CS344: Introduction to
Artificial Intelligence

Pushpak Bhattacharyya
CSE Dept.,
[IT Bombay

Lecture 17— Theorems in A* (admissibility, Better
performance of more informed heuristic, Effect of
Monotone Restriction or Triangular Inequality)

[Main Ref: Principle of Al by N.J. Nilsson]

General Graph search Algorithm

k
@ Graph G = (V,E)
6
(o)

§ N8

1) Open List : S @.0) 6) OL : E®D, F(08) G©.9)

Closed list : @ CL:S,A/B,C,D
2) OL: AGD BE3) C610 7) OL: FP8) GBI

CL:S CL:S,A/B,C,D,E
3) OL : B, C6109 pe) 8) OL: G

CL:S A CL:S,A,B,C,D,EF
4) OL : C10), DAS) EBN Q) OL: @

CL:S,AB CL:S,ABC, D E,

F G

5) OL : D8 EBT)
CL:SAB,C

Steps of GGS
(principles of AL, Nilsson,)

= 1. Create a search graph G, consisting solely of the
start node S; put Son a list called OPEN.

= 2 Create a list called CLOSED that is initially empty.
= 3. Loop: if OPENis empty, exit with failure.

= 4. Select the first node on OPEN, remove from OPEN
and put on CLOSED, call this node n.

= 5. if nis the goal node, exit with the solution
obtained by tracing a path along the pointers from n
to sin G. (ointers are established in step 7).

= 6. Expand node n, generating the set Mof its
successors that are not ancestors of n. Install these
memes of M as successors of nin G.

GGS steps (contd.)

= /. Establish a pointer to 7 from those members of M
that were not already in G (/.e., not already on either
OPEN or CLOSED). Add these members of Mto
OPEN. For each member of Mthat was already on
OPEN or CLOSED, decide whether or not to redirect
its pointer to n. For each member of M already on
CLOSED, decide for each of its descendents in G
whether or not to redirect its pointer.

= 8. Reorder the list OPEN using some strategy.
= 9. Go LOORP.

Algorithm A

= A function f is maintained with each node
f(n) = g(n) + h(n), n Is the node In the open list

= Node chosen for expansion Is the one with least
f value

Algorithm A*

= One of the most important advances in Al
= g(n) = least cost path to n from S found so far

= h(n) <= h*(n) where h*(n) Is the actual cost of
optimal path to G(node to be found) from n

“Optimism leads to optimality”

A* Algorithm- Properties

= Admissibility: An algorithm is called admissible if it
always terminates and terminates in optimal path

= Theorem: A* is admissible.

= Lemma: Any time before A* terminates there exists
on OL a node n such that 7(n) <= Fs)

= Observation: For optimal path s > n, - n, —» ... —
g
1. h*(g) =0 g*(s)=0 and

2. F(s) = M(ny) = F(ny) = F(ny)... = ~q)

A* Properties (contd.)

X(n) = r<s), n#sand n, £ g
Following set of equations show the above equality:
(n) = g*(n) + h*(n)
(ni.1) = g*(ni.,) + h*(n,,)
g*(n.,) =g*(n) + c(n; n,,;)
h*(n,.,) = h*(n) - c(n; n;,,)
Above equations hold since the path is optimal.

Admissibility of A*

A* always terminates finding an optimal path to the goal if such a
path exists.

Intuition

(1) In the open list there always exists a node
n such that f(n) <= *(S) .

(2) If A* does not terminate, the f value of the
nodes expanded become unbounded.

1) and 2) are together inconsistent

Hence A* must terminate

Lemma
Any time before A* terminates there exists in the open list a node n'
such that f(n') <= *(S)

Optimal path For any node n. on optimal path,
f(n) =g(n) + h(n)
S | | |
\(<= g*(ni) + h*(ni)
& Also f*(n.) = f*(S)
Let n' be the first node in the optimal path that

Is In OL. Since all parents of n' have gone to
CL,

g(n') = g*(n") and h(n') <= h*(n
=> () <= f*(S)

If A* does not terminate

Let e be the least cost of all arcs in the search graph.

Then g(n) >= e.l(n) where I(n) = # of arcs in the path from S to
n found so far. If A* does not terminate, g(n) and hence

f(n) = g(n) + h(n) [h(n) >= 0] will become unbounded.

This 1s not consistent with the lemma. So A* has to terminate.

2" part of admissibility of A*

The path formed by A* is optimal when it has terminated

Proof

Suppose the path formed is not optimal
Let G be expanded in a non-optimal path.
At the point of expansion of G,

f(G) = 9(G) + h(G)
=9(G)+0
> g*(G) =g*(S) + h*(S)
= *(S) [f*(S) = cost of optimal path]

This 1s a contradiction
So path should be optimal

Better Heuristic Performs
Better

Theorem

A version A,* of A* that has a “better” heuristic than another version
A.* of A* performs at least “as well as” A*

Meaning of “better”
h,(n) > hy(n) for all n

Meaning of “as well as”™
A, * expands at least all the nodes of A*

—— h*(n)

—— hy*(n)

—— h*(N) Forall nodes n,
except the goal
node

Proof by induction on the search tree of A,*.
A* on termination carves out a tree out of G
Induction

on the depth k of the search tree of A,*. A * before termination
expands all the nodes of depth k in the search tree of A,*.

k=0. True since start node S is expanded by both

Suppose A, * terminates without expanding a node n at depth (k+1) of
A,* search tree.

Since A, * has seen all the parents of n seen by A,*
0:(n) <=g,(n) (1)

Since A, * has terminated without
— T expanding n,
f(n) >=1() (2)

k+1 Any node whose f value is strictly less
than *(S) has to be expanded.

Since A,* has expanded n
L)<=t @)

From (1), (2), and (3)
h,(n) >= h,(n) which is a contradiction. Therefore, A,* has to expand
all nodes that A,* has expanded.

Exercise

If better means h,(n) > h,(n) for some n and h,(n) = h,(n) for others,
then Can you prove the result ?

Monotone Restriction or Triangular
Inequality of the Heuristic Function

Statement:

if monotone restriction (also called triangular inequality)
is satisfied, then for nodes in the closed list,
redirection of parent pointer is not necessary.

In other words, if any node 'n’is chosen for expansion
from the open list, then g(n)=g(n”), where g(n)is
the cost of the path from the start node s’to n’at
that point of the search when 'n’is chosen, and g(n”)
is the cost of the optimal path from s’to 'n?

A heuristic A(p)is said to satisfy the monotone

restriction, if for all p; A(p)<=h(p_.)+cost(p, p.),
where p_.’is the child of p’

Proof

n Let S-NV,-N-Ny-N,... N, ...N, be an
optimal path from Sto A, (all of which
might or might not have been
explored).

s Let /V, be the last node on this path
which is on the open list, i.e., a//the
ancestors from Sup to /V__, are in the
closed list.

Proof (contd.)

= For every node /A, on the optimal path,

= g¥N)+H(N,)<= g (N)+, N,)+A(N,, 1), by
monotone restriction

= g¥(N,)+h(N,)<= g*(N,,.)+h(N,,,) on the optimal
path

« g*(NV,)+ h(N,)<= g*(N)+ h(N,) by transitivity

= Since all ancestors of &V, in the optimal
path are in the closed list,
= g (Nn)=g*(Ny,)

« => f(IN,)= g(N,)+ h(N,)= g (N,)+ AN,)<=
g+ A,

Proof (contd.)

= For every node /A, on the optimal path,

= g¥N)+H(N,)<= g (N)+, N,)+A(N,, 1), by
monotone restriction

= g¥(N,)+h(N,)<= g*(N,,.)+h(N,,,) on the optimal
path

« g*(NV,)+ h(N,)<= g*(N)+ h(N,) by transitivity

= Since all ancestors of &V, in the optimal
path are in the closed list,
= g (Nn)=g*(Ny,)

« => f(IN,)= g(N,)+ h(N,)= g (N,)+ AN,)<=
g+ A,

Proof (contd.)

= Now if AV, is chosen in preference to
N

« gIN)+ h(N) <= g(N_)+ h(N,)

- = g*(N)+ h(N,)
= <=g*(N,)+ h(N,)
= Hence, gV,)<=g*(N,)

« But gV,)>=g*(N,) by definition
= Hence g(N)=g*(N,) --proved

Relationship between Monotone
Restriction and Admissibility

= MR=>=Admissibility, but not vice
versa

= /.e.,if a heuristic A(p) satisfies the
monotone restriction, for all p?

h(p)<=h(p_)+cost(p, p.), where p_.’is the
child of p, then

« h*(p)<=h*(p), for all p

Forward proof

n Let p2n,2n,2n;2...n,_,2G =n,, be
the optimalfrom pto G

= By definition, A(G)=0

= Since p=2n,2n,2n;2...N.;2G =N, 1S
the optimal path from p to G,

= C{) /7],/72) +(() nZ/n.S’) +... 1+ nk-]/nk) =h*(p)

Forward proof (contd.)

Now by M.R.

h(p)<=h(n;)+c(p,n,)

hin;)<=h(nz)+c(n, n,)
/@27 <=hrz)+c(n,ns)
hlng<=h(pg)+c(nsn,)

M <=h(G)+c(ny.,G)
h(G)=0; summing the inequalities,

h(p)<=C(n,n,)+c(nyn3)+...+c(Ny., M) =*(p); proved
Backward proof, by producing a counter example.

Lab assignment

= Implement A* algorithm for the following
problems:

= 8 puzzle
= Missionaries and Cannibals
= Robotic Blocks world

= Specifications:

= Try different heuristics and compare with baseline
case, /.e., the breadth first search.

= Violate the condition A < A* See if the optimal
path is still found. Observe the speedup.

