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High Dimensional Data Visualization

» D = {x
1
, x

2
, …, x

n
}  n- points, d – dimensional

» d > 3

» n – large

» All real valued

» Need to 

� imagine 

� validate 

� analyze
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Motivation

» Seeing helps understanding…

» Large data – cannot see completely!
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Motivation

» Seeing helps understanding

» Large data – cannot see completely!

» Dimensions a bigger problem – 4-d and higher

� Validate classification and clustering results

» Need visualization approaches that

� provide insight

� are within canvas

� can be accurate and/or approximate (metaphor)

� are like scatter plots
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Motivation

» Seeing helps understanding

» Large data – cannot see completely!

» Dimensions a bigger problem – 4-d and higher

� Validate classification and clustering results

» Need visualization approaches that

� provide insight

� are within canvas

� can be accurate and/or approximate (metaphor)

� are like scatter plots

� can efficiently handle large data and higher dimensions
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Applications – Some Requirements

» Across all Subspaces proximity of points

© 2011 Kamalakar Karlapal em |  Centre for Data Engineering | I I I T –Hyder abad, India 9



Applications – Some Requirements

» Across all Subspaces proximity of points

» Shape and size of clusters

© 2011 Kamalakar Karlapal em |  Centre for Data Engineering | I I I T –Hyder abad, India 10



Applications – Some Requirements

» Across all Subspaces proximity of points
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Applications – Some Requirements

» Across all Subspaces proximity of points

» Shape and size of clusters

» Spread of data across the canvas

» Data Sets

� Sports

� Real Estate

� Spatial-temporal

� Earthquake

� Potentially, any real valued data set
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Some Problems

» Can we find how clusters in high dimensional 

data overlap across various subspaces?

� HEIDI
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Some Problems

» Can we find how clusters in high dimensional 

data overlap across various subspaces?

� HEIDI

» Can we visually determine size and shape of a 

data cluster?

� BEADS

» Can we present high dimensional data as a 

scatter plot?

� CROVDH
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Some Problems

» Can we find how clusters in high dimensional data overlap 
across various subspaces?
� HEIDI

» Can we visually determine size and shape of a data 
cluster?
� BEADS

» Can we present high dimensional data as a scatter plot?
� CROVDH

» Useful for
� Understanding and interpreting data

� Clustering

� Classification

� Image pattern based index
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Heidi – Visual Relationship Matrix

» D = {x
1
, x

2
, …, x

n
}  n- points, d – dimensional
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» Construct a n×n matrix where

� Element (i,j) is a bit vector

� Semantics of each bit in bit vector can be user 
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Heidi – Visual Relationship Matrix

» D = {x
1
, x

2
, …, x

n
}  n- points, d – dimensional

» Construct a n×n matrix where

� Element (i,j) is a bit vector

� Semantics of each bit in bit vector can be user 

specified

� The matrix is visualized as an image

� Patterns in image need to be interpreted
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Heidi – Visual Relationship Matrix

» D = {x
1
, x

2
, …, x

n
}  n- points, d – dimensional

» Construct a n×n matrix where

� Element (i,j) is a bit vector

� Semantics of each bit in bit vector can be user 

specified

� The matrix is visualized as an image

� Patterns in image need to be interpreted

Generalization of gray scale visualization of  

distance matrix
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Heidi – specific case –

Nearest Neighbors

» D = {x
1
, x

2
, …, x

n
}  n- points, d – dimensional

» Construct a n×n matrix where

� Element (i,j) is a bit vector

� Bit p of bit vector 

– is set to 1, i f x
j
is in k nearest neighbor set of x

i
, 

– otherwise it is set to 0

– For the pth subspace of the data
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Heidi – specific case –

Nearest Neighbors

» D = {x
1
, x

2
, …, x

n
}  n- points, d – dimensional

» Construct a n×n matrix where

� Element (i,j) is a bit vector

� Bit p of bit vector 

– is set to 1, i f x
j
is in k nearest neighbor set of x

i
, 

– otherwise it is set to 0

– For the pth subspace of the data

� Length of bit vector is 2d - 1
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Heidi – specific case –

Nearest Neighbors
» D = {x

1
, x

2
, …, x

n
}  n- points, d – dimensional

» Construct a n×n matrix where
� Element (i ,j) is a bit vector

� Bit p of bi t vector 
– is set to 1, if x

j
is in k nearest neighbor set of  x

i
, 

– otherwise it is set to 0

– For the pth subspace of the data

� Length of bi t vector is 2d-1

» Visualize bit-vectors using RGB combination of colors

» Size of matrix is n×n × [(2d -1) bits mapped to RGB 
representation based on image type]

So, what have you got now? – a Heidi Matrix 
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Subspaces
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Dimensions – 0, 1, 2, 3;   

Number of subspaces = 24 = 16; 
sets of subspaces = 215-1 

0 1 2 3

0,1 0,2 0,3 1,2 1,3 2,3

0,1,2 0,1,3 0,2,3 1,2,3

0,1,2,3



Examples
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X – brown; Y – skyblue;  {X,Y} - violet 



Examples
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X – brown; Y – skyblue;  {X,Y} - violet 



Examples: Composite Heidi – 20d
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Examples: Composite Heidi=50d
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Real-estate Property Listings
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Heidi Matrix - Issues

» Ordering of points in a cluster

» Size of the matrix

» Mapping of colors to bit vectors

» Types 
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Representative Heidi Images
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N= 1,00,000 and d=100, 

prominent subspace
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Application – index visualization
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R-tree, R-tree quadratic splitting, R*-tree
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BEADS – Forming a Necklace

» Given a cluster – that is, a set of points much 

closer among themselves but well separated 

from other sets of points
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BEADS – Forming a Necklace
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closer among themselves but well separated 
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» Need to determine shape and size of the cluster
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BEADS – Forming a Necklace

» Given a cluster – that is, a set of points much 

closer among themselves but well separated 

from other sets of points

» Need to determine shape and size of the cluster

» Partition points into subsets of points

» Each subset forms a bead

» Beads are mapped to well-specified shapes
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BEADS – Forming a Necklace

» Given a cluster – that is, a set of points much 

closer among themselves but well separated 

from other sets of points

» Need to determine shape and size of the cluster

» Partition points into subsets of points

» Each subset forms a bead

» Beads are mapped to well-specified 2-d shapes

» Beads are placed in canvas to visually represent 

shape and size of cluster – a necklace
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Beads - Approach
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Basis for Beads
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Beads – shape and size
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• P = set of distinct p values for Lp norm

• Aim: Identify ‘p’ and radius ‘rp’ that 

covers the bead tightly

• Two approaches

1. Iterate from p by considering distances 

between centroid and furthest point  

using Lp, select the p  which has the 

smallest distance.

2. Find the sum of distances among all 

pairs of points using Lp, and select the p 

that has smallest sum of distances

• The selected p gives the shape.

• The size is given by the diameter using 

the Lp



Examples
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Example – Iris Data Set
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More results
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10-D Hyper-sphere 10-D Hyper-cube 5-D NBA Player Data

Many  
circles

Many  

squares
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CROVDH – Concentric Rings of Visualization 

for high dimensional data 

» Given a data set x1, x2, …, xn d-dimensional data

» Determine a scatter plot visualization
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CROVDH – Concentric Rings of Visualization 

for high dimensional data 

» Given a data set x1, x2, …, xn d-dimensional data

» Determine a scatter plot visualization

» Spilt the 2-d space into 2d quadrants

» Map each xi to (r, θ) coordinates

� R is based on distance from centroid to point

� θ is based on quadrant and the relative angle within 

quadrant from some base axis
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CROVDH – Concentric Rings of Visualization 

for high dimensional data 

» Given a data set x1, x2, …, xn d-dimensional data

» Determine a scatter plot visualization

» Spilt the 2-d space into 2d quadrants

» Map each xi to (r, θ) coordinates

� R is based on distance from centroid to point

� θ is based on quadrant and the relative angle within 

quadrant from some base axis

» Divide regions of 2-d space as concentric circles
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CROVDH – Concentric Rings of Visualization 

for high dimensional data 

» Given a data set x1, x2, …, xn d-dimensional data

» Determine a scatter plot visualization

» Spilt the 2-d space into 2d quadrants

» Map each xi to (r, θ) coordinates

� R is based on distance from centroid to point

� θ is based on quadrant and the relative angle within 
quadrant from some base axis

» Divide regions of 2-d space as concentric circles

» Give region colors based on relative density

» Can also show actual points
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Uniform 100,000 [0,1] points

dimensions increasing
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2d
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2d 3d



Uniform 100,000 [0,1] points

dimensions increasing
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2d 3d 5d



Uniform 100,000 [0,1] points

dimensions increasing
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Uniform 100,000 [0,1] points

dimensions increasing
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Uniform 100,000 [0,1] points

dimensions increasing
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Uniform 100,000 [0,1] points

dimensions increasing
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2d 3d 5d
20d

50d 80d 110d



Uniform 100,000 [0,1] points

dimensions increasing
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2d 3d 5d
20d

50d 80d 110d 150d



CROVDH Visualization of IRIS data set
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CROVDH Visualization of IRIS data set
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Related Work

» Parallel Coordinates [Inselberg 1985]

» VISA provides subspace overlap [Assent et al 

2007]

» Best fit spheres or ellipsoids at high dimensions 

[Fitzgibbon, et al 1999, Calafiore 2002]

» Illustrative parallel coordinates [McDonnell & 

Muelller 2008]

» All 2-d subspaces scatter plots
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Summary

» Subspace overlaps in high dimensions - Heidi

» Applications of Heidi 

» Shape and Structure of clusters – Beads

» High Dimensional Scatter Plots - CROVDH
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Open Problems

» Ordering of points in Heidi

» Tight fit of shapes – composition of shapes –

extending to 3d shapes

» Exploration with navigation in Beads and Heidi

» Explorative analysis and analytics from CROVDH

» Time and space efficiency

» Integrated visualization tool kit for Rd data
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Take away!

» Subtle work

» Fun with visualization

» Vast open areas to work in 

» Dashboards for visual analytics

» Domain specific vertical solutions

» Deep mathematical problems – shape fitting –

multiple loss-less visuals
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