
CS344: Introduction toCS344: Introduction to
Artificial Intelligenceg

Pushpak BhattacharyyaPushpak Bhattacharyya
CSE Dept.,
IIT BombayIIT Bombay

Lecture 12–Prolog examples:
Himalayan club member rem duplicate unionHimalayan club, member, rem_duplicate, union,

intersection

Introduction

PROgramming in LOGic
Emphasis on what rather than howEmphasis on what rather than how

Problem in Declarative Form

Logic Machine

Basic MachineBasic Machine

A Typical Prolog program
Compute_length ([],0).
Compute_length ([Head|Tail], Length):-

Compute_length (Tail,Tail_length),
Length is Tail_length+1.

High level explanation:
The length of a list is 1 plus the length of the
t il f th li ttail of the list.

This is a declarative description of the
computationcomputation.

Facts
Predicate InterpretationPredicate Interpretation

valuable(gold) Gold is valuable.

(j h ld) J h ldowns(john,gold) John owns gold.

father(john mary) John is the father offather(john,mary) John is the father of
Mary

gives (john book mary) John gives the book togives (john,book,mary) John gives the book to
Mary

Variables

Always begin with a capital letter
?- likes (john X)? likes (john,X).
?- likes (john, Something).

But notBut not
?- likes (john,something)

Example of usage of variable
Facts:

likes(john,flowers).
likes(john mary)likes(john,mary).
likes(paul,mary).

Question:
? l k (h)?- likes(john,X)

Answer:
X=flowers and wait
;
mary
;;
no

Conjunctions

Use ‘,’ and pronounce it as and.
Examplep

Facts:
likes(mary,food).
likes(mary,tea).
likes(john,tea).
likes(john,mary)(j , y)

?-
likes(mary,X),likes(john,X).
Meaning is anything liked by Mary also liked by John?

Backtracking (an inherent propertyBacktracking (an inherent property
of prolog programming)

likes(mary,X),likes(john,X)

likes(mary,food)
likes(mary,tea)
likes(john tea)likes(john,tea)
likes(john,mary)

1. First goal succeeds. X=food
2. Satisfy likes(john,food)y (j)

Backtracking (continued)
R t i t k d l d t i t ti f iReturning to a marked place and trying to resatisfy is

called Backtracking
likes(mary,X),likes(john,X)

likes(mary,food)
likes(mary,tea)
likes(john tea)likes(john,tea)
likes(john,mary)

1. Second goal fails
2. Return to marked placep

and try to resatisfy the first goal

Backtracking (continued)

likes(mary,X),likes(john,X)

likes(mary,food)
likes(mary,tea)
likes(john tea)likes(john,tea)
likes(john,mary)

1. First goal succeeds again, X=tea
2. Attempt to satisfy the likes(john,tea)p y (j)

Backtracking (continued)

likes(mary,X),likes(john,X)

likes(mary,food)
likes(mary,tea)
likes(john tea)likes(john,tea)
likes(john,mary)

1. Second goal also suceeds
2. Prolog notifies success and waits for a replyg p y

Rules
Statements about objects and their
relationships
Expess

If-then conditions
I use an umbrella if there is a rainI use an umbrella if there is a rain
use(i, umbrella) :- occur(rain).

Generalizations
All t lAll men are mortal
mortal(X) :- man(X).

Definitions
An animal is a bird if it has feathers
bird(X) :- animal(X), has_feather(X).

Syntax

<head> :- <body>
Read ‘:-’ as ‘if’Read :- as if .
E.G.

lik (j h X) lik (X i k t)likes(john,X) :- likes(X,cricket).
“John likes X if X likes cricket”.
i.e., “John likes anyone who likes cricket”.

Rules always end with ‘.’.

An example Prolog ProgramAn example Prolog Program

Shows path with mode of conveyeance from
city C1 to city C2

:-use_module(library(lists)).

byCar(auckland,hamilton).
b C (h ilt l)

go(C1,C2) :- travel(C1,C2,L),
show_path(L).

travel(C1 C2 L) :-byCar(hamilton,raglan).
byCar(valmont,saarbruecken).
byCar(valmont,metz).

byTrain(metz frankfurt)

travel(C1,C2,L) :-
direct_path(C1,C2,L).

travel(C1,C2,L) :-
direct_path(C1,C3,L1),travel(C

byTrain(metz,frankfurt).
byTrain(saarbruecken,frankfurt
).
byTrain(metz,paris).
byTrain(saarbruecken paris)

p (, ,), (
3,C2,L2),append(L1,L2,L).

direct_path(C1,C2,[C1,C2,' by
car']):- byCar(C1,C2).
direct path(C1 C2 [C1 C2 ' bybyTrain(saarbruecken,paris).

byPlane(frankfurt,bangkok).
byPlane(frankfurt,singapore).
byPlane(paris losAngeles)

direct_path(C1,C2,[C1,C2,' by
train']):- byTrain(C1,C2).
direct_path(C1,C2,[C1,C2,' by
plane']):- byPlane(C1,C2).

byPlane(paris,losAngeles).
byPlane(bangkok,auckland).
byPlane(losAngeles,auckland).

show_path([C1,C2,M|T]) :-
write(C1),write(' to
'),write(C2),write(M),nl,show_p
ath(T).

Prolog’s computation

Depth First Search
Pursues a goal till the endPursues a goal till the end

Conditional AND; falsity of any goal
prevents satisfaction of furtherprevents satisfaction of further
clauses.
C diti l OR ti f ti fConditional OR; satisfaction of any
goal prevents further clauses being
e al atedevaluated.

What happens on failure

h i di l diREDO the immediately preceding
goal.

Fundamental Principle of prolog p p g
programming

l l h l lAlways place the more general rule
AFTER a specific rule.

CUT

Cut tells the system that

IF YOU HAVE COME THIS FAR

DO NOT BACKTRACK

EVEN IF YOU FAIL SUBSEQUENTLY.

‘CUT’ WRITTEN AS ‘!’ ALWAYS
SUCCEEDS.

Fail

This predicate always fails.This predicate always fails.
Cut and Fail combination is used to
produce negationproduce negation.
Since the LHS of the neck cannot
contain any operator A B iscontain any operator, A ~B is
implemented as

ilB :- A, !, Fail.
B.

Predicate CalculusPredicate Calculus

Introduction through an example (Zohar Manna,
1974):

Problem: A, B and C belong to the Himalayan club.Problem: A, B and C belong to the Himalayan club.
Every member in the club is either a mountain
climber or a skier or both. A likes whatever B
dislikes and dislikes whatever B likes. A likes rain

d N t i li b lik i Eand snow. No mountain climber likes rain. Every
skier likes snow. Is there a member who is a
mountain climber and not a skier?

Gi k l d hGiven knowledge has:
Facts
Rules

A syntactically wrong prolog
program!
1. member(a).
2. member(b).
3 membe (c)3. member(c).
4. mc(X);sk(X) :- member(X) /* X is a mountain climber or skier or

both if X is a member; operators NOT allowed in the head of a
horn clause; hence wrong*/horn clause; hence wrong*/

5. like(X, snow) :- sk(X). /*all skiers like snow*/
6. \+like(X, rain) :- mc(X). /*no mountain climber likes rain; \+ is

h b f l l */the not operator; negation by failure; wrong clause*/
7. \+like(a, X) :- like(b,X). /* a dislikes whatever b likes*/
8. like(a, X) :- \+like(b,X). /* a dislikes whatever b likes*/
9. like(a,rain).
10. like(a,snow).
?- member(X) mc(X) \+sk(X)? member(X),mc(X),\+sk(X).

Correct (?) Prolog Program
member(a).
member(b).
member(c)member(c).
member(X):-\+mc(X),fail.
member(X).
member(X):-\+sk(X),!,fail.() \ (), ,
member(X).
like(a,rain).
like(a,snow).
like(a,X) :- \+ like(b,X).
like(b,X) :- like(a,X),!,fail.
like(b,X).
mc(X): like(X rain) ! failmc(X):-like(X,rain),!,fail.
mc(X).
sk(X):- \+like(X,snow),!,fail.
sk(X).()
g(X):-member(X),mc(X),\+sk(X),!.

Member (membership in a list)

member(X,[X|_]).
member(X [|L):- member(X L)member(X,[_|L):- member(X,L).

Prolog’s way of making and
breaking a list
Problem: to remove duplicates from a list

rem_dup([],[]).
rem_dup([H|T],L) :- member(H,T), !, rem_dup(T,L).

d ([H|T] [H|L1]) d (T L1)rem_dup([H|T],[H|L1]) :- rem_dup(T,L1).

Note: The cut ! in the second clause needed since afterNote: The cut ! in the second clause needed, since after
succeeding at member(H,T), the 3rd clause should
not be tried even if rem_dup(T,L) fails, which prolog

ill h i dwill otherwise do.

Union (lists contain unique elements)

union([],Z,Z).
union([X|Y] Z W):-union([X|Y],Z,W):-

member(X,Z),!,union(Y,Z,W).
union([X|Y] Z [X|W]): union(Y Z W)union([X|Y],Z,[X|W]):- union(Y,Z,W).

Intersection (lists contain uniqueIntersection (lists contain unique
elements)

intersection([],Z,[]).
intersection([X|Y] Z [X|W]):-intersection([X|Y],Z,[X|W]):-

member(X,Z),!,intersection(Y,Z,W).
intersection([X|Y] Z W):intersection([X|Y],Z,W):-

intersection(Y,Z,W).

