

Kamalakar Karlapalem

(with Soujanya Vadapalli, Shraddha Agrawal, Nahil Jain, Mounica Maddela)

Centre for Data Engineering

International Institute of Information Technology Hyderabad,India kamal@iiit.ac.in

Kamalak ar Karlapalem | Centre for Data Engineering | III T–Hyderabad, India

Outline

- » Motivation and Applications
- » Problems
- » Heidi
- » Beads
- » CROVDH
- » Related Work
- » Summary
- » Open Problems

© 2011Kamalakar Karlapal em | Centre for Data Engineering | IIIT – Hyder abad, India

High Dimensional Data Visualization

- » D = { $x_1, x_2, ..., x_n$ } n- points, d dimensional
- » d > 3
- » n large
- » All real valued
- » Need to
 - imagine
 - validate
 - analyze

© 2011Kamalakar Karlapal em | Centre for Data Engineering | IIIT – Hyder abad, India

- » Seeing helps understanding...
- » Large data cannot see completely!

© 2011Kamalakar Karlapalem | Centrefor Data Engineering | II IT – Hyder abad, India

.

- » Seeing helps understanding
- » Large data cannot see completely!
- » Dimensions a bigger problem 4-d and higher
 - Validate classification and clustering results

© 2011Kamalakar Karlapal em | Centre for Data Engineering | IIIT – Hyder abad, India

- » Seeing helps understanding
- » Large data cannot see completely!
- » Dimensions a bigger problem 4-d and higher
 - Validate classification and clustering results
- » Need visualization approaches that
 - provide insight
 - are within canvas

© 2011Kamalakar Karlapal em | Centre for Data Engineering | II IT – Hyder abad, India

e

- » Seeing helps understanding
- » Large data cannot see completely!
- » Dimensions a bigger problem 4-d and higher
 - Validate classification and clustering results
- » Need visualization approaches that
 - provide insight
 - are within canvas
 - can be accurate and/or approximate (metaphor)
 - are like scatter plots

© 2011Kamalakar Karlapalem | Centre for Data Engineering | II IT – Hyder abad, India

- » Seeing helps understanding
- » Large data cannot see completely!
- » Dimensions a bigger problem 4-d and higher
 - Validate classification and clustering results
- » Need visualization approaches that
 - provide insight
 - are within canvas
 - can be accurate and/or approximate (metaphor)
 - are like scatter plots
 - can efficiently handle large data and higher dimensions

© 2011Kamalakar Karlapal em | Centre for Data Engineering | II IT – Hyder abad, India

» Across all Subspaces proximity of points

© 2011Kamalakar Karlapal em | Centre for Data Engineering | II IT – Hyder abad, India

- » Across all Subspaces proximity of points
- » Shape and size of clusters

© 2011Kamalakar Karlapal em | Centre for Data Engineering | IIIT – Hyder abad, India

- » Across all Subspaces proximity of points
- » Shape and size of clusters
- » Spread of data across the canvas

© 2011Kamalakar Karlapal em | Centre for Data Engineering | IIIT – Hyder abad, India

- » Across all Subspaces proximity of points
- » Shape and size of clusters
- » Spread of data across the canvas
- » Data Sets
 - Sports
 - Real Estate
 - Spatial-temporal
 - Earthquake
 - Potentially, any real valued data set

© 2011Kamalakar Karlapal em | Centre for Data Engineering | II IT – Hyder abad, India

Outline

- » Motivation and Applications
- » Problems
- » Heidi
- » Beads
- » CROVDH
- » Related Work
- » Summary
- » Open Problems

© 2011Kamalakar Karlapalem | Centre for Data Engineering | II IT – Hyder abad, India

- » Can we find how clusters in high dimensional data overlap across various subspaces?
 - HEIDI

© 2011Kamalakar Karlapalem | Centre for Data Engineering | II IT – Hyder abad, India

- » Can we find how clusters in high dimensional data overlap across various subspaces?
 - HEIDI
- » Can we visually determine size and shape of a data cluster?
 - BEADS

© 2011Kamalakar Karlapalem | Centre for Data Engineering | II IT – Hyder abad, India

- » Can we find how clusters in high dimensional data overlap across various subspaces?
 - HEIDI
- » Can we visually determine size and shape of a data cluster?
 - BEADS
- » Can we present high dimensional data as a scatter plot?
 - CROVDH

© 2011Kamalakar Karlapalem | Centre for Data Engineering | II IT – Hyder abad, India

- » Can we find how clusters in high dimensional data overlap across various subspaces?
 - HEIDI
- » Can we visually determine size and shape of a data cluster?
 - BEADS
- » Can we present high dimensional data as a scatter plot?
 - CROVDH
- » Useful for
 - Understanding and interpreting data
 - Clustering
 - Classification
 - Image pattern based index

© 2011Kamalakar Karlapalem | Centre for Data Engineering | II IT – Hyder abad, India

Outline

- » Motivation and Applications
- » Problems
- » Heidi
- » Beads
- » CROVDH
- » Related Work
- » Summary
- » Open Problems

© 2011Kamalakar Karlapalem | Centre for Data Engineering | II IT – Hyder abad, India

Heidi – Visual Relationship Matrix	TIMES
» D = { $x_1, x_2,, x_n$ } n- points, d – dimensional	

© 2011 Kamalakar Karlapal em | Centre for Data Engineering | II I T – Hyder abad, India

- » D = { $x_1, x_2, ..., x_n$ } n- points, d dimensional
- » Construct a n×n matrix where
 - Element (i,j) is a bit vector

© 2011Kamalakar Karlapal em | Centre for Data Engineering | IIIT – Hyder abad, India

- » $D = \{x_1, x_2, ..., x_n\}$ n-points, d dimensional
- » Construct a n×n matrix where
 - Element (i,j) is a bit vector
 - Semantics of each bit in bit vector can be user specified

© 2011Kamalakar Karlapal em | Centre for Data Engineering | IIIT – Hyder abad, India

- » D = { $x_1, x_2, ..., x_n$ } n- points, d dimensional
- » Construct a n×n matrix where
 - Element (i,j) is a bit vector
 - Semantics of each bit in bit vector can be user specified
 - The matrix is visualized as an image

© 2011Kamalakar Karlapal em | Centre for Data Engineering | IIIT – Hyder abad, India

- » D = { $x_1, x_2, ..., x_n$ } n- points, d dimensional
- » Construct a n×n matrix where
 - Element (i,j) is a bit vector
 - Semantics of each bit in bit vector can be user specified
 - The matrix is visualized as an image
 - Patterns in image need to be interpreted

- » $D = \{x_1, x_2, ..., x_n\}$ n- points, d dimensional
- » Construct a n×n matrix where
 - Element (i,j) is a bit vector
 - Semantics of each bit in bit vector can be user specified
 - The matrix is visualized as an image
 - Patterns in image need to be interpreted

Generalization of gray scale visualization of distance matrix

© 2011Kamalakar Karlapalem | Centre for Data Engineering | II IT – Hyder abad, India

Heidi – specific case –

Nearest Neighbors

- INNIS JUNI
- » D = { $x_1, x_2, ..., x_n$ } n- points, d dimensional
- » Construct a n×n matrix where
 - Element (i,j) is a bit vector
 - Bit p of bit vector
 - is set to 1, if x_i is in k nearest neighbor set of x_i ,
 - otherwise it is set to 0
 - For the **p**th subspace of the data

© 2011Kamalakar Karlapal em | Centre for Data Engineering | II IT – Hyder abad, India

Heidi – specific case –

Nearest Neighbors

- » D = { $x_1, x_2, ..., x_n$ } n- points, d dimensional
- » Construct a n×n matrix where
 - Element (i,j) is a bit vector
 - Bit p of bit vector
 - is set to 1, if x_j is in k nearest neighbor set of x_i ,
 - otherwise it is set to 0
 - For the **p**th subspace of the data
 - Length of bit vector is 2^d 1

© 2011Kamalakar Karlapalem | Centrefor Data Engineering | II IT – Hyder abad, India

Heidi – specific case –

Nearest Neighbors

- » $D = \{x_1, x_2, ..., x_n\}$ n-points, d dimensional
- » Construct a n×n matrix where
 - Element (i,j) is a bit vector
 - Bit p of bit vector
 - is set to 1, if x_i is in k nearest neighbor set of x_i,
 otherwise it is set to 0

 - For the **p**th subspace of the data
 - Length of bit vector is 2^d-1
- » Visualize bit-vectors using RGB combination of colors
- » Size of matrix is $n \times n \times [(2^d 1))$ bits mapped to RGB representation based on image type]

So, what have you got now? - a Heidi Matrix

© 2011Kamalakar Karlapalem | Centre for Data Engineering | II IT – Hyder abad, India

Subspaces

Dimensions – 0, 1, 2, 3; Number of subspaces = 2⁴ = 16; sets of subspaces = 2¹⁵-1

© 2011Kamalakar Karlapalem | Centre for Data Engineering | II IT – Hyder abad, India

Heidi Matrix - Issues

- » Ordering of points in a cluster
- » Size of the matrix
- » Mapping of colors to bit vectors
- » Types

© 2011Kamalakar Karlapal em | Centre for Data Engineering | IIIT – Hyder abad, India

© 2011Kamalakar Karlapal em | Centre for Data Engineering | IIIT – Hyder abad, India

R-tree, R-tree quadratic splitting, R*-tree

© 2011Kamalakar Karlapal em | Centre for Data Engineering | IIIT – Hyder abad, India

Outline

- » Motivation and Applications
- » Problems
- » Heidi
- » Beads
- » CROVDH
- » Related Work
- » Summary
- » Open Problems

© 2011Kamalakar Karlapalem | Centre for Data Engineering | II IT – Hyder abad, India

» Given a cluster – that is, a set of points much closer among themselves but well separated from other sets of points

© 2011Kamalakar Karlapalem | Centre for Data Engineering | IIIT – Hyder abad, India

- » Given a cluster that is, a set of points much closer among themselves but well separated from other sets of points
- » Need to determine shape and size of the cluster

© 2011Kamalakar Karlapal em | Centre for Data Engineering | IIIT – Hyder abad, India

- THE REAL
- » Given a cluster that is, a set of points much closer among themselves but well separated from other sets of points
- » Need to determine shape and size of the cluster
- » Partition points into subsets of points

© 2011Kamalakar Karlapal em | Centre for Data Engineering | IIIT – Hyder abad, India

- » Given a cluster that is, a set of points much closer among themselves but well separated from other sets of points
- » Need to determine shape and size of the cluster
- » Partition points into subsets of points
- » Each subset forms a bead

© 2011Kamalakar Karlapal em | Centre for Data Engineering | IIIT – Hyder abad, India

- THE REAL
- » Given a cluster that is, a set of points much closer among themselves but well separated from other sets of points
- » Need to determine shape and size of the cluster
- » Partition points into subsets of points
- » Each subset forms a bead
- » Beads are mapped to well-specified shapes

© 2011Kamalakar Karlapal em | Centre for Data Engineering | II IT – Hyder abad, India

- » Given a cluster that is, a set of points much closer among themselves but well separated from other sets of points
- » Need to determine shape and size of the cluster
- » Partition points into subsets of points
- » Each subset forms a bead
- » Beads are mapped to well-specified 2-d shapes
- » Beads are placed in canvas to visually represent shape and size of cluster – a necklace

© 2011Kamalakar Karlapalem | Centrefor Data Engineering | IIIT – Hyder abad, India

Beads – shape and size

- him<u>hi</u> aik.
- P = set of distinct *p* values for L_p norm
- Aim: Identify 'p' and radius 'r_p' that covers the bead tightly
- Two approaches
- 1. Iterate from p by considering distances between centroid and furthest point using L_p select the p which has the smallest distance.
- Find the sum of distances among all pairs of points using L_p, and select the p that has smallest sum of distances
- The selected p gives the shape.
- The size is given by the diameter using the L_p

© 2011 Kamalakar Karlapal em | Centre for Data Engineering | II IT – Hyder abad, India

© 2011Kamalakar Karlapal em | Centre for Data Engineering | IIIT – Hyder abad, India

© 2011Kamalakar Karlapal em | Centre for Data Engineering | II IT – Hyder abad, India

More results

© 2011Kamalakar Karlapal em | Centre for Data Engineering | IIIT – Hyder abad, India

Outline

- » Motivation and Applications
- » Problems
- » Heidi
- » Beads
- » CROVDH
- » Related Work
- » Summary
- » Open Problems

© 2011Kamalakar Karlapalem | Centre for Data Engineering | II IT – Hyder abad, India

- » Given a data set $x_1, x_2, ..., x_n$ d-dimensional data
- » Determine a scatter plot visualization

© 2011Kamalakar Karlapalem | Centrefor Data Engineering | IIIT – Hyder abad, India

- » Given a data set $x_1, x_2, ..., x_n$ d-dimensional data
- » Determine a scatter plot visualization
- » Spilt the 2-d space into 2^d quadrants

© 2011Kamalakar Karlapalem | Centre for Data Engineering | IIIT – Hyder abad, India

- » Given a data set $x_1, x_2, ..., x_n$ d-dimensional data
- » Determine a scatter plot visualization
- » Spilt the 2-d space into 2^d quadrants
- » Map each x_i to (r, θ) coordinates
 - R is based on distance from centroid to point
 - θ is based on quadrant and the relative angle within quadrant from some base axis

- » Given a data set $x_1, x_2, ..., x_n$ d-dimensional data
- » Determine a scatter plot visualization
- » Spilt the 2-d space into 2^d quadrants
- » Map each x_i to (r, θ) coordinates
 - R is based on distance from centroid to point
 - θ is based on quadrant and the relative angle within quadrant from some base axis
- » Divide regions of 2-d space as concentric circles

© 2011Kamalakar Karlapal em | Centre for Data Engineering | II IT – Hyder abad, India

- » Given a data set x₁, x₂, ..., x_n d-dimensional data
- » Determine a scatter plot visualization
- » Spilt the 2-d space into 2^d quadrants
- » Map each x_i to (r, θ) coordinates
 - R is based on distance from centroid to point
 - θ is based on quadrant and the relative angle within quadrant from some base axis
- » Divide regions of 2-d space as concentric circles
- » Give region colors based on relative density
- » Can also show actual points

© 2011Kamalakar Karlapalem | Centrefor Data Engineering | II IT – Hyder abad, India

Uniform 100,000 [0,1] points	all the second
dimensions increasing	Invalia subsection
0	

© 2011Kamalakar Karlapal em | Centre for Data Engineering | II IT – Hyder abad, India

Uniform 100,000 [0,1] points dimensions increasing

Uniform 100,000 [0,1] points dimensions increasing

Uniform 100,000 [0,1] points dimensions increasing 2d Job 3d Job 5d

CROVDH Visualization of IRIS data set

© 2011Kamalakar Karlapal em | Centre for Data Engineering | IIIT – Hyder abad, India

Outline

- » Motivation and Applications
- » Problems
- » Heidi
- » Beads
- » CROVDH
- » Related Work
- » Summary
- » Open Problems

© 2011Kamalakar Karlapalem | Centre for Data Engineering | II IT – Hyder abad, India

Related Work

- » Parallel Coordinates [Inselberg 1985]
- » VISA provides subspace overlap [Assent et al 2007]
- » Best fit spheres or ellipsoids at high dimensions [Fitzgibbon, et al 1999, Calafiore 2002]
- » Illustrative parallel coordinates [McDonnell & Muelller 2008]
- » All 2-d subspaces scatter plots

© 2011Kamalakar Karlapalem | Centre for Data Engineering | II IT – Hyder abad, India

Outline

- » Motivation and Applications
- » Problems
- » Heidi
- » Beads
- » CROVDH
- » Related Work
- » Summary
- » Open Problems

© 2011Kamalakar Karlapalem | Centre for Data Engineering | II IT – Hyder abad, India

Summary

- » Subspace overlaps in high dimensions Heidi
- » Applications of Heidi
- » Shape and Structure of clusters Beads
- » High Dimensional Scatter Plots CROVDH

Outline

- » Motivation and Applications
- » Problems
- » Heidi
- » Beads
- » CROVDH
- » Related Work
- » Summary
- » Open Problems

© 2011Kamalakar Karlapalem | Centre for Data Engineering | II IT – Hyder abad, India
Open Problems

- » Ordering of points in Heidi
- » Tight fit of shapes composition of shapes extending to 3d shapes
- » Exploration with navigation in Beads and Heidi
- » Explorative analysis and analytics from CROVDH
- » Time and space efficiency
- » Integrated visualization tool kit for R^d data

© 2011Kamalakar Karlapal em | Centre for Data Engineering | II IT – Hyder abad, India

73

Take away!

- » Subtle work
- » Fun with visualization
- » Vast open areas to work in
- » Dashboards for visual analytics
- » Domain specific vertical solutions
- » Deep mathematical problems shape fitting multiple loss-less visuals

© 2011Kamalakar Karlapalem | Centre for Data Engineering | II IT – Hyder abad, India

74