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High Dimensional Data Visualization *

» D={x, X, .., x } n-points, d — dimensional
» d>3

» n—large

» All real valued

» Need to
" imagine
= validate
= analyze
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Motivation ﬁ

» Seeing helps understanding...
» Large data —cannot see completely!
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Motivation m

» Seeing helps understanding
» Large data —cannot see completely!

» Dimensions a bigger problem — 4-d and higher
= Validate classification and clustering results

» Need visualization approaches that
= provide insight
= are within canvas
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Motivation m

» Seeing helps understanding
» Large data —cannot see completely!

» Dimensions a bigger problem — 4-d and higher
= Validate classification and clustering results
» Need visualization approaches that
= provide insight
= are within canvas
= can be accurate and/or approximate (metaphor)
= are like scatter plots
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Motivation m

» Seeing helps understanding
» Large data —cannot see completely!
» Dimensions a bigger problem —4-d and higher
= Validate classification and clustering results
» Need visualization approaches that
= provideinsight
= are within canvas
= canbe accurate and/or approximate (metaphor)

arelike scatter plots
can efficiently handle large data and higher dimensions
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Applications — Some Requirements m -

» Across all Subspaces proximity of points
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Applications — Some Requirements

» Across all Subspaces proximity of points
» Shape and size of clusters
» Spread of data across the canvas

» Data Sets

= Sports
Real Estate
Spatial-temporal

Earthquake

Potentially, any real valued data set
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Some Problems *

» Can we find how clusters in high dimensional
data overlap across various subspaces?
= HEIDI
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Some Problems *

» Can we find how clusters in high dimensional
data overlap across various subspaces?
= HEIDI

» Can we visually determine size and shape of a
data cluster?

= BEADS
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Some Problems m

» Can we find how clusters in high dimensional
data overlap across various subspaces?
= HEIDI

» Can we visually determine size and shape of a
data cluster?

= BEADS

» Can we present high dimensional data as a
scatter plot?
= CROVDH
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Some Problems m

» Can we find how clusters in high dimensional data overlap
across various subspaces?
= HEIDI

» Can we visually determine size and shape of a data
cluster?
= BEADS

» Can we present high dimensional data asa scatter plot?
= CROVDH

» Useful for
= Understanding and interpreting data
= Clustering
= Classification
® |mage pattem based index
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Heidi — Visual Relationship Matrix ﬁ

» D={x, X, .., x } n-points, d — dimensional
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» D={x, X, .., x } n-points, d — dimensional
» Construct a nxn matrix where
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Heidi — Visual Relationship Matrix *

» D={x, X, .., x } n-points, d — dimensional
» Construct a nxn matrix where
= Element (i,j) is a bit vector
= Semantics of each bit in bit vector can be user
specified
= The matrix is visualized as an image
= Patternsinimage need to be interpreted

Generalization of gray scale visualization of
distance matrix
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Heidi — specific case — *
Nearest Neighbors -

» D={x, X, .., x } n-points, d — dimensional

» Construct a nxn matrix where
= Element (i,j) is a bit vector
= Bit p of bit vector
—issetto 1,iij isin k nearest neighborset ofxi,

— otherwise itissetto 0
— For the pt"subspace of the data
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Heidi — specific case — *
Nearest Neighbors -

» D={x, X, .., x } n-points, d — dimensional

» Construct a nxn matrix where
= Element (i,j) is a bit vector
= Bit p of bit vector
—issetto 1,iij isin k nearest neighborset ofxi,

— otherwise itissetto 0
— For the pt"subspace of the data

» Length of bit vectoris 29-1
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Heidi — specific case — *
Nearest Neighbors -

» D={x, x,, .., x } n-points, d— dimensional
» Construct a nxn matrix where
= Element/ i) isa bit vector

= Bit pofbit vector
— issettol, if X is in k nearest neighbor set of X,
— otherwise itis setto 0
— Forthe pt subs pace of the data

= Length of bitvectoris 2%-1

» Visualize bit-vectors using RGB combination of colors

» Size of matrix is nxn x [(29 -1) bits mapped to RGB
representation based on image type]

So, what have you got now? — a Heidi Matrix
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Subspaces *

Dimensions -0, 1,2, 3;
Number of subspaces = 2% = 16;
sets of subspaces = 275-1

0,1,2,3
0,12 0,13 0,23 1,23
0,1 0,2 0,3 1,2 1,3 2,3
0 1 2 3
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Examples

X —brown;Y —skyblue; {X,Y} - violet
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X —brown;Y —skyblue; {X,Y} - violet
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Examples: Composite Heidi — 20d .ﬂ
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Examples: Composite Heidi=50d *
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Real-estate Property Listings

UMY N
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b Y

g
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Heidi Matrix - Issues

» Ordering of points in a cluster
» Size of the matrix

» Mapping of colors to bit vectors
» Types
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Representative Heidi Images

Color

-- ]
Set of subspacesNone {2 }[{ L} {1 H{2}{o}{oH 2} {0 1}{oH{1}{2}
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N= 1,00,000 and d=100, ﬁ
prominent subspace .
Color Set of subspaces
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R-tree, R-tree quadratic spliting, R*-tree
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BEADS — Forming a Necklace *

» Given a cluster — that is, a set of points much
closer among themselves but well separated
from other sets of points
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BEADS — Forming a Necklace m

» Given a cluster — that is, a set of points much
closer among themselves but well separated
from other sets of points

» Need to determine shape and size of the cluster
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BEADS — Forming a Necklace m

» Given a cluster — that is, a set of points much
closer among themselves but well separated
from other sets of points

» Need to determine shape and size of the cluster
» Partition points into subsets of points
» Each subset forms a bead
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BEADS — Forming a Necklace m

» Given a cluster — that is, a set of points much
closer among themselves but well separated
from other sets of points

» Need to determine shape and size of the cluster
» Partition points into subsets of points

» Each subset forms a bead

» Beads are mapped to well-specified shapes
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BEADS — Forming a Necklace m

» Given a cluster — that is, a set of points much
closer among themselves but well separated
from other sets of points

<

Need to determine shape and size of the cluster

<

Partition points into subsets of points
Each subset forms a bead

M

M

Beads are mapped to well-specified 2-d shapes

M

Beads are placed in canvas to visually represent
shape and size of cluster — a necklace
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Beads - Approach *
Data Cluster ©  Cluster Division
v .
.E.Eads_ Ideeitiﬁca?igﬁ
Sh;:.lgs - Cluster Shape

Composition

Y aDBEADS
- Wisualizalion
- o -
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Basis for Beads
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Beads — shape and size

. Iterate from p by considering distances

. Find the sum of distances among all

P =set of distinct p values for L, norm
Aim: Identify ‘p"and radius r, that
covers the bead tightly

Two approaches

between centroid and furthest point .
using L, select thep which has the
smallest distance.

pairs of points using L, and select the p
that has smallest sum of distances

The selected p gives the shape.

Thesize is given by the diameter using
thel,
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Examples
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Example — Iris Data Set
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More results ﬁ

10-D Hyper-sphere 10-D Hyper-cube 5-D NBA Player Data

2011Kamalakar Karlapalem | Centrefor DataEngineering | I1 1T —Hyder abad, India



Outline

<

Motivation and Applications
Problems

» Heidi

» Beads

CROVDH

Related Work

» Summary

M

<

<

» Open Problems

2011Kamalakar Karlapalem | Centrefor DataEngineering | I1 1T —Hyder abad, India



CROVDH - Concentric Rings of Vis ualizationﬁ
_for high dimensional data :

» Given a data set x4, X5, ..., X, d-dimensional data

» Determine a scatter plot visualization
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_for high dimensional data :
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CROVDH - Concentric Rings of Vis ualizationm

_for high dimensional data
» Given a data set x4, X5, ..., X, d-dimensional data
» Determine a scatter plot visualization
» Spilt the 2-d space into 29 quadrants

» Map each x; to (r, 0) coordinates
= R is based on distance from centroid to point

= O is based on quadrant and the relative angle within
quadrant from some base axis
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CROVDH - Concentric Rings of Vis ualizationm

_for high dimensional data
» Given a data set x4, X5, ..., X, d-dimensional data
» Determine a scatter plot visualization
» Spilt the 2-d space into 29 quadrants

» Map each x; to (r, 0) coordinates
= R is based on distance from centroid to point

= O is based on quadrant and the relative angle within
quadrant from some base axis

» Divide regions of 2-d space as concentric circles

2011Kamalakar Karlapalem | Centrefor DataEngineering | I1 1T —Hyder abad, India



CROVDH - Concentric Rings of Vis ualizationm
_for high dimensional data L)

» Given a data set x,, x,, ..., X,, d-dimensional data

» Determine a scatter plot visualization

Spilt the 2-d space into 29 quadrants

~

~
~

~
~

Map each x; to (r, ©) coordinates
= Ris based on distance fromcentroid to point

= 0 is based on quadrant and the relative angle within
quadrant fromsome base axis

Divide regions of 2-d space as concentric circles
» Give region colors based on relative density
Can also show actual points

~
~

~

~
~
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Uniform 100,000 [0,1] points
i . . :
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Uniform 100,000 [0,1] points

_dimensions increasing

i
[

— —
[ - —
—— - —— -
—— —
I— [ [

2011Kamalakar Karlapalem | Centrefor DataEngineering | I1 1T —Hyder abad, India



1
Uniform 100,000 [0,1] points :
dimensions increasing

L =4

3d
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Uniform 100,000 [0,1] points

2d

dimensions increasing
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Uniform 100,000 [0,1] points

2d

dimensions increasing
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|
Uniform 100,000 [0,1] points T
dimensions increasing
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|
Uniform 100,000 [0,1] points 5
dimensions increasing
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|
Uniform 100,000 [0,1] points 5
dimensions increasing
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[
Uniform 100,000 [0,1] points £
dimensions increasing
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CROVDH Visualization of IRIS data set

1 sector= 1 quadrant

80 es T itk i LB e L i

1 sector 1 guadant
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CROVDH Visualization of IRIS data set *
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Related Work m

» Parallel Coordinates [Inselberg 1985]

» VISA provides subspace overlap [Assent et al
2007]

» Best fit spheres or ellipsoids at high dimensions
[Fitzgibbon, et al 1999, Calafiore 2002]

» lllustrative parallel coordinates [McDonnell &
Muelller 2008]

» All 2-d subspaces scatter plots
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Summary *

» Subspace overlaps in high dimensions - Heidi
» Applications of Heidi

» Shape and Structure of clusters —Beads

» High Dimensional Scatter Plots - CROVDH
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Open Problems m

» Ordering of points in Heidi

» Tight fit of shapes —composition of shapes —
extending to 3d shapes

» Exploration with navigation in Beads and Heidi
» Explorative analysis and analytics from CROVDH
» Time and space efficiency

» Integrated visualization tool kit for RY data
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Take away! m

» Subtle work

» Fun with visualization

» Vast open areas to work in

» Dashboards for visual analytics

» Domain specific vertical solutions

» Deep mathematical problems —shape fitting —
multiple loss-less visuals
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