CS344: Introduction to Artificial Intelligence

Pushpak Bhattacharyya CSE Dept., IIT Bombay

Lecture 14-15-16- Search
Algorithmics; Admissibility

Search building blocks

, State Space : Graph of states (Express constraints and parameters of the problem)

- Operators : Transformations applied to the states.
- Start state : S_{0} (Search starts from here)
> Goal state : $\{G\}$ - Search terminates here.
, Cost : Effort involved in using an operator.
- Optimal path : Least cost path

Examples

Problem 1:8-puzzle

4	3	6
2	1	8
7		5

S

G

Tile movement represented as the movement of the blank space.
Operators:
L: Blank moves left
R : Blank moves right
U : Blank moves up
D : Blank moves down

$$
C(L)=C(R)=C(U)=C(D)=1
$$

Problem 2: Missionaries and Cannibals

Constraints

- The boat can carry at most 2 people
- On no bank should the cannibals outnumber the missionaries

State : <\#M, \#C, P>
$\# M=$ Number of missionaries on bank L
\#C = Number of cannibals on bank L
$P=$ Position of the boat
$S 0=<3,3, L>$
$G=\langle 0,0, R\rangle$

Operations
M2 = Two missionaries take boat
M1 = One missionary takes boat
$C 2=$ Two cannibals take boat
C1 = One cannibal takes boat
MC = One missionary and one cannibal takes boat

Partial search tree

Problem 3

B	B	B	W	W	W	

G : States where no \mathbf{B} is to the left of any \mathbf{W} Operators:

1) A tile jumps over another tile into a blank tile with cost 2
2) A tile translates into a blank space with cost 1

All the three problems mentioned above are to be solved using A*

Algorithmics of Search

General Graph search Algorithm

Graph $G=(V, E)$

1) Open List : $S^{(\varnothing, 0)}$

Closed list: Ø
2) $\mathrm{OL}: \mathrm{A}^{(\mathrm{S}, 1)}, \mathrm{B}^{(\mathrm{S}, 3)}, \mathrm{C}^{(\mathrm{S}, 10)}$

CL: S
3) $\mathrm{OL}: \mathrm{B}^{(\mathrm{S}, 3)}, \mathrm{C}^{(\mathrm{S}, 10)}, \mathrm{D}^{(\mathrm{A}, 6)}$

CL: S, A
4) $O L: C^{(S, 10)}, D^{(A, 6)}, E^{(B, 7)}$

CL: S, A, B
5) $\mathrm{OL}: \mathrm{D}^{(\mathrm{A}, 6)}, \mathrm{E}^{(\mathrm{B}, 7)}$

CL: S, A, B , C
6) $O L: E^{(B, 7)}, F^{(D, 8)}, G^{(D, 9)}$

CL: S, A, B, C, D
7) $O L: F^{(D, 8)}, G^{(D, 9)}$

CL: S, A, B, C, D, E
8) $O L: G^{(D, 9)}$

CL: S, A, B, C, D, E, F
9) $\mathrm{OL}: \varnothing$

CL: S, A, B, C, D, E, F, G

Steps of GGS
 (principles of AI, Nilsson,)

- 1. Create a search graph G, consisting solely of the start node S; put S on a list called $O P E N$.
- 2. Create a list called CLOSED that is initially empty.
- 3. Loop: if OPEN is empty, exit with failure.
- 4. Select the first node on OPEN, remove from OPEN and put on CLOSED, call this node n.
- 5 . if n is the goal node, exit with the solution obtained by tracing a path along the pointers from n to s in G. (ointers are established in step 7).
- 6 . Expand node n, generating the set M of its successors that are not ancestors of n. Install these memes of M as successors of n in G.

GGS steps (contd.)

- 7. Establish a pointer to n from those members of M that were not already in G (i.e., not already on either OPEN or CLOSED). Add these members of M to OPEN. For each member of M that was already on OPEN or CLOSED, decide whether or not to redirect its pointer to n. For each member of M already on CLOSED, decide for each of its descendents in G whether or not to redirect its pointer.
- 8. Reorder the list OPEN using some strategy.
- 9. Go LOOP.

GGS is a general umbrella

Algorithm A

- A function f is maintained with each node $f(n)=g(n)+h(n), n$ is the node in the open list
- Node chosen for expansion is the one with least f value
- For BFS: $h=0, g=$ number of edges in the path to S
- For DFS: $h=0, g=\frac{1}{\text { No of edges in the path to } S}$

Algorithm A*

- One of the most important advances in AI
- $g(n)=$ least cost path to n from S found so far
- $h(n)<=h^{*}(n)$ where $h^{*}(n)$ is the actual cost of optimal path to G (node to be found) from n "Optimism leads to optimality"

A*: Definitions and Properties

A* Algorithm - Definition and Properties

- $f(n)=g(n)+h(n)$
- The node with the least value of f is chosen from the OL.
- $\quad f_{\text {where, }}^{*}(n)=g^{*}(n)+h^{*}(n)$, $g^{*}(n)=$ actual cost of the optimal path (s, n)
$h^{*}(n)=$ actual cost of optimal path (n, g)
- $g(n) \geq g^{*}(n)$
- By definition, $h(n) \leq h^{*}(n)$

8-puzzle: heuristics

Example: 8 puzzle

2	1	4
7	8	3
5	6	

S

1	6	7
4	3	2
5		8
n		

1	2	3	
4	5	6	
7	8		
9			

$h^{*}(n)=$ actual no. of moves to transform n to g

1. $h_{1}(n)=$ no. of tiles displaced from their destined position.
2. $h_{2}(n)=$ sum of Manhattan distances of tiles from their destined position.
$h_{1}(n) \leq h^{*}(n)$ and $h_{1}(n) \leq h^{*}(n)$

Comparison

A* Algorithm- Properties

- Admissibility: An algorithm is called admissible if it always terminates and terminates in optimal path
- Theorem: A* is admissible.
- Lemma: Any time before A^{*} terminates there exists on $O L$ a node n such that $f(n)<=f^{*}(s)$
- Observation: For optimal path $s \rightarrow n_{1} \rightarrow n_{2} \rightarrow \ldots \rightarrow$ g,

1. $h^{*}(g)=0, g^{*}(s)=0$ and
2. $f^{*}(s)=f^{*}\left(n_{1}\right)=f^{*}\left(n_{2}\right)=f^{*}\left(n_{3}\right) \ldots=f^{*}(g)$

A* Properties (contd.)

$f^{*}\left(n_{i}\right)=f^{*}(s), \quad n_{i} \neq s$ and $n_{i} \neq g$
Following set of equations show the above equality:

$$
\begin{aligned}
& f^{*}\left(n_{i}\right)=g^{*}\left(n_{i}\right)+h^{*}\left(n_{j}\right) \\
& f^{*}\left(n_{i+1}\right)=g^{*}\left(n_{i+1}\right)+h^{*}\left(n_{i+1}\right) \\
& g^{*}\left(n_{i+1}\right)=g^{*}\left(n_{i}\right)+c\left(n_{i}, n_{i+1}\right) \\
& h^{*}\left(n_{i+1}\right)=h^{*}\left(n_{i}\right)-c\left(n_{i}, n_{i+1}\right)
\end{aligned}
$$

Above equations hold since the path is optimal.

Admissibility of A*

A* always terminates finding an optimal path to the goal if such a path exists.

Intuition

(1) In the open list there always exists a node n such that $f(n)<=f^{*}(S)$.
(2) If A* does not terminate, the f value of the nodes expanded become unbounded.

1) and 2) are together inconsistent

Hence A* must terminate

Lemma
Any time before A* terminates there exists in the open list a node n^{\prime} such that $f\left(n^{\prime}\right)<=f^{*}(S)$

For any node n_{i} on optimal path,

$$
\begin{aligned}
f\left(n_{i}\right) & =g\left(n_{i}\right)+h\left(n_{i}\right) \\
< & =g^{*}\left(n_{i}\right)+h^{*}\left(n_{i}\right)
\end{aligned}
$$

Also $f^{*}\left(n_{i}\right)=f^{*}(S)$
Let n ' be the first node in the optimal path that is in OL. Since all parents of n^{\prime} have gone to CL,

$$
\begin{aligned}
& g\left(n^{\prime}\right)=g^{*}\left(n^{\prime}\right) \text { and } h\left(n^{\prime}\right)<=h^{*}\left(n^{\prime}\right) \\
& =>f\left(n^{\prime}\right)<=f^{*}(S)
\end{aligned}
$$

If A* does not terminate

Let e be the least cost of all arcs in the search graph.

Then $g(n)>=e . l(n)$ where $l(n)=\#$ of arcs in the path from S to n found so far. If A* does not terminate, $g(n)$ and hence $f(n)=g(n)+h(n)[h(n)>=0]$ will become unbounded.

This is not consistent with the lemma. So A* has to terminate.

$\underline{2^{\text {nd }}}$ part of admissibility of A*

The path formed by A* is optimal when it has terminated

Proof

Suppose the path formed is not optimal
Let G be expanded in a non-optimal path.
At the point of expansion of G,

$$
\begin{aligned}
& f(G)=g(G)+h(G) \\
& =g(G)+0 \\
& >g^{*}(G)=g^{*}(S)+h^{*}(S) \\
& \quad=f^{*}(S)\left[f^{*}(S)=\text { cost of optimal path }\right]
\end{aligned}
$$

This is a contradiction
So path should be optimal

Better Heuristic Performs
 Better

Theorem

A version A_{2} * of A* that has a "better" heuristic than another version A_{1} * of A^{*} performs at least "as well as" A_{1} *

Meaning of "better"
$h_{2}(n)>h_{1}(n)$ for all n

Meaning of "as well as"
$\mathrm{A}_{1}{ }^{*}$ expands at least all the nodes of $\mathrm{A}_{2}{ }^{*}$

Proof by induction on the search tree of $\mathrm{A}_{2}{ }^{*}$.
A* on termination carves out a tree out of G

Induction

on the depth k of the search tree of $\mathrm{A}_{2}{ }^{*} . \mathrm{A}_{1}$ * before termination expands all the nodes of depth k in the search tree of $\mathrm{A}_{2}{ }^{*}$.
$k=0$. True since start node S is expanded by both
Suppose A_{1} * terminates without expanding a node n at depth $(k+1)$ of $\mathrm{A}_{2}{ }^{*}$ search tree.

Since $\mathrm{A}_{1}{ }^{*}$ has seen all the parents of n seen by $\mathrm{A}_{2}{ }^{*}$
$g_{1}(n)<=g_{2}(n)$

Since $\mathrm{A}_{1}{ }^{*}$ has terminated without expanding n, $f_{1}(n)>=f^{*}(S)$ (2)

Any node whose f value is strictly less than $f^{*}(S)$ has to be expanded. Since A_{2} * has expanded n
$f_{2}(n)<=f^{*}(S)$

From (1), (2), and (3)
$h_{1}(n)>=h_{2}(n)$ which is a contradiction. Therefore, $\mathrm{A}_{1}{ }^{*}$ has to expand all nodes that $\mathrm{A}_{2} *$ has expanded.

Exercise

If better means $h_{2}(n)>h_{1}(n)$ for some n and $h_{2}(n)=h_{1}(n)$ for others, then Can you prove the result ?

Lab assignment

- Implement A^{*} algorithm for the following problems:
- 8 puzzle
- Missionaries and Cannibals
- Robotic Blocks world
- Specifications:
- Try different heuristics and compare with baseline case, i.e., the breadth first search.
- Violate the condition $h \leq h^{*}$. See if the optimal path is still found. Observe the speedup.

