
CS344: Introduction toCS344: Introduction to
Artificial Intelligenceg

Pushpak BhattacharyyaPushpak Bhattacharyya
CSE Dept.,
IIT BombayIIT Bombay

Lecture 11–Prolog

Introduction

PROgramming in LOGic
Emphasis on what rather than howEmphasis on what rather than how

Problem in Declarative Form

Logic Machine

Basic MachineBasic Machine

Prolog’s strong and weak
points

Assists thinking in terms of objects and
entitiesentities
Not good for number crunching
Useful applications of Prolog inUseful applications of Prolog in

Expert Systems (Knowledge
Representation and Inferencing)Representation and Inferencing)
Natural Language Processing
R l ti l D t bRelational Databases

A Typical Prolog program
Compute_length ([],0).
Compute_length ([Head|Tail], Length):-

Compute_length (Tail,Tail_length),
Length is Tail_length+1.

High level explanation:
The length of a list is 1 plus the length of the
t il f th li t bt i d b i th fi ttail of the list, obtained by removing the first
element of the list.

This is a declarative description of theThis is a declarative description of the
computation.

FundamentalsFundamentals

(absolute basics for writing Prolog
Programs)g)

Facts
John likes Mary

like(john,mary)
Names of relationship and objects must begin
with a lower-case letter.
Relationship is written first (typically theRelationship is written first (typically the
predicate of the sentence).
Objects are written separated by commasObjects are written separated by commas
and are enclosed by a pair of round brackets.
The full stop character ‘.’ must come at the p
end of a fact.

More facts
Predicate InterpretationPredicate Interpretation

valuable(gold) Gold is valuable.

(j h ld) J h ldowns(john,gold) John owns gold.

father(john mary) John is the father offather(john,mary) John is the father of
Mary

gives (john book mary) John gives the book togives (john,book,mary) John gives the book to
Mary

Questions

Questions based on facts
Answered by matchingy g

Two facts match if their predicates are same
(spelt the same way) and the arguments (p y) g
each are same.

If matched, prolog answers yes, else no.
No does not mean falsity.y

Prolog does theorem proving

When a question is asked, prolog tries
to match transitively.to match transitively.
When no match is found, answer is no.
This means not provable from the givenThis means not provable from the given
facts.

Variables

Always begin with a capital letter
?- likes (john X)? likes (john,X).
?- likes (john, Something).

But notBut not
?- likes (john,something)

Example of usage of variable
Facts:

likes(john,flowers).
likes(john mary)likes(john,mary).
likes(paul,mary).

Question:
? l k (h)?- likes(john,X)

Answer:
X=flowers and wait
;
mary
;;
no

Conjunctions

Use ‘,’ and pronounce it as and.
Examplep

Facts:
likes(mary,food).
likes(mary,tea).
likes(john,tea).
likes(john,mary)(j , y)

?-
likes(mary,X),likes(john,X).
Meaning is anything liked by Mary also liked by John?

Backtracking (an inherent propertyBacktracking (an inherent property
of prolog programming)

likes(mary,X),likes(john,X)

likes(mary,food)
likes(mary,tea)
likes(john tea)likes(john,tea)
likes(john,mary)

1. First goal succeeds. X=food
2. Satisfy likes(john,food)y (j)

Backtracking (continued)
R t i t k d l d t i t ti f iReturning to a marked place and trying to resatisfy is

called Backtracking
likes(mary,X),likes(john,X)

likes(mary,food)
likes(mary,tea)
likes(john tea)likes(john,tea)
likes(john,mary)

1. Second goal fails
2. Return to marked placep

and try to resatisfy the first goal

Backtracking (continued)

likes(mary,X),likes(john,X)

likes(mary,food)
likes(mary,tea)
likes(john tea)likes(john,tea)
likes(john,mary)

1. First goal succeeds again, X=tea
2. Attempt to satisfy the likes(john,tea)p y (j)

Backtracking (continued)

likes(mary,X),likes(john,X)

likes(mary,food)
likes(mary,tea)
likes(john tea)likes(john,tea)
likes(john,mary)

1. Second goal also suceeds
2. Prolog notifies success and waits for a replyg p y

Rules
Statements about objects and their
relationships
Expess

If-then conditions
I use an umbrella if there is a rainI use an umbrella if there is a rain
use(i, umbrella) :- occur(rain).

Generalizations
All t lAll men are mortal
mortal(X) :- man(X).

Definitions
An animal is a bird if it has feathers
bird(X) :- animal(X), has_feather(X).

Syntax

<head> :- <body>
Read ‘:-’ as ‘if’Read :- as if .
E.G.

lik (j h X) lik (X i k t)likes(john,X) :- likes(X,cricket).
“John likes X if X likes cricket”.
i.e., “John likes anyone who likes cricket”.

Rules always end with ‘.’.

Another Example

sister_of (X,Y):- female (X),
parents (X M F)parents (X, M, F),
parents (Y, M, F).

X is a sister of Y is
X is a female and
X and Y have same parentsX and Y have same parents

Question Answering in presence Q g p
of rules

Facts
male (ram)male (ram).
male (shyam).
female (sita)female (sita).
female (gita).
parents (shyam gita ram)parents (shyam, gita, ram).
parents (sita, gita, ram).

Question Answering: Y/N type: is sita the
sister of shyam?sister of shyam?

?- sister_of (sita, shyam)

female(sita)
parents(sita,M,F) parents(shyam,M,F)

parents(sita,gita,ram)
parents(shyam,gita,ram)

p (,g ,)

success

Question Answering: wh-type: whose
sister is sita?sister is sita?

?- ?- sister_of (sita, X)

female(sita)
parents(sita,M,F) parents(Y,M,F)

parents(sita,gita,ram)

parents(Y,gita,ram)

p (,g ,)

Success

parents(shyam,gita,ram)

Success
Y=shyam

Exercise

1. From the above it is possible for
somebody to be her own sister. Howsomebody to be her own sister. How
can this be prevented?

An example Prolog ProgramAn example Prolog Program

Shows path with mode of conveyeance from
city C1 to city C2

:-use_module(library(lists)).

byCar(auckland,hamilton).
b C (h ilt l)

go(C1,C2) :- travel(C1,C2,L),
show_path(L).

travel(C1 C2 L) :-byCar(hamilton,raglan).
byCar(valmont,saarbruecken).
byCar(valmont,metz).

byTrain(metz frankfurt)

travel(C1,C2,L) :-
direct_path(C1,C2,L).

travel(C1,C2,L) :-
direct_path(C1,C3,L1),travel(C

byTrain(metz,frankfurt).
byTrain(saarbruecken,frankfurt
).
byTrain(metz,paris).
byTrain(saarbruecken paris)

p (, ,), (
3,C2,L2),append(L1,L2,L).

direct_path(C1,C2,[C1,C2,' by
car']):- byCar(C1,C2).
direct path(C1 C2 [C1 C2 ' bybyTrain(saarbruecken,paris).

byPlane(frankfurt,bangkok).
byPlane(frankfurt,singapore).
byPlane(paris losAngeles)

direct_path(C1,C2,[C1,C2,' by
train']):- byTrain(C1,C2).
direct_path(C1,C2,[C1,C2,' by
plane']):- byPlane(C1,C2).

byPlane(paris,losAngeles).
byPlane(bangkok,auckland).
byPlane(losAngeles,auckland).

show_path([C1,C2,M|T]) :-
write(C1),write(' to
'),write(C2),write(M),nl,show_p
ath(T).

Rules
Statements about objects and their
relationships
Expess

If-then conditions
I use an umbrella if there is a rainI use an umbrella if there is a rain
use(i, umbrella) :- occur(rain).

Generalizations
All t lAll men are mortal
mortal(X) :- man(X).

Definitions
An animal is a bird if it has feathers
bird(X) :- animal(X), has_feather(X).

P l P FlProlog Program Flow,
BackTracking and CutBackTracking and Cut

Controlling the program flow

Prolog’s computation

Depth First Search
Pursues a goal till the endPursues a goal till the end

Conditional AND; falsity of any goal
prevents satisfaction of furtherprevents satisfaction of further
clauses.
C diti l OR ti f ti fConditional OR; satisfaction of any
goal prevents further clauses being
e al atedevaluated.

Control flow (top level)

Given
g:- a b c (1)g:- a, b, c. (1)
g:- d, e, f; g. (2)

If prolog cannot satisfy (1), control will
automatically fall through to (2).

Control Flow within a rule

Taking (1),
g:- a, b, c.g: a, b, c.

If a succeeds, prolog will try to satisfy b,
succeding which c will be tried.succeding which c will be tried.

For ANDed clauses, control flows forward
till the ‘.’, iff the current clause is true.till the . , iff the current clause is true.

For ORed clauses, control flows forward
till the ‘.’, iff the current clausetill the . , iff the current clause
evaluates to false.

What happens on failure

h i di l diREDO the immediately preceding
goal.

Fundamental Principle of prolog p p g
programming

l l h l lAlways place the more general rule
AFTER a specific rule.

CUT

Cut tells the system that

IF YOU HAVE COME THIS FAR

DO NOT BACKTRACK

EVEN IF YOU FAIL SUBSEQUENTLY.

‘CUT’ WRITTEN AS ‘!’ ALWAYS
SUCCEEDS.

Fail

This predicate always fails.
Cut and Fail combination is used toCut and Fail combination is used to
produce negation.
Since the LHS of the neck cannotSince the LHS of the neck cannot
contain any operator, A ~B is
implemented asimplemented as

B :- A, !, Fail.

Predicate CalculusPredicate Calculus

Introduction through an example (Zohar Manna,
1974):

Problem: A, B and C belong to the Himalayan club.Problem: A, B and C belong to the Himalayan club.
Every member in the club is either a mountain
climber or a skier or both. A likes whatever B
dislikes and dislikes whatever B likes. A likes rain

d N t i li b lik i Eand snow. No mountain climber likes rain. Every
skier likes snow. Is there a member who is a
mountain climber and not a skier?

Gi k l d hGiven knowledge has:
Facts
Rules

A wrong prolog program!
1. member(a).
2. member(b).
3 membe (c)3. member(c).
4. mc(X);sk(X) :- member(X) /* X is a mountain climber or skier or

both if X is a member; operators NOT allowed in the head of a
horn clause; hence wrong*/horn clause; hence wrong*/

5. like(X, snow) :- sk(X). /*all skiers like snow*/
6. \+like(X, rain) :- mc(X). /*no mountain climber likes rain; \+ is

h b f l l */the not operator; negation by failure; wrong clause*/
7. \+like(a, X) :- like(b,X). /* a dislikes whatever b likes*/
8. like(a, X) :- \+like(b,X). /* a dislikes whatever b likes*/
9. like(a,rain).
10. like(a,snow).
?- member(X) mc(X) \+sk(X)? member(X),mc(X),\+sk(X).

Prolog’s way of making and
breaking a list
Problem: to remove duplicates from a list

rem_dup([],[]).
rem_dup([H|T],L) :- member(H,T), !, rem_dup(T,L).

d ([H|T] [H|L1]) d (T L1)rem_dup([H|T],[H|L1]) :- rem_dup(T,L1).

Note: The cut ! in the second clause needed since afterNote: The cut ! in the second clause needed, since after
succeeding at member(H,T), the 3rd clause should
not be tried even if rem_dup(T,L) fails, which prolog

ill h i dwill otherwise do.

