
CS344: Introduction toCS344: Introduction to
Artificial Intelligenceg

Pushpak Bhattacharyya
CSE Dept.,
IIT Bombay

Lecture 17 Theorems in A* (admissibility BetterLecture 17– Theorems in A* (admissibility, Better
performance of more informed heuristic, Effect of

Monotone Restriction or Triangular Inequality)
[Main Ref: Principle of AI by N.J. Nilsson]

General Graph search Algorithmp g
S

1 103

Graph G = (V E)
AA CB

5 4 6

Graph G = (V,E)
A CB

ED

5 4 6

D E

2
3

7

FF GF G

1) Open List : S (Ø, 0)

Closed list : Ø
6) OL : E(B,7), F(D,8), G(D, 9)

CL : S, A, B, C, D

2) OL : A(S,1), B(S,3), C(S,10)

CL : S
7) OL : F(D,8), G(D,9)

CL : S, A, B, C, D, ECL : S

3) OL : B(S,3), C(S,10), D(A,6)

CL : S, A, B, C, D, E

8) OL : G(D,9)

CL S A B C D E FCL : S, A

4) OL : C(S,10), D(A,6), E(B,7)

CL : S, A, B, C, D, E, F

9) OL : Ø4) OL : C , D , E
CL: S, A, B

5) OL D(A 6) E(B 7)

9) OL : Ø
CL : S, A, B, C, D, E,

F, G
5) OL : D(A,6), E(B,7)

CL : S, A, B , C

Steps of GGS
(principles of AI, Nilsson,)(p p , ,)

1. Create a search graph G, consisting solely of the
start node S; put S on a list called OPENstart node S; put S on a list called OPEN.
2. Create a list called CLOSED that is initially empty.
3. Loop: if OPEN is empty, exit with failure.3. Loop: if OPEN is empty, exit with failure.
4. Select the first node on OPEN, remove from OPEN
and put on CLOSED, call this node n.
5. if n is the goal node, exit with the solution
obtained by tracing a path along the pointers from n
to s in G (ointers are established in step 7)to s in G. (ointers are established in step 7).
6. Expand node n, generating the set M of its
successors that are not ancestors of n. Install these
memes of M as successors of n in G.

GGS steps (contd.)

7. Establish a pointer to n from those members of M
that were not already in G (i.e., not already on either
OPEN or CLOSED) Add these members of M toOPEN or CLOSED). Add these members of M to
OPEN. For each member of M that was already on
OPEN or CLOSED, decide whether or not to redirect
its pointer to n. For each member of M already on
CLOSED, decide for each of its descendents in G
whether or not to redirect its pointer.whether or not to redirect its pointer.
8. Reorder the list OPEN using some strategy.
9. Go LOOP.

Algorithm AAlgorithm A

A function f is maintained with each nodeA function f is maintained with each node
f(n) = g(n) + h(n), n is the node in the open list

Node chosen for expansion is the one with least
f valuef

Algorithm A*Algorithm A
One of the most important advances in AI

() l h f S f d fg(n) = least cost path to n from S found so far

h(n) <= h*(n) where h*(n) is the actual cost of () () ()
optimal path to G(node to be found) from n
“Optimism leads to optimality”

S

“Optimism leads to optimality”

n

����

G����

A* Algorithm- PropertiesA* Algorithm- Properties

Admissibility: An algorithm is called admissible if it
always terminates and terminates in optimal path
Theorem: A* is admissible.Theorem: A is admissible.
Lemma: Any time before A* terminates there exists
on OL a node n such that f(n) <= f*(s)
Observation: For optimal path s → n1 → n2 → →Observation: For optimal path s → n1 → n2 → … →
g
1. h*(g) = 0, g*(s)=0 and
2 f*(s) = f*(n) = f*(n) = f*(n) = f*(g)2. f*(s) = f*(n1) = f*(n2) = f*(n3)… = f*(g)

A* Properties (contd)A* Properties (contd.)

f*(ni) = f*(s), ni ≠ s and ni ≠ g
Following set of equations show the above equality:

f*(ni) = g*(ni) + h*(ni)
f*(ni+1) = g*(ni+1) + h*(ni+1)
*() *() ()g*(ni+1) = g*(ni) + c(ni , ni+1)

h*(ni+1) = h*(ni) - c(ni , ni+1)
Above equations hold since the path is optimalAbove equations hold since the path is optimal.

Admissibility of A*

A* always terminates finding an optimal path to the goal if such a
path existspath exists.

Intuition

S
(1) In the open list there always exists a node
n such that f(n) <= f*(S) .

g(n)

n (2) If A* does not terminate, the f value of the
nodes expanded become unbounded

h(n)

G

nodes expanded become unbounded.

1) and 2) are together inconsistent

Hence A* must terminate

Lemma
Any time before A* terminates there exists in the open list a node n'
such that f(n') <= f*(S)

Optimal path
For any node ni on optimal path,

S

n1

Optimal path
f(ni) = g(ni) + h(ni)

<= g*(ni) + h*(ni)
Also f*(ni) = f*(S)

n2

Also f (ni) f (S)
Let n' be the first node in the optimal path that
is in OL. Since all parents of n' have gone to
CLCL,

g(n') = g*(n') and h(n') <= h*(n')
G => f(n') <= f*(S)

If A* does not terminate

Let e be the least cost of all arcs in the search graph.

Then g(n) >= e.l(n) where l(n) = # of arcs in the path from S to
n found so far. If A* does not terminate, g(n) and hence
f(n) = g(n) + h(n) [h(n) >= 0] will become unboundedf(n) g(n) + h(n) [h(n) > 0] will become unbounded.

This is not consistent with the lemma. So A* has to terminate.

2nd part of admissibility of A*

The path formed by A* is optimal when it has terminated

Proof
Suppose the path formed is not optimal
Let G be expanded in a non-optimal path.
At the point of expansion of GAt the point of expansion of G,

f(G) = g(G) + h(G)
(G) 0= g(G) + 0

> g*(G) = g*(S) + h*(S)
= f*(S) [f*(S) = cost of optimal path]f () [f () p p]

This is a contradiction
So path should be optimalSo path should be optimal

B tt H i ti P fBetter Heuristic Performs
BetterBetter

Theorem

A version A2* of A* that has a “better” heuristic than another version
A1* of A* performs at least “as well as” A1*

Meaning of “better”
h2(n) > h1(n) for all n

Meaning of “as well as”
A1* expands at least all the nodes of A2*

h*(n)

h2*(n)

h1*(n) For all nodes n,
except the goal
node

Proof by induction on the search tree of A2*.

A* on termination carves out a tree out of G

InductionInduction
on the depth k of the search tree of A2*. A1* before termination
expands all the nodes of depth k in the search tree of A2*.

k=0. True since start node S is expanded by both

Suppose A1* terminates without expanding a node n at depth (k+1) of
A2* search tree.

Since A1* has seen all the parents of n seen by A2*
g1(n) <= g2(n) (1)

S
Since A1* has terminated without
expanding n,

k+1

f1(n) >= f*(S) (2)

Any node whose f value is strictly less

G

than f*(S) has to be expanded.
Since A2* has expanded n
f2(n) <= f*(S) (3)f2() f () ()

From (1) (2) and (3)From (1), (2), and (3)
h1(n) >= h2(n) which is a contradiction. Therefore, A1* has to expand
all nodes that A2* has expanded.
Exercise

If better means h2(n) > h1(n) for some n and h2(n) = h1(n) for others, 2 1 2 1
then Can you prove the result ?

Monotone Restriction or Triangular
Inequality of the Heuristic FunctionInequality of the Heuristic Function

Statement:
if t t i ti (l ll d t i l i lit)if monotone restriction (also called triangular inequality)

is satisfied, then for nodes in the closed list,
redirection of parent pointer is not necessary. p p y

In other words, if any node ‘n’ is chosen for expansion
from the open list, then g(n)=g(n*), where g(n) is
the cost of the path from the start node ‘s’ to ‘n’ atthe cost of the path from the start node s to n at
that point of the search when ‘n’ is chosen, and g(n*)
is the cost of the optimal path from ‘s’ to ‘n’.

A heuristic h(p) is said to satisfy the monotone
restriction, if for all ‘p’, h(p)<=h(pc)+cost(p, pc),
where ‘p ’ is the child of ‘p’where pc is the child of p .

Proof
Let S-N1- N2- N3- N4... Nm …Nk be an
optimal path from S to N (all of whichoptimal path from S to Nk (all of which
might or might not have been
explored)explored).
Let Nm be the last node on this path
which is on the open list i e all thewhich is on the open list, i.e., all the
ancestors from S up to Nm-1 are in the
closed listclosed list.

Proof (contd.)

For every node Np on the optimal path,
g*(Np)+h(Np)<= g*(Np)+C(Np,Np+1)+h(Np+1), byg (Np)+h(Np)< g (Np)+C(Np,Np+1)+h(Np+1), by
monotone restriction
g*(Np)+h(Np)<= g*(Np+1)+h(Np+1) on the optimal

thpath
g*(Nm)+ h(Nm)<= g*(Nk)+ h(Nk) by transitivity

Si ll t f N i th ti lSince all ancestors of Nm in the optimal
path are in the closed list,

(N) *(N)g (Nm)= g*(Nm)
=> f(Nm)= g(Nm)+ h(Nm)= g*(Nm)+ h(Nm)<=
g*(Nk)+ h(Nk)g (Nk)+ h(Nk)

Proof (contd.)

For every node Np on the optimal path,
g*(Np)+h(Np)<= g*(Np)+C(Np,Np+1)+h(Np+1), byg (Np)+h(Np)< g (Np)+C(Np,Np+1)+h(Np+1), by
monotone restriction
g*(Np)+h(Np)<= g*(Np+1)+h(Np+1) on the optimal

thpath
g*(Nm)+ h(Nm)<= g*(Nk)+ h(Nk) by transitivity

Si ll t f N i th ti lSince all ancestors of Nm in the optimal
path are in the closed list,

(N) *(N)g (Nm)= g*(Nm)
=> f(Nm)= g(Nm)+ h(Nm)= g*(Nm)+ h(Nm)<=
g*(Nk)+ h(Nk)g (Nk)+ h(Nk)

Proof (contd.)

Now if Nk is chosen in preference to
Nm,Nm,

f(Nk) <= f(Nm)
g(N)+ h(N) <= g(N)+ h(N)g(Nk)+ h(Nk) <= g(Nm)+ h(Nm)

= g*(Nm)+ h(Nm)
<= g*((N)+ h(N)<= g*((Nk)+ h(Nk)

Hence, g(Nk)<=g*(Nk)
B t (N) *(N) b d fi itiBut g(Nk)>=g*(Nk), by definition
Hence g(Nk)=g*(Nk) --proved

Relationship between Monotone
Restriction and AdmissibilityRestriction and Admissibility

MR=>Admissibility, but not vice y,
versa

i.e., if a heuristic h(p) satisfies the , (p)
monotone restriction, for all ‘p’,
h(p)<=h(pc)+cost(p, pc), where ‘pc’ is the

fchild of ‘p’, then
h*(p)<=h*(p), for all p

Forward proof

Let p n1 n2 n3 …nk-1 G =nk, be
the optimal from p to Gthe optimal from p to G
By definition, h(G)=0
Since p n n n n G n isSince p n1 n2 n3 …nk-1 G =nk is
the optimal path from p to G,
() () () h*()C(n1,n2)+c(n2,n3)+…+c(nk-1,nk)=h*(p)

Forward proof (contd.)

Now by M.R.
h() h() ()h(p)<=h(n1)+c(p,n1)
h(n1)<=h(n2)+c(n1,n2)
h(n)<=h(n)+c(n n)h(n2)<=h(n3)+c(n2,n3)
h(n3)<=h(n4)+c(n3,n4)
…
h(nk-1)<=h(G)+c(nk-1,G)

h(G)=0; summing the inequalities,
h(p)<=C(n1,n2)+c(n2,n3)+…+c(nk-1,nk)=h*(p); proved
Backward proof, by producing a counter example.

Lab assignmentab ass g e t

Implement A* algorithm for the following
problems:

8 puzzle8 puzzle
Missionaries and Cannibals
Robotic Blocks world

S ifi iSpecifications:
Try different heuristics and compare with baseline
case, i.e., the breadth first search.
Violate the condition h ≤ h*. See if the optimal
path is still found. Observe the speedup.

