CS621: Artificial Intelligence

Pushpak Bhattacharyya CSE Dept., IIT Bombay

Lecture-1: Introduction

Persons involved

- Faculty instructor: Dr. Pushpak Bhattacharyya (<u>www.cse.iitb.ac.in/~pb</u>)
- TAs: Prashanth, Debraj, Ashutosh, Nirdesh, Raunak, Gourab {pkamle, debraj, ashu, nirdesh, rpilani, roygourab}@cse
- Course home page
 - www.cse.iitb.ac.in/~cs344-2010 (will be up)
- Venue: SIT Building: SIC301
- 1 hour lectures 3 times a week: Mon-11.30, Tue-8.30, Thu-9.30 (slot 4)
- Associated Lab: CS386- Monday 2-5 PM

Perspective

Disciplines which form the core of AI- inner circle Fields which draw from these disciplines- outer circle.

Topics to be covered (1/2)

- Search
 - General Graph Search, A*
 - Iterative Deepening, α-β pruning, probabilistic methods
- Logic
 - Formal System
 - Propositional Calculus, Predicate Calculus, Fuzzy Logic
- Knowledge Representation
 - Predicate calculus, Semantic Net, Frame
 - Script, Conceptual Dependency, Uncertainty

Topics to be covered (2/2)

- Neural Networks: Perceptrons, Back Propagation, Self Organization
- Statistical Methods
 - Markov Processes and Random Fields
 - Computer Vision, NLP, Machine Learning
- Planning: Robotic Systems

=============(if possible)

- Anthropomorphic Computing: Computational Humour, Computational Music
- IR and AI
- Semantic Web and Agents

Resources

- Main Text:
 - Artificial Intelligence: A Modern Approach by Russell & Norvik, Pearson, 2003.
- Other Main References:
 - Principles of AI Nilsson
 - AI Rich & Knight
 - Knowledge Based Systems Mark Stefik
- Journals
 - AI, AI Magazine, IEEE Expert,
 - Area Specific Journals e.g, Computational Linguistics
- Conferences
 - IJCAI, AAAI

Foundational Points

- Church Turing Hypothesis
 - Anything that is computable is computable by a Turing Machine
 - Conversely, the set of functions computed by a Turing Machine is the set of ALL and ONLY computable functions

- Physical Symbol System Hypothesis (Newel and Simon)
 - For Intelligence to emerge it is enough to manipulate symbols

- Society of Mind (Marvin Minsky)
 - Intelligence emerges from the interaction of very simple information processing units
 - Whole is larger than the sum of parts!

- Limits to computability
 - Halting problem: It is impossible to construct a Universal Turing Machine that given any given pair <M, I > of Turing Machine M and input I, will decide if M halts on I
 - What this has to do with intelligent computation? *Think!*

Limits to Automation

- Godel Theorem: A "sufficiently powerful" formal system cannot be BOTH complete and consistent
- "Sufficiently powerful": at least as powerful as to be able to capture Peano's Arithmetic
- Sets limits to automation of reasoning

- Limits in terms of time and Space
 - NP-complete and NP-hard problems: Time for computation becomes extremely large as the length of input increases
 - PSPACE complete: Space requirement becomes extremely large
 - Sets limits in terms of resources

Two broad divisions of Theoretical CS

- Theory A
 - Algorithms and Complexity
- Theory B
 - Formal Systems and Logic

Al as the forcing function

- Time sharing system in OS
 - Machine giving the illusion of attending simultaneously with several people
- Compilers
 - Raising the level of the machine for better man machine interface
 - Arose from Natural Language Processing (NLP)
 - NLP in turn called the forcing function for AI

Allied Disciplines

Philosophy	Knowledge Rep., Logic, Foundation of AI (is AI possible?)
Maths	Search, Analysis of search algos, logic
Economics	Expert Systems, Decision Theory, Principles of Rational Behavior
Psychology	Behavioristic insights into AI programs
Brain Science	Learning, Neural Nets
Physics	Learning, Information Theory & AI, Entropy, Robotics
Computer Sc. & Engg.	Systems for AI

Grading

- (i) Exams
 - Midsem
 - Endsem
 - Class test
- (ii) Study
 - Seminar (in group)
- (iii) Work
 - Lab Assignments (cs386; in group)

Fuzzy Logic tries to capture the human ability of reasoning with imprecise information

- Models Human Reasoning
- Works with imprecise statements such as:

In a process control situation, "*If* the temperature is <u>moderate</u> and the pressure is <u>high</u>, *then* turn the knob <u>slightly right</u>"

 The rules have "Linguistic Variables", typically adjectives qualified by adverbs (adverbs are <u>hedges</u>).

Underlying Theory: Theory of Fuzzy Sets

- Intimate connection between logic and set theory.
- Given any set 'S' and an element 'e', there is a very natural predicate, $\mu_s(e)$ called as the *belongingness* predicate.
- The predicate is such that,

$$\mu_{s}(e) = 1, \qquad iff \ e \in S$$
$$= 0 \qquad otherwise$$

- = 0, otherwise For example, $S = \{1, 2, 3, 4\}, \mu_s(1) = 1 \text{ and } \mu_s(5) = 0$
- A predicate P(x) also defines a set naturally.
 S = {x | P(x) is true}
 For example, even(x) defines S = {x | x is even}

Fuzzy Set Theory (contd.)

- Fuzzy set theory starts by questioning the fundamental assumptions of set theory *viz.*, the belongingness predicate, μ, value is 0 or 1.
- Instead in Fuzzy theory it is assumed that, μ_s(e) = [0, 1]
- Fuzzy set theory is a generalization of classical set theory also called Crisp Set Theory.
- In real life *belongingness* is a fuzzy concept. Example: Let, T = set of "tall" people μ_T(Ram) = 1.0 μ_T(Shyam) = 0.2

Shyam belongs to T with degree 0.2.

Linguistic Variables

Concept of Hedge

- Hedge is an intensifier
- Example:

 $LV = tall, LV_1 = very$ tall, $LV_2 = somewhat$ tall

- 'very' operation:
 μ_{very tall}(x) = μ²_{tall}(x)
- 'somewhat' operation:

$$\mu_{somewhat tall}(x) = \sqrt{(\mu_{tall}(x))}$$

Representation of Fuzzy sets Let $U = \{x_1, x_2, \dots, x_n\}$ |U| = n

The various sets composed of elements from U are presented as points on and inside the n-dimensional hypercube. The crisp sets are the corners of the hypercube. $\mu_A(x_1)=0.3$

A fuzzy set A is represented by a point in the n-dimensional space as the point $\{\mu_A(x_1), \mu_A(x_2), \dots, \mu_A(x_n)\}$

Degree of fuzziness

The centre of the hypercube is the "most fuzzy" set. Fuzziness decreases as one nears the corners

Measure of fuzziness

Called the entropy of a fuzzy set

Definition

Distance between two fuzzy sets

$$d(S_1, S_2) = \sum_{i=1}^{n} |\mu_{s_1}(x_i) - \mu_{s_2}(x_i)|$$

L₁ - norm

Let C = fuzzy set represented by the centre point d(c,nearest) = |0.5-1.0| + |0.5 - 0.0| = 1 = d(C,farthest)

=> E(C) = 1

Definition

Cardinality of a fuzzy set

$$m(s) = \sum_{i=1}^{n} \mu_s(x_i)$$
 [generalization of cardinality of classical sets]

Union, Intersection, complementation, subset hood

$$\mu_{s_1 \cup s_2}(x) = \max[\mu_{s_1}(x), \mu_{s_2}(x)] \forall x \in U$$
$$\mu_{s_1 \cap s_2}(x) = \min[\mu_{s_1}(x), \mu_{s_2}(x)] \forall x \in U$$
$$\mu_{s_1}(x) = 1 - \mu_{s_1}(x)$$

Note on definition by extension and intension $S_1 = \{x_i | x_i \mod 2 = 0\}$ – Intension $S_2 = \{0,2,4,6,8,10,\dots\}$ – extension

How to define subset hood?