CS344: Introduction to
Artificial Intelligence

Pushpak Bhattacharyya
CSE Dept.,
II'T Bombay

Lecture 12—Prolog examples:

Himalayan club, member, rem_duplicate, union,
Intersection

Introduction

= PROgramming in LOGiIc
= Emphasis on what rather than fow

y &
AR
y- 4

A Typical Prolog program

Compute length ([],0).

Compute length ([Head[Tail], Length):-
Compute length (Tall, Tall length),
Length is Tall length+1.

High level explanation:

The length of a list Is 1 plus the length of the
tall of the list.

This is a declarative description of the
computation.

Facts

Predicate Interpretation

valuable(gold) Gold is valuable.

owns(john,gold) John owns gold.

father(john,mary) John is the father of
Mary

gives (john,book,mary) |John gives the book to
Mary

Variables

= Always begin with a capital letter
s 7- likes (john, X).
s 7- likes (John, Something).

s But not
s 7- likes (John,something)

Example of usage of variable

Facts:
likes(john, flowers).
likes(john,mary).
likes(paul,mary).
Question:
?- likes(john, X)
Answer:
X=flowers and wait

mary

no

Conjunctions

= Use ‘,” and pronounce it as and.

= Example

= Facts:
likes(mary,food).
likes(mary,tea).
likes(john,tea).
likes(john,mary)

likes(mary,X),likes(john,X).
Meaning /s anything liked by Mary also liked by John?

Backtracking (an inherent property
of prolog programming)

Iikes(mary,X),Iikes(john,X)

L likes(mary,food)

likes(mary,tea)
likes(john,tea)
likes(john,mary)

1. First goal succeeds. X=food
2. Satisfy likes(john,food)

Backtracking (continued)

Returning to a marked place and trying to resatisfy is
called Backtracking

Iikes(mary,X),Iikes'(john,X)

! k likes(mary,food)

likes(mary,tea)
likes(john,tea)
likes(john,mary)

1. Second goal fails
2. Return to marked place
and try to resatisfy the first goal

Backtracking (continued)

Iikesgmary,X),Iikes(john,X)

! likes(mary,food)

likes(mary,tea)
likes(john,tea)
likes(john,mary)

1. First goal succeeds again, X=tea
2. Attempt to satisfy the likes(john,tea)

Backtracking (continued)

Iikesgmary,X),Iike/s(john,X)

!\ likes(mary,food)

likes(mary,tea)
Hikes(john,tea)
likes(john,mary)

1. Second goal also suceeds
2. Prolog notifies success and waits for a reply

Rules

Statements about objects and their
relationships

= Expess

= [I-then conditions
« [/ use an umbrella if there is a rain
= use(l, umbrella) :- occur(rain).
= Generalizations
« All men are mortal
« mortal(X) :- man(X).
= Definitions
« An animal is a bird If it has feathers
« bird(X) .- animal(X), has_feather(X).

Syntax

s <head> :- <body=>
= Read ‘:-’ as ‘If’.
s E.G.
s /kes(john,X) - likes(X,cricket).
s “John likes X if X likes cricket”,
n 1.e., “John likes anyone who likes cricket”.

= Rules always end with ‘.’

An example Prolog Program

Shows path with mode of conveyeance from
city C, to city C,

:-use_module(library(lists)).

byCar(auckland,hamilton).
byCar(hamilton,raglan).
byCar(valmont,saarbruecken).

byCar(valmont,metz).

byTrain(metz,frankfurt).
byTrain(saarbruecken,frankfurt

byTrain(metz,paris).
byTrain(saarbruecken,paris).

byPlane(frankfurt,bangkok).
byPlane(frankfurt,singapore).
byPlane(paris,losAngeles).
byPlane(bangkok,auckland).
byPlane(losAngeles,auckland).

go(C1,C2) :- travel(C1,C2,L),
show_path(L).

travel(C1,C2,L) :-
direct_path(C1,C2,L).

travel(C1,C2,L) :-
direct path(C1,C3,L1),travel(C
3,C2,L2),append(L1,L2,L).

direct_path(C1,C2,[C1,C2," by
car']):- byCar(C1,C2).

direct _path(C1,C2,[C1,C2," by
train']):- byTrain(C1,C2).
direct path(C1,C2,[C1,C2," by
plane']):- byPlane(C1,C2).

show_path([C1,C2,M]|T]) :-
write(C1),write(’ to

Y,write(C2),write(M),nl,show_p
ath(T).

Prolog’s computation

= Depth First Search
= Pursues a goal till the end

= Conditional AND; fal/sity of any goal
prevents satisfaction of further
clauses.

= Conditional OR; satisfaction of any
goal prevents further clauses being
evaluated.

What happens on failure

= REDO the immediately preceding
goal.

Fundamental Principle of prolog
programming

= Always place the more general rule
AFTER a specific rule.

CUT

= Cut tells the system that
IF YOU HAVE COME THIS FAR
DO NOT BACKTRACK
EVEN IF YOU FAIL SUBSEQUENTLY.

‘CUT" WRITTEN AS " ALWAYS
SUCCEEDS.

Fall

= This predicate always falls.

s Cut and Far// combination iIs used to
produce negation.

= Since the LHS of the neck cannot
contain any operator, A =2 ~BIs
Implemented as
B - A, ! Fall

B.

Predicate Calculus

= Introduction through an example (Zohar Manna,

1974):

= Problem: A, B and C belong to the Himalayan club.
Every member in the club is either a mountain
climber or a skier or both. A likes whatever B
dislikes and dislikes whatever B likes. A likes rain
and snow. No mountain climber likes rain. Every
skier likes snow. /s there a member who Is a
mountain climber and not a skier?

= Given knowledge has:
= Facts
= Rules

A syntactically wrong prolog
program!

1.

member(a).

2. member(b).
3.
4. mc(X);sk(X) :- member(X) /* X is a mountain climber or skier or

member(c).

both if X is a member; operators NOT allowed in the head of a
horn clause; hence wrong*/

. like(X, snow) :- sk(X). /*all skiers like snow*/
. \+like(X, rain) :- mc(X). /*no mountain climber likes rain; \+ is

the not operator; negation by failure; wrong clause*/

. \+like(a, X) :- like(b,X). /* a dislikes whatever b likes*/
8.
9.

like(a, X) :- \+like(b,X). /* a dislikes whatever b likes*/
like(a,rain).

10. like(a,snow).

2

member(X),mc(X),\+sk(X).

Correct (?) Prolog Program

member(a).

member(b).

member(c).
member(X):-\+mc(X),fail.
member(X).
member(X):-\+sk(X),!,fail.
member(X).

like(a,rain).

like(a,snow).

like(a,X) :- \+ like(b,X).
like(b,X) :- like(a,X),!,fail.
like(b,X).
mc(X):-like(X,rain),!,fail.
mc(X).

sk(X):- \+like(X,snow),! falil.
sk(X).
g(X):-member(X),mc(X)\+sk(X),!.

Member (membership in a list)

member(X,[X]|).
member(X,[|L):- member(X,L).

Prolog’s way of making and
breaking a list

Problem: to remove duplicates from a list

rem_dup([1,[D.
rem_dup([H|T].L) :- member(H,T), !, rem_dup(T,L).
rem_dup([H|T],[H|L1]) :- rem_dup(T,L1).

Ll

Note: The cut ! in the second clause needed, since after
succeeding at member(H,T), the 3" clause should
not be tried even if rem_dup(T,L) fails, which prolog
will otherwise do.

Union (lists contain unigue elements)

union([],Z,2).

union([X|Y],Z,W):-
member(X,2),!,union(Y,Z,W).

union([X|Y],Z,[X|W]):- union(Y,Z,W).

Intersection (lists contain unique

elements)

Intersection([1,Z,[]).
Intersection([X|Y],Z,[X|W]):-
member(X,2),!,intersection(Y,Z,W).

Intersection([X|Y],Z,W):-
iIntersection(Y,Z,W).

