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Viral Marketing: Introduction

Social networks play a crucial role in the spread of information

Viral Marketing: This phenomenon exploits the social interactions
among individuals to promote awareness for new products. Also
known as information diffusion or influence maximization in social
networks

Given Information: Social network of individuals and information
about the extent individuals in the network influence each other

We want to market a new product that we hope will be adopted by a
large fraction of the network

A key issue in viral marketing is to select a set of initial seeds in the
social network and give them free samples of the product to trigger
cascade of influence over the network
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Models for Diffusion of Information

Linear threshold model

Independent cascade model
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Linear Threshold Model

Call a node active if it adopts the product/information

Initially every node is inactive except the nodes in the initial target.

Let us consider a node i and represent its neighbors by the set N(i)

Node i is influenced by a neighbor node j according to a weight wji .
These weights are normalized in such a way that

∑

j∈N(i)

wji ≤ 1.

Further each node i chooses a threshold, say θi , uniformly at random
from the interval [0,1]

This threshold represents the weighted fraction of node i
′
s neighbors

that must become active in order for node i to become active
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Given a random choice of thresholds and an initial set (call it S) of active
nodes, the diffusion process propagates as follows:

in time step t, all nodes that were active in step (t − 1) remain active

we activate every node i for which the total weight of its active
neighbors is at least θi

if A(i) is assumed to be the set of active neighbors of node i , then i

gets activated if ∑

j∈A(i)

wji ≥ θi .

This process stops when there is no new active node in a particular
time interval
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Linear Threshold Model: An Example
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Independent Cascade Model

Initially every node is inactive except the nodes in the initial target

The process unfolds in discrete steps according to the following
randomized rule. When node j first becomes active in step t, it is
given a single chance to activate each currently inactive neighbor i ; it
succeeds with a probability p(j , i)

If i has multiple newly activated neighbors, their attempts are
sequenced in an arbitrary order

If j succeeds, then i will become active in step t + 1; but whether or
not j succeeds, it cannot make any further attempts to activate i in
subsequent rounds

This process runs until no more activations are possible
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Influence Maximization Problem

Objective Function: We define the influence of a set of nodes A,
denoted σ(A), to be the expected number of active nodes at the end
of the process.

For economic reasons, we would like to limit the size of A

Influence Maximization Problem: For a given constant k , influence
maximization problem seeks to find a set of nodes A of cardinality k

that maximizes σ(A).
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A Few Key Results

Lemma 1: [Kempe, et al. (2003)] The influence maximization
problem is NP-hard for the Linear Threshold Model.

Lemma 2: [Kempe, et al. (2003)] The influence maximization
problem is NP-hard for the Independent Cascade model.

Submodular Function: An arbitrary set function f (.) that maps
subsets of a ground set U to real numbers is called submodular if

f (S ∪ {i})− f (S) ≥ f (T ∪ {i})− f (T ), ∀S ⊆ T ⊆ U

Lemma 3: [Kempe, et al. (2003)] For an arbitrary instance of the
Linear Threshold Model, the resulting influence function σ(.) is
submodular.

Lemma 4: [Kempe, et al. (2003)] For an arbitrary instance of the
Independent Cascade Model, the resulting influence function σ(.) is
submodular.
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A Few Key Results (Cont.)

Greedy Algorithm [Kempe, et al. (2003)]

1 Set A← φ.

2 for i = 1 to k do

3 Choose a node ni ∈ N \ A maximizing σ(A ∪ {ni})

4 Set A← A ∪ {ni}.

5 end for

Theorem: Let S∗ be the set that maximizes σ(.) over all k-element
sets and let S be the set of k nodes constructed by the greedy
algorithm. Then σ(S) ≥ (1− 1

e
)σ(S∗); in other words, S provides

(1− 1
e
)-approximation.
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Ranking Mechanisms for Influence Maximization

A Node Ranking Mechanism (SPIN):

Game theory based mechanism
Running time is faster than that of the greedy asymptotically
A drawback of the greedy algorithm is its running time is proportional
to k (i.e. the cardinality of initial seed set S)

An Edge Ranking Mechanism (SPINE):

Greedy algorithm of KKT (2003) runs very slow in practice even in
small size data sets
Social networks of practical interest consist of millions of nodes and
edges
Graph sparsification is a data-reduction technique that retains only key
edges revealing the backbone of information propagation over the
network
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Cooperative Game Theory

Definition: A cooperative game with transferable utility is defined as
the pair (N, v) where N = {1, 2, . . . , n} is a set of players and
v : 2N → R is a characteristic function, with v(.) = 0. We call such a
game also as a game in coalition form, game in characteristic form, or
coalitional game or TU game.

Example: There is a seller s and two buyers b1 and b2. The seller
has a single unit to sell and his willingness to sell the item is 10.
Similarly, the valuations for b1 and b2 are 15 and 20 respectively. The
corresponding cooperative game is:

N = {s, b1, b2}
v({s}) = 0 , v({b1}) = 0 , v({b2}) = 0 , v({b1, b2}) = 0
v({s, b1}) = 5 , v({s, b2}) = 10 , v({s, b1, b2}) = 10
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The Shapley’s Theorem

Theorem: There is exactly one mapping φ : R2N−1 → R
N that

satisfies Symmetry, Linearity, and Carrier axioms. This function
satisfies: ∀i ∈ N, ∀v ∈ R

2N−1,

φi (v) =
∑

C⊆N\{i}

|C |!(n − |C | − 1)!

n!
{v(C ∪ {i})− v(C )}

Example: Consider the following cooperative game: N = {1, 2, 3},
v(1) = v(2) = v(3) = v(23) = 0, v(12) = v(13) = v(123) = 300.
Then we have that

φ1(v) =
2

6
v(1)+

1

6
(v(12)−v(2))+

1

6
(v(13)−v(3))+

2

6
(v(123)−v(23))

It can be easily computed that φ1(v) = 200, φ2(v) = 50, φ3(v) = 50
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SPIN: A Node Ranking Mechanism

It is a cooperative game theoretic framework for the influence
maximization problem

Measures the influential capabilities of the nodes as provided by the
Shapley value

ShaPley value based discovery of Influential Nodes (SPIN):
1 Ranking the nodes,
2 Choosing the top-k nodes from the ranking order.

Advantages of SPIN:
1 Quality of solution is same as that of popular benchmark

approximation algorithms
2 Works well for both sub-modular and non-submodular objective

functions
3 Running time is independent of the value of k
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Ranklist Construction

1 Let πj be the j-th permutation in Ω̂ and R be repetitions.

2 Set MC [i ]← 0, for i = 1, 2, . . . , n.

3 for j = 1 to t do

4 Set temp[i ]← 0, for i = 1, 2, . . . , n.

5 for r = 1 to R , do

6 assign random thresholds to nodes;

7 for i = 1 to n, do

8 temp[i ]← temp[i ] + v(Si (πj) ∪ {i}) − v(Si (πj))

9 for i = 1 to n, do

10 MC [i ]← temp[i ]/R ;

11 for i = 1 to n, do

12 compute Φ[i ]← MC [i ]
t

13 Sort nodes based on the average marginal contributions of the nodes
Ramasuri Narayanam Vinayaka Pandit () ECL, CSA, IISc December 21, 2011 16 / 37



Efficient Computation of Rank List

Initially all nodes are inactive.

Randomly assign a threshold to each node.

Fix a permutation π and activate π(1) to determine its influence.

Next consider π(2). If π(2) is already activated, then the influence of
π(2) is 0. Otherwise, activate π(2) to determine its influence.

Continue up to π(n).

Repeat the above process R times (for example 10000 times) using
the same π.

Repeat the above process ∀π ∈ Ω̂.
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Choosing Top-k Nodes

1 Naive approach is to choose the first k in the RankList[] as the top-k
nodes.

2 Drawback: Nodes may be clustered.

3 RankList[]={5,4,2,7,11,15,9,13,12,10,6,14,3,1,8}.

4 Top 4 nodes, namely {5, 4, 2, 7}, are clustered.

5 Choose nodes:

rank order of the nodes
spread over the network
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k value Greedy Shapley Value MDH HCH

Algorithm Algorithm based Algorithm

1 4 4 4 2
2 8 7 7 4
3 10 10 8 6
4 12 12 8 7
5 13 13 10 8
6 14 14 13 8
7 15 15 13 8
8 15 15 13 8
9 15 15 13 10
10 15 15 13 11
11 15 15 13 13
12 15 15 13 13
13 15 15 14 14
14 15 15 15 15
15 15 15 15 15
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Running Time of SPIN

Overall running time of SPIN is
O(t(n +m)R + n log(n) + kn + kRm) where t is a polynomial in n.

For all practical graphs (or real world graphs), it is reasonable to
assume that n < m. With this, the overall running time of the SPIN
is O(tmR) where t is a polynomial in n.
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Experimental Results: Data Sets

Random Graphs

Sparse Random Graphs
Scale-free Networks (Preferential Attachment Model)

Real World Graphs

Co-authorship networks,
Networks about co-purchasing patterns,
Friendship networks, etc.
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Experimental Results: Data Sets

Dataset Number of Nodes Number of Edges

Sparse Random Graph 500 5000 (approx.)

Scale-free Graph 500 1250 (approx.)

Political Books 105 441

Jazz 198 2742

Celegans 306 2345

NIPS 1061 4160

Netscience 1589 2742

HEP 10748 52992
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Experiments: Random Graphs
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Experiments: Real World Graphs
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Top-10 Nodes in Jazz Dataset
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Top-10 Nodes in NIPS Co-Authorship Data Set
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SPINE: An Edge Ranking Mechanism

Given Information: A social network of individuals and a log of past
propagations (or a log of past actions performed by the nodes in the
network)

Assume that these actions have propagated in the network via the
independent cascade model

Maximum likelihood parameters of this model can be found for
instance by using the EM algorithm

Given the parameters, the sparsification problem stated as follows: it
is required to preserve the set of k links that maximize the likelihood
of the observed data.

Sparsifying a network with respect to a log of past actions can be seen
as revealing the backbone of information propagation in the network
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Estimating Influence Probabilities for IC Model

Every trace generated by the independent cascade model is associated
with a likelihood value

For an action α, (i) F+
α
(v) = the set of nodes that positively

influenced v , and (ii) F−
α
(v) = the set of nodes that definitely failed

to influence v

Then the likelihood Lα(G ) of the trace for action α can be written as

Lα(G ) = Πv∈V P+
α
(v)P−

α
(v)

where P+
α
(v) = 1 if F+

α
(v) = φ and

P+
α
(v) = 1− Πu∈F+

α (v)(1− p(u, v)) otherwise;

P−
α
(v) = Π

u∈F−
α (v)(1− p(u, v)).

Then the total log-likelihood of the given traces of actions is given by:

logL(G ) =
∑

a∈A

logLα(G ) =
∑

a∈A

∑

v∈V

(logP+
α
(v) + logP−

α
(v))
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Estimating Influence Probabilities for IC Model (Cont.)

Need to estimate the influence probabilities p(u, v) of the
independent cascade model from a set of traces

Consider a set of actions A. For each action α ∈ A, we observe its
propagation trace.

The probability values p(u, v) that maximize the log-likelihood of the
given traces can be computed using the following iterative formula

pk+1(u, v) =
pk(u, v)

|A+
v |u|+ |A

−
v |u|

∑

α∈A+
v|u

1

P+
α (v)

where actions in the set A+
v |u = {α ∈ A|F+

α
(v) ∋ u} have traces

where u positively influence v ,a nd the actions in the set
A−
v |u = {α ∈ A|F−

α
(v) ∋ u} have traces where u definitely failed to

influence v .
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Sparsification

Sparsification Problem: Given a network G = (V ,D) with
probabilities p(u, v) on the arcs, a set A of action traces, and an
integer k , find a sparse subnetwork Gs = (V ,Ds) of G of size
|Ds | = k , so that the log-likelihood function logL(Gs) is maximized.
Sparsification problem is not solved by selecting the k arcs (u, v) in D

with the largest probability values p(u, v)
For k = 3, the best sparse model Gs = (V ,Ds) is the one with
Ds = {(Ω, u1), (Ω, u2), (u2, v)} even though p(u2, v) < p(u1, v).
Note that the alternative option of Ds = {(Ω, u1), (Ω, u2), (u1, v)}
leads to zero likelihood.
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Hardness of Sparsification Problem

For the sparse network Gs = (V ,Ds) to have finite log-likelihood, it is
necessary that the traces of all actions A are possible for its set of
arcs Ds

That is, if node v performs an action α in A, then Ds must include an
arc from at least one of the nodes F+

α
that possibly influence v

Lemma: Deciding whether Sparsification Problem has finite solution
is NP-hard.
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Hardness of Sparsification Problem (Cont.)

Hint: It is not difficult to obtain a reduction from the Hitting Set
problem.

Hitting Set Problem: Given a collection of sets S = {S1, S2, . . . , Sm}
over a universe of n elements U = {1, 2, . . . , n} (i.e. Sj ⊆ U), a
hitting set for S is a set H ⊆ U that intersects all sets in S .

Theorem: Approximating Sparsification Problem up to any
multiplicative factor is NP-hard.
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A Greedy Algorithm: SPINE

SPINE produces a solution Ds to the Sparsification Problem in k

steps, adding to Ds one arc at each step

These k steps are divided into two phases:

In the first phase, SPINE aims to identify a solution D0 of finite log
likelihood
In the second phase, it greedily seeks a solution of maximum log
likelihood

This two phase approach is due to the observation that Sparisification
Problem is at least as difficult as identifying a solution of finite log
likelihood
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SPINE: First Phase

For each node v , we seek for a hitting set of collection

C (v) = {D+
α
(v) 6= φ, α ∈ A}

Since hitting set is NP-hard, use the greedy approximation algorithm
describes in Johnson (STOC 1973) as follows:

Order the arcs (u, v) by the number n(u, v) of actions for which u

possibly influenced v where
n(u, v) = |{D+

α
(v) ∈ C (v), (u, v) ∈ D+

α
(v)}|

At each step, the arc (u, v) with the maximum number n(u, v) is
selected and all sets D+

α
(v) that contain (u, v) are ignored for the rest

of this process
The first phase ends when either the limit of k arcs is reached or
selected arcs lead to a finite log likelihood
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SPINE: Second Phase

Let G0 = (V ,D0) be the associated sparse network at the end of First
Phase

If |D0| < k , then we still need to select k − |D0| arcs

Choose these k − |D0| arcs by selecting greedily at each step the arc
that offers the largest increase in log-likelihood

Lemma: Let Dopt be a superset of D0 that contains k arcs and
induces a subgraph Gopt = (V ,Dopt) of G with maximum
log-likelihood. Also, let Dsp by the set of arcs returned by SPINE and
let Gsp = (V ,Dsp) be the induced subgraph. That is, Dsp is also
superset of D0 and it has k arcs. Then, provided that logL(G0( is
finite, we have

logL(Gsp) ≥
1

e
logL(G0) + (1−

1

e
)logL(Dopt)
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Experiments - SPINE for Influence Maximization

Apply the SPINE on the network of YMEME-S (consists of 2573
nodes and 466284 edges) to identify two sparse networks G1 and G2

of k1 = 25688 and k2 = 38899 arcs respectively
Note that here G1 is the smallest network with non-zero likelihood
identified with SPINE and G2 is the smallest network of maximum
likelihood
Run the greedy algorithm of Kempe, et al. (KDD 2003) on each of
G , G1, and G2 respectively

Ramasuri Narayanam Vinayaka Pandit () ECL, CSA, IISc December 21, 2011 36 / 37



Thank You
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