk

Model

CountingRoth, 1996

How do we infer useful information from the data
filled with uncertainty?

+
Pr(Attending Talk

|Interest in topic =

True)

Smart Cities

• Alarm system in every house that responds to either
burglary or earthquake

• Every alarm system is connected to the central dispatcher
(of course, automated!)

• Suppose one of the alarm goes off

• Important to predict whether its earthquake or burglary

3

Deriving Useful Inferences

4

What is the probability of earthquake (𝐸)

given that alarm sounded (𝐴)?

=

Bayes’ rule to the rescue

How do we calculate these

probabilities?

Pr[event|evidence]

Probabilistic Models

Graphical Models

5

Graphical Models

6

B E

A

𝐸 Pr

𝑇 0.1

𝐹 0.9

𝐵 Pr

𝑇 0.8

𝐹 0.2

B E A Pr(A|E,

B)

𝑇 𝑇 𝑇 0.3

𝑇 𝑇 𝐹 0.7

𝑇 𝐹 𝑇 0.4

𝑇 𝐹 𝐹 0.6

𝐹 𝑇 𝑇 0.2

𝐹 𝐹 𝐹 0.8

𝐹 𝐹 𝑇 0.1

Calculating

7

B E

A

𝐸 Pr

𝑇 0.1

𝐹 0.9

𝐵 Pr

𝑇 0.8

𝐹 0.2

B E A Pr(A|E,

B)

𝑇 𝑇 𝑇 0.3

𝑇 𝑇 𝐹 0.7

𝑇 𝐹 𝑇 0.4

𝑇 𝐹 𝐹 0.6

𝐹 𝑇 𝑇 0.2

𝐹 𝐹 𝐹 0.8

𝐹 𝐹 𝑇 0.1

Pr 𝐸 ∩ 𝐴
= Pr 𝐸 ∗ Pr ¬𝐵 ∗ Pr 𝐴 𝐸, ¬𝐵

+Pr 𝐸 ∗ Pr 𝐵 ∗ Pr [𝐴|𝐸, 𝐵]

Calculating

8

B E

A

𝐸 Pr

𝑇 0.1

𝐹 0.9

𝐵 Pr

𝑇 0.8

𝐹 0.2

B E A Pr(A|E,

B)

𝑇 𝑇 𝑇 0.3

𝑇 𝑇 𝐹 0.7

𝑇 𝐹 𝑇 0.4

𝑇 𝐹 𝐹 0.6

𝐹 𝑇 𝑇 0.2

𝐹 𝐹 𝐹 0.8

𝐹 𝐹 𝑇 0.1

Pr 𝐸 ∩ 𝐴
= Pr 𝐸 ∗ Pr 𝐵 ∗ Pr [𝐴|𝐸, 𝐵]
 + Pr 𝐸 ∗ Pr ¬𝐵 ∗ Pr 𝐴 𝐸, ¬𝐵

Calculating

9

B E

A

𝐸 Pr

𝑇 0.1

𝐹 0.9

𝐵 Pr

𝑇 0.8

𝐹 0.2

B E A Pr(A|E,

B)

𝑇 𝑇 𝑇 0.3

𝑇 𝑇 𝐹 0.7

𝑇 𝐹 𝑇 0.4

𝑇 𝐹 𝐹 0.6

𝐹 𝑇 𝑇 0.2

𝐹 𝐹 𝐹 0.8

𝐹 𝐹 𝑇 0.1

Pr 𝐸 ∩ 𝐴
= Pr 𝐸 ∗ Pr 𝐵 ∗ Pr [𝐴|𝐸, 𝐵]
 + Pr 𝐸 ∗ Pr ¬𝐵 ∗ Pr 𝐴 𝐸, ¬𝐵

Moving from Probability to Logic

• 𝑋 = 𝐴, 𝐵, 𝐸

• 𝐹 = 𝐸 ∧ 𝐴

• 𝑊 𝐵 = 0 = 0.2, 𝑊 𝐵 = 1 = 1 − 𝑊 𝐵 = 0 = 0.8

• 𝑊 𝐴 = 0 = 0.1, 𝑊 𝐴 = 1 = 0.9

• 𝑊 𝐸 = 0| 𝐴 = 0, 𝐵 = 0 = ⋯

• 𝑊 𝐴 = 1, 𝐸 = 1, 𝐵 = 1 = 𝑊 𝐵 = 1 ∗ 𝑊 𝐸 = 1 ∗ 𝑊(𝐴 = 1|𝐸 = 1, 𝐵 = 1)

• 𝑅𝐹 = (𝐴 = 1, 𝐸 = 1, 𝐵 = 0 , (𝐴 = 1, 𝐸 = 1, 𝐵 = 1)}

• 𝑊 𝐹 = 𝑊 𝐴 = 1, 𝐸 = 1, 𝐵 = 1 + 𝑊(𝐴 = 1, 𝐸 = 1, 𝐵 = 1)

10

𝑾 𝑭 = 𝐏𝐫 [𝑬 ∩ 𝑨]

Weighted Model Count

(WMC)

Probabilistic Inference to WMC to
Unweighted Model Counting

B E

A

Pr [𝐸|𝐴]

Weighte

d Model

Countin

gRoth, 1996

11

Weighted Model Counting Unweighted Model Counting

Polynomial time reductions

Model Counting

• Given a SAT formula F

• RF: Set of all solutions of F

• Problem (#SAT): Estimate the number of solutions of F
(#F) i.e., what is the cardinality of RF?

• E.g., F = (a v b)

• RF = {(0,1), (1,0), (1,1)}

• The number of solutions (#F) = 3

#P: The class of counting problems for

decision problems in NP!
12

How do we guarantee that systems work
correctly ?

Functional Verification

• Formal verification

Challenges: formal requirements, scalability

~10-15% of verification effort

• Dynamic verification: dominant approach

13

📱

Dynamic Verification

Design is simulated with test vectors

•Test vectors represent different verification
scenarios

Results from simulation compared to intended
results

Challenge: Exceedingly large test space!

14

Constrained-Random Simulation

15

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints

• Designers:

1. a +64 11 *32 b = 12

2. a <64 (b >> 4)

• Past Experience:

1. 40 <64 34 + a <64 5050

2. 120 <64 b <64 230

• Users:

1. 232 *32 a + b != 1100

2. 1020 <64 (b /64 2) +64 a <64 2200

Problem: How can we uniformly sample the values of a and b

satisfying the above constraints?

Problem Formulation

16

Set of

Constraints

Sample satisfying assignments

uniformly at random

SAT Formula

Scalable Uniform Generation of SAT Witnesses

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Agenda

Design Scalable Techniques for

Uniform Generation and

Model Counting

with Strong Theoretical Guarantees

17

Agenda

Design Scalable Techniques for

Almost-Uniform Generation and

Approximate-Model Counting

with Strong Theoretical Guarantees

18

Formal Definitions

• 𝐹: CNF Formula; RF ∶ Solution Space of 𝐹

• Input: 𝐹 Output: 𝑦 ∈ 𝑅𝐹

• Uniform Generator:

 Guarantee: ∀𝑦 ∈ 𝑅𝐹 , Pr[𝑦 is output] =
1

𝑅𝐹

• Almost-Uniform Generator

 Guarantee: ∀𝑦 ∈ 𝑅𝐹 ,
1

1+𝜀 𝑅𝐹
≤ Pr[𝑦 is output] ≤

1+𝜀

𝑅𝐹

19

Formal Definitions

• 𝐹: CNF Formula; RF ∶ Solution Space of 𝐹

• Probably Approximately Correct (PAC) Counter

 Input: 𝐹 Output: 𝐶

20

Uniform Generation

21

Rich History of Theoretical Work

• Jerrum, Valiant and Vazirani (1986):
 Uniform Generator: Polynomial time PTM (Probabilistic Turing

Machine) given access to σ 𝑃
2 oracle

Almost-Uniform

Generator

PAC

Counter

PTIME

No Practical Algorithms
22

Stockmeyer (1983): Deterministic approximate counting in 3rd level of

polynomial hierarchy.

Can be used to design a BPP^NP procedure -- too large NP instances

Rich History of Theoretical Work

• Bellare, Goldreich, and Petrank (2000)

• Uniform Generator: Polynomial time PTM given access to NP
oracle

• Employs n-universal hash functions

23

Universal Hashing

• 𝐻 𝑛, 𝑚, 𝑟 : Set of r-universal hash functions from 0,1 𝑛 →
0,1 𝑚

∀𝑦1, 𝑦2, ⋯ 𝑦𝑟 (distinct) ∈ 0,1 𝑛 and ∀𝛼1, 𝛼2 ⋯ 𝛼𝑟 ∈ 0,1 𝑚

Pr ℎ 𝑦𝑖 = 𝛼𝑖 =
1

2𝑚

Pr ℎ 𝑦1 = 𝛼1 ∧ ⋯ ∧ ℎ 𝑦𝑟 = 𝛼𝑟 = 2− 𝑚𝑟

• (r-1) degree polynomials → r-universal hash functions

24

(Independence)

(Uniformity)

Concentration Bounds

• t-wise 𝑡 ≥ 4 random variables 𝑋1 , 𝑋2, ⋯ 𝑋𝑛 ∈ 0,1

𝑋 = σ 𝑋𝑖

 ; 𝜇 = 𝐸 𝑋

• For t = 2

25

BGP Method

Choose m
Choose ℎ ∈ 𝐻 𝑛, 𝑚, 𝑛

• For right choice of m, all the cells are small (# of solutions ≤ 2𝑛2)
• Check if all the cells are small (NP- Query)

• If yes, pick a solution randomly from randomly picked cell

In practice, the query is too long and

can not be handled by SAT Solvers!

• Polynomial of degree n-1

• SAT Solvers can not handle

large polynomials!

26

To Recap

• Jerrum, Valiant and Vazirani (1986):
 Uniform Generator: Polynomial time PTM given access to

σ 𝑃
2 oracle

 Almost-Uniform Generation is inter-reducible to PAC counting

• Bellare, Goldreich, and Petrank (2000)

• Uniform Generator: Polynomial time PTM given access to NP
oracle

Does not work in practice!
27

Prior Work

28Performance

G
u

a
ra

n
te

e
s

MCMC

SAT-

Based

BGP BDD

Desires

Generator Relative runtime

State-of-the-art:

XORSample’

50000

Ideal Uniform

Generator*

10

SAT Solver 1

Experiments over 200+ benchmarks

*: According to EDA experts

29

Our Contribution

30Performance

G
u

a
ra

n
te

e
s

MCMC

SAT-

Based

BGP BDD

UniGen

Key Ideas

Choose m
Choose ℎ ∈ 𝐻 𝑛, 𝑚,∗

• For right choice of m, large number of cells are “small”

• “almost all” the cells are “roughly” equal

• Check if a randomly picked cell is “small”

• If yes, pick a solution randomly from randomly picked cell

31

Key Challenges

• F: Formula X: Set of variables 𝑅𝐹 : Solution space

• 𝑅𝐹,ℎ,𝛼: Set of solutions for 𝐹 ∧ (ℎ 𝑋 = 𝛼) where

 ℎ ∈ 𝐻 𝑛, 𝑚,∗ ; 𝛼 ∈ 0,1 𝑚

1. How large is “small” cell ?

2. How much universality do we need?

3. What is the value of m?

32

Size of cell

Pr[y is output] =
1

2𝑚 ∗ Pr[Cell is small| y is in the cell] ∗
1

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑐𝑒𝑙𝑙

Let Size of cell ∈ [𝑙𝑜𝑇ℎ𝑟𝑒𝑠ℎ, ℎ𝑖𝑇ℎ𝑟𝑒𝑠ℎ], Then:

q

33

Losing Independence

Our desire:

Suppose ℎ ∈ 𝐻 𝑛, 𝑚,∗ 𝑎𝑛𝑑 𝑚 = log
𝑅𝐹

𝑝𝑖𝑣𝑜𝑡

Then, 𝐸[𝑅𝐹,ℎ,𝛼] =
|𝑅𝐹|

2𝑚
= 𝑝𝑖𝑣𝑜𝑡

Concentration bound k-universal (small constant)

34

How many cells?

• Our desire: 𝑚 = log
|𝑅𝐹|

𝑝𝑖𝑣𝑜𝑡

 But determining 𝑅𝐹 is expensive (#P complete)

• How about approximation?
 𝐴𝑝𝑝𝑟𝑜𝑥𝑀𝐶 𝐹, 휀, 𝛿 returns C:

Pr[
𝑅𝐹

1+𝜀
≤ 𝐶 ≤ 1 + 휀 |𝑅𝐹|] ≥ 1 − 𝛿

 𝑞 = log 𝐶 − log 𝑝𝑖𝑣𝑜𝑡

 Concentrate on m = q-1, q, q+1

35

UniGen(F,

1. C = ApproxMC(F,휀)

2. Compute pivot, loThresh, hiThresh

3. 𝑞 = log 𝐶 − log 𝑝𝑖𝑣𝑜𝑡

4. for i in {q-1, q, q+1}:

5. Choose h randomly* from H(n,i,3)

6. Choose 𝛼 randomly from 0,1 𝑚

7. If (𝑙𝑜𝑇ℎ𝑟𝑒𝑠ℎ ≤ 𝑅𝐹,ℎ,𝛼 ≤ ℎ𝑖𝑇ℎ𝑟𝑒𝑠ℎ):

8. Pick 𝑦 ∈ 𝑅𝐹,ℎ,𝛼 randomly

36

One time execution

Run for

every sample

required

Are we back to JVV?

NOT Really

•JVV makes linear (in n) calls to Approximate
counter compared to just 1 in UniGen

•# of calls to ApproxMC is only 1 regardless of
the number of samples required unlike JVV 37

PAC Counter: ApproxMC(F,

Choose m
Choose ℎ ∈ 𝐻 𝑛, 𝑚, 3

• For right choice of m, large number of cells are “small”

• “almost all” the cells are “roughly” equal

• Check if a randomly picked cell is “small”

• If yes, then estimate = # of solutions in cell * 2𝑚

38

ApproxMC(F,

#sols <

pivot

NO

39

ApproxMC(F,

#sols <

pivot

NO

40

ApproxMC(F,

#sols <

pivot
YES

Estimate:

of sols * 2𝑚

41

ApproxMC(F,

Key Lemmas

Let 𝑚∗ = log 𝑅𝐹 − log 𝑝𝑖𝑣𝑜𝑡

Lemma 1: The algorithm terminates with 𝑚 ∈ 𝑚∗ − 1 , 𝑚∗

with high probability

Lemma 2: The estimate from a randomly picked cell for 𝑚 ∈
𝑚∗ − 1 , 𝑚∗ is correct with high probability

42

Results: Performance Comparison

43

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

T
im

e
 (

s
e
c
o
n

d
s
)

Benchmarks

ApproxMC Cachet

Results: Performance Comparison

44

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

ApproxMC

Cachet

Can Solve a Large Class of Problems

45
Large class of problems that lie beyond the exact

counters but can be computed by ApproxMC

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

T
im

e
 (

s
e
c
o

n
d

s
)

Benchmarks

ApproxMC

Cachet

Mean Error: Only 4% (allowed: 75%)

46
Mean error: 4% – much smaller than the

theoretical guarantee of 75%

1.0E+00

3.2E+01

1.0E+03

3.3E+04

1.0E+06

3.4E+07

1.1E+09

3.4E+10

1.1E+12

3.5E+13

1.1E+15

3.6E+16

0 10 20 30 40 50 60 70 80 90

C
o

u
n

t

Benchmarks

Cachet*1.75

Cachet/1.75

ApproxMC

Runtime Performance
of UniGen

47

1-2 Orders of Magnitude Faster

0.1

1

10

100

1000

10000

100000

ca
s
e4

7

ca
s
e_

3
_
b
1

4
_
3

ca
s
e1

0
5

ca
s
e8

ca
s
e2

0
3

ca
s
e1

4
5

ca
s
e6

1

ca
s
e9

ca
s
e1

5

ca
s
e1

4
0

ca
s
e_

2
_
b
1

4
_
1

ca
s
e_

3
_
b
1

4
_
1

sq
u

a
ri

n
g

1
4

sq
u

a
ri

n
g

7

ca
s
e_

2
_
p

tb
_
1

ca
s
e_

1
_
p

tb
_
1

ca
s
e_

2
_
b
1

4
_
2

ca
s
e_

3
_
b
1

4
_
2

Time(s)

Benchmarks

UniGen

XORSample'

48

Results: Uniformity

49
• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 4x106; Total Solutions : 16384

0

50

100

150

200

250

300

350

400

450

500

184 208 228 248 268 288

F
re
q
u
e
n
cy

#Solutions

Results: Uniformity

50
• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 4x106; Total Solutions : 16384

0

50

100

150

200

250

300

350

400

450

500

184 208 228 248 268 288

F
re
q
u
e
n
cy

#Solutions

US

UniGen

So far

• The first scalable approximate model counter

• The first scalable uniform generator

• Outperforms state-of-the-art generators/counters

Are we done?

51

Where are we?

Generator Relative runtime

State-of-the-art:

XORSample’

50000

UniGen ~5000

Ideal Uniform

Generator*

10

SAT Solver 1

Experiments over 200+ benchmarks

*: According to EDA experts 52

XOR-Based Hashing

• Partition 2n space into 2m cells

• Variables: X1, X2, X3,….., Xn

• Pick every variable with prob. ½ ,XOR them and add 0/1
with prob. ½

• X1+X3+X6+…. Xn-1 + 0

• To construct h: 0,1 𝑛 → 0,1 𝑚, choose m random XORs

• 𝛼 ∈ 0,1 𝑚 → Set every XOR equation to 0 or 1 randomly

• The cell: F ∧ XOR (CNF+XOR)

53

XOR-Based Hashing

• CryptoMiniSAT: Efficient for CNF+XOR

• Avg Length : n/2

• Smaller XORs better performance

How to shorten XOR clauses?
54

Independent Support

• Set I of variables such that assignments to these uniquely
determine assignments to rest of variables (for satisfying
assignments)

• If agree on I then

• c ⟷ (a V b) ; Independent Support I: {a, b}

• Key Idea: Hash only on the independent variables

55

		s1	and	s2 		s1		=	s2

Independent Support

• Hash only on the Independent Support

• Average size of XOR: n/2 to |I|/2

56

Formal Definition

57

Minimal Unsatisfiable Subset

• Given Ψ = 𝐻1 ∧ 𝐻2 ⋯ 𝐻𝑚

 Find subset {𝐻𝑖1 , 𝐻𝑖2 , ⋯ 𝐻𝑖𝑘 } of {𝐻1 , 𝐻2 , ⋯ 𝐻𝑚} such that
𝐻𝑖1 ∧ 𝐻𝑖2 ⋯ 𝐻𝑖𝑘 ∧ Ω is UNSAT

Unsatisfiable subset

 Find minimal subset {𝐻𝑖1 , 𝐻𝑖2 , ⋯ 𝐻𝑖𝑘} of {𝐻1 , 𝐻2 , ⋯ 𝐻𝑚} such that
𝐻𝑖1 ∧ 𝐻𝑖2 ⋯ 𝐻𝑖𝑘 is UNSAT

Minimal Unsatisfiable subset

58

Key Idea

59

Key Idea

60

𝐼 = {𝑥𝑖} is Independent Support iff 𝐻𝐼 ∧ Ω is

unsatisfiable where 𝐻𝐼 = 𝐻𝑖 𝑥𝑖 ∈ 𝐼}

Group-Oriented Minimal Unsatisfiable
Subset

• Given Ψ = 𝐻1 ∧ 𝐻2 ⋯ 𝐻𝑚 ∧ Ω

 Find subset {𝐻𝑖1 , 𝐻𝑖2 , ⋯ 𝐻𝑖𝑘 } of {𝐻1 , 𝐻2 , ⋯ 𝐻𝑚} such that 𝐻𝑖1 ∧
𝐻𝑖2 ⋯ 𝐻𝑖𝑘 ∧ Ω is UNSAT

Group Oriented Unsatisfiable subset

 Find minimal subset {𝐻𝑖1 , 𝐻𝑖2 , ⋯ 𝐻𝑖𝑘} of {𝐻1 , 𝐻2 , ⋯ 𝐻𝑚} such that
𝐻𝑖1 ∧ 𝐻𝑖2 ⋯ 𝐻𝑖𝑘 ∧ Ω is UNSAT

Group Oriented Minimal Unsatisfiable subset

61

Minimal Independent Support

62

𝐼 = {𝑥𝑖} is minimal Independent Support iff 𝐻𝐼 is

minimal unsatisfiable subset where 𝐻𝐼 = 𝐻𝑖 𝑥𝑖 ∈
𝐼}

Key Idea

63

Minimal

Independent

Support (MIS)

Minimal

Unsatisfiable

Subset (MUS)

Impact on Sampling and Counting
Techniques

64

MIS

Sampling
Tools

Counting
Tools

F
I

What about complexity

• Computation of MUS: 𝐹𝑃𝑁𝑃

• Why solve a 𝐹𝑃𝑁𝑃 for almost-uniform
generation/approximate counter (PTIME PTM with NP
Oracle)

Settling the debate through practice!

65

Performance Impact on Approximate
Model Counting

1.8

18

180

1800

18000

ApproxMC IApproxMC

66

Performance Impact on Uniform Sampling

67

0.018

0.18

1.8

18

180

1800

18000

UniGen UniGen1

Where are we?

Generator Relative runtime

State-of-the-art:

XORSample’

50000

UniGen 5000

UniGen1 470

Ideal Uniform Generator* 10

SAT Solver 1

68

Back to basics

69

of solutions in “small” cell ∈ 𝑙𝑜𝑇ℎ𝑟𝑒𝑠ℎ, ℎ𝑖𝑇ℎ𝑟𝑒𝑠ℎ
We pick one solution

“Wastage” of loThresh solutions

Pick 𝑙𝑜𝑇ℎ𝑟𝑒𝑠ℎ samples!

70

3-Universal hash functions:
 Choose hash function randomly

 For arbitrary distribution on solutions=> All cells are roughly
equal in expectation

 But:

 While each input is hashed uniformly

 And each 3-solutions set is hashed independently

 A 4-solutions set might not be hashed independently

3-Universal and Independence of
Samples

Balancing Independence

For ℎ ∈ 𝐻 𝑛, 𝑚, 3

• Choosing up to 3 samples => Full independence among
samples

• Choosing loThresh (>> 3) samples => Loss of independence

71

Why care about Independence

72

🕷🕷

If every sample is independent => Faster convergence

Convergence

requires

multiplication of

probabilities

The principle of principled compromise!

• Choosing up to 3 samples => Full independence among
samples

• Choosing loThresh (>> 3) samples => Loss of independence
 “Almost-Independence” among samples

 Still provides strong theoretical guarantees of coverage

73

Strong Guarantees

•

•Polynomial Constant number of SAT
calls per sample

After one call to ApproxMC

74

Bug-finding effectiveness

75

bug frequency f =

Simply put,

#of SAT calls for UniGen2 << # of SAT calls for

UniGen

Bug-finding effectiveness

UniGen UniGen2

Expected

number of SAT

calls

4.35 × 107 3.38 × 106

76

bug frequency f = 1/104

find bug with probability ≥ 1/2

An order of magnitude difference!

~20 times faster than UniGen1

0.01

0.1

1

10

100

1000

s1
2

3
8

a
_
3
_
2

s1
1

9
6

a
_
3
_
2

s8
3

2
a

_
1

5
_
7

ca
s
e_

1
_
b
1

2
_
2

sq
u

a
ri

n
g

1
6

sq
u

a
ri

n
g

7

d
o
u

b
ly

L
in

k
ed

L
is

t

L
o
g

in
S

er
v
ic

e
2

S
o
rt

2
0

.s
k

en
q

u
eu

e

K
a

ra
ts

u
b

a

ll
tr

a
v
er

sa
l

ll
re

v
er

se

d
ia

g
S

te
n

ci
l_

n
ew

tu
to

ri
a

l3

d
em

o
2

_
n

ew

Time

per

sample

(s)

Benchmarks

UniGen2

UniGen1

77

Where are we?

Generator Relative runtime

State-of-the-art:

XORSample’

50000

UniGen 5000

UniGen1 470

UniGen2 20

Ideal Uniform Generator* 10

SAT Solver 1

78

The Final Push….

•UniGen requires one time computation of
ApproxMC

•Generation of samples in fully distributed fashion

(Previous algorithms lacked the above property)

•New paradigms!

79

80

Current Paradigm of
Simulation-based Verification

Test 2 Test 3

Test 4Test 1

Test Generator

Simulator

Simulator
Simulator

Simulator

• Can not be

parallelized since

test generators

maintain “global

state”

• Loses theoretical

guarantees (if any)

of uniformity

Test Generator

New Paradigm of Simulation-
based Verification

Simulator

Simulator

Simulator

Simulator

Test Generator

Test Generator

Test Generator

Preprocessin

g

• Preprocessing needs to be done only once

• No communication required between

different copies of the test generator

• Fully distributed!

81

Closing in…

Generator Relative runtime

State-of-the-art:

XORSample’

50000

UniGen 5000

UniGen1 470

UniGen2 20

Multi-core UniGen2 10 (two cores)

Ideal Uniform Generator* 10

SAT Solver 1 82

So what happened….

83

Sampling and

Counting

Important

Applications

Beautiful Theory

But does not work in

practice

Theoretical

Contributions

(Practice drives

theory)

New Applications

(Theory drives

practice)

Future Directions

84

Extension to More Expressive domains

• Efficient hashing schemes
 Extending bit-wise XOR to richer constraint domains provides

guarantees but no advantage of SMT progress

• Solvers to handle F + Hash efficiently
 CryptoMiniSAT has fueled progress for SAT domain

 Similar solvers for other domains?

85

Handling Distributions

• Given: CNF formula F and Weight function W over
assignments

• Weighted Counting: sum the weight of solutions

• Weighted Sampling: Sample according to weight of
solution

• Wide range of applications in Machine Learning

• Extending universal hashing works only in theory so far

86

