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1) Open List : S (Ø, 0)

Closed list : Ø
6) OL : E(B,7), F(D,8), G(D, 9)

CL : S, A, B, C, D

2) OL : A(S,1), B(S,3), C(S,10)

CL : S
7) OL : F(D,8), G(D,9)

CL : S, A, B, C, D, ECL : S

3) OL : B(S,3), C(S,10), D(A,6)

CL : S, A, B, C, D, E

8) OL : G(D,9)

CL S A B C D E FCL : S, A

4) OL : C(S,10), D(A,6), E(B,7)

CL : S, A, B, C, D, E, F

9) OL : Ø4) OL : C , D , E
CL: S, A, B

5) OL D(A 6) E(B 7)

9) OL : Ø
CL : S, A, B, C, D, E,

F, G
5) OL : D(A,6), E(B,7)

CL : S, A, B , C



Steps of GGS 
(principles of AI, Nilsson,)(p p , ,)

1. Create a search graph G, consisting solely of the 
start node S; put S on a list called OPENstart node S; put S on a list called OPEN.
2. Create a list called CLOSED that is initially empty.
3. Loop: if OPEN is empty, exit with failure.3. Loop: if OPEN is empty, exit with failure.
4. Select the first node on OPEN, remove from OPEN
and put on CLOSED, call this node n.
5. if n is the goal node, exit with the solution 
obtained by tracing a path along the pointers from n 
to s in G (ointers are established in step 7)to s in G. (ointers are established in step 7).
6. Expand node n, generating the set M of its 
successors that are not ancestors of n. Install these 
memes of M as successors of n in G.



GGS steps (contd.)

7. Establish a pointer to n from those members of M
that were not already in G (i.e., not already on either 
OPEN or CLOSED) Add these members of M toOPEN or CLOSED). Add these members of M to 
OPEN. For each member of M that was already on 
OPEN or CLOSED, decide whether or not to redirect 
its pointer to n. For each member of M already on 
CLOSED, decide for each of its descendents in G
whether or not to redirect its pointer.whether or not to redirect its pointer.
8. Reorder the list OPEN using some strategy.
9. Go LOOP.



Algorithm AAlgorithm A

A function f is maintained with each nodeA function f is maintained with each node
f(n) = g(n) + h(n), n is the node in the open list

Node chosen for expansion is the one with least 
f valuef



Algorithm A*Algorithm A
One of the most important advances in AI

( ) l h f S f d fg(n) = least cost path to n from S found so far

h(n) <= h*(n) where h*(n) is the actual cost of ( ) ( ) ( )
optimal path to G(node to be found) from n
“Optimism leads to optimality”

S

“Optimism leads to optimality”

n
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A* Algorithm- PropertiesA* Algorithm- Properties

Admissibility: An algorithm is called admissible if it 
always terminates and terminates in optimal path
Theorem: A* is admissible.Theorem: A  is admissible.
Lemma: Any time before A* terminates there exists 
on OL a node n such that f(n) <= f*(s)
Observation: For optimal path s → n1 → n2 → →Observation: For optimal path s → n1 → n2 → … →
g
1. h*(g) = 0, g*(s)=0 and 
2 f*(s) = f*(n ) = f*(n ) = f*(n ) = f*(g)2. f*(s) = f*(n1) = f*(n2) = f*(n3)… = f*(g)



A* Properties (contd )A* Properties (contd.)

f*(ni) = f*(s), ni ≠ s and ni ≠ g
Following set of equations show the above equality:

f*(ni) = g*(ni) + h*(ni)
f*(ni+1) = g*(ni+1) + h*(ni+1)
*( ) *( ) ( )g*(ni+1) = g*(ni) + c(ni , ni+1)

h*(ni+1) = h*(ni) - c(ni , ni+1)
Above equations hold since the path is optimalAbove equations hold since the path is optimal.



Admissibility of A*

A* always terminates finding an optimal path to the goal if such a 
path existspath exists.

Intuition

S
(1) In the open list there always exists a node 
n such that f(n) <= f*(S) .

g(n)

n (2) If A* does not terminate, the f value of the 
nodes expanded become unbounded

h(n)

G

nodes expanded become unbounded.

1) and 2) are together inconsistent

Hence A* must terminate



Lemma
Any time before A* terminates there exists in the open list a node n'
such that f(n') <= f*(S)

Optimal path
For any node ni on optimal path,

S

n1

Optimal path
f(ni) = g(ni) + h(ni)

<= g*(ni) + h*(ni)
Also f*(ni) = f*(S)

n2

Also f (ni)  f (S)
Let n' be the first node in the optimal path that 
is in OL. Since all parents of n' have gone to 
CLCL,

g(n') = g*(n') and h(n') <= h*(n') 
G => f(n') <= f*(S)



If A* does not terminate

Let e be the least cost of all arcs in the search graph.

Then g(n) >= e.l(n) where l(n) = # of arcs in the path from S to 
n found so far. If A* does not terminate, g(n) and hence 
f(n) = g(n) + h(n) [h(n) >= 0] will become unboundedf(n)  g(n) + h(n) [h(n) >  0] will become unbounded.

This is not consistent with the lemma. So A* has to terminate.



2nd part of admissibility of A*

The path formed by A* is optimal when it has terminated

Proof
Suppose the path formed is not optimal
Let G be expanded in a non-optimal path. 
At the point of expansion of GAt the point of expansion of G,

f(G) = g(G) + h(G)
(G) 0= g(G) + 0

> g*(G)  = g*(S) + h*(S)
= f*(S) [f*(S) = cost of optimal path]f ( ) [f ( ) p p ]

This is a contradiction
So path should be optimalSo path should be optimal



B tt H i ti P fBetter Heuristic Performs 
BetterBetter



Theorem

A version A2* of A* that has a “better” heuristic than another version 
A1* of A* performs at least “as well as” A1*

Meaning of “better”
h2(n) > h1(n) for all n

Meaning of “as well as”
A1* expands at least all the nodes of A2*

h*(n)

h2*(n)

h1*(n) For all nodes n, 
except the goal 
node



Proof by induction on the search tree of A2*.

A* on termination carves out a tree out of G

InductionInduction
on the depth k of the search tree of A2*. A1* before termination 
expands all the nodes of depth k in the search tree of A2*.

k=0. True since start node S is expanded by both

Suppose A1* terminates without expanding a node n at depth (k+1) of 
A2* search tree.

Since A1* has seen all the parents of n seen by A2*
g1(n) <= g2(n)        (1)



S
Since A1* has terminated without 
expanding n, 

k+1

f1(n) >= f*(S) (2)

Any node whose f value is strictly less 

G

than f*(S) has to be expanded.
Since A2* has expanded n
f2(n) <= f*(S) (3)f2( ) f ( ) ( )

From (1) (2) and (3)From (1), (2), and (3)
h1(n) >= h2(n) which is a contradiction. Therefore, A1* has to expand 
all nodes that A2* has expanded.
Exercise

If better means h2(n) > h1(n) for some n and h2(n) = h1(n) for others, 2 1 2 1
then Can you prove the result ?



Monotone Restriction or Triangular 
Inequality of the Heuristic FunctionInequality of the Heuristic Function

Statement:
if t t i ti ( l ll d t i l i lit )if monotone restriction (also called triangular inequality) 

is satisfied, then for nodes in the closed list, 
redirection of parent pointer is not necessary. p p y

In other words, if any node ‘n’ is chosen for expansion 
from the open list, then g(n)=g(n*), where g(n) is 
the cost of the path from the start node ‘s’ to ‘n’ atthe cost of the path from the start node s to n  at 
that point of the search when ‘n’ is chosen, and g(n*)
is the cost of the optimal path from ‘s’ to ‘n’. 

A heuristic h(p) is said to satisfy the monotone 
restriction, if for all ‘p’, h(p)<=h(pc)+cost(p, pc), 
where ‘p ’ is the child of ‘p’where pc is the child of p .



Proof
Let S-N1- N2- N3- N4... Nm …Nk be an 
optimal path from S to N (all of whichoptimal path from S to Nk (all of which 
might or might not have been 
explored)explored). 
Let Nm be the last node on this path 
which is on the open list i e all thewhich is on the open list, i.e., all the 
ancestors from S up to Nm-1 are in the 
closed listclosed list.



Proof (contd.)

For every node Np on the optimal path, 
g*(Np)+h(Np)<= g*(Np)+C(Np,Np+1)+h(Np+1), byg (Np)+h(Np)<  g (Np)+C(Np,Np+1)+h(Np+1), by 
monotone restriction
g*(Np)+h(Np)<= g*(Np+1)+h(Np+1) on the optimal 

thpath
g*(Nm)+ h(Nm)<= g*(Nk)+ h(Nk) by transitivity

Si ll t f N i th ti lSince all ancestors of Nm  in the optimal 
path are in the closed list, 

(N ) *(N )g (Nm)= g*(Nm) 
=> f(Nm)= g(Nm)+ h(Nm)= g*(Nm)+ h(Nm)<= 
g*(Nk)+ h(Nk)g (Nk)+ h(Nk)



Proof (contd.)

For every node Np on the optimal path, 
g*(Np)+h(Np)<= g*(Np)+C(Np,Np+1)+h(Np+1), byg (Np)+h(Np)<  g (Np)+C(Np,Np+1)+h(Np+1), by 
monotone restriction
g*(Np)+h(Np)<= g*(Np+1)+h(Np+1) on the optimal 

thpath
g*(Nm)+ h(Nm)<= g*(Nk)+ h(Nk) by transitivity

Si ll t f N i th ti lSince all ancestors of Nm  in the optimal 
path are in the closed list, 

(N ) *(N )g (Nm)= g*(Nm) 
=> f(Nm)= g(Nm)+ h(Nm)= g*(Nm)+ h(Nm)<= 
g*(Nk)+ h(Nk)g (Nk)+ h(Nk)



Proof (contd.)

Now if Nk is chosen in preference to 
Nm,Nm,

f(Nk) <= f(Nm)
g(N )+ h(N ) <= g(N )+ h(N )g(Nk)+ h(Nk) <= g(Nm)+ h(Nm)

= g*(Nm)+ h(Nm)
<= g*((N )+ h(N )<= g*((Nk)+ h(Nk)

Hence,       g(Nk)<=g*(Nk)
B t (N ) *(N ) b d fi itiBut      g(Nk)>=g*(Nk), by definition
Hence g(Nk)=g*(Nk) --proved



Relationship between Monotone 
Restriction and AdmissibilityRestriction and Admissibility

MR=>Admissibility, but not vice y,
versa

i.e., if a heuristic h(p) satisfies the , (p)
monotone restriction, for all ‘p’, 
h(p)<=h(pc)+cost(p, pc), where ‘pc’ is the 

fchild of ‘p’, then 
h*(p)<=h*(p), for all p



Forward proof

Let p n1 n2 n3 …nk-1 G =nk, be 
the optimal from p to Gthe optimal from p to G
By definition, h(G)=0
Since p n n n n G n isSince p n1 n2 n3 …nk-1 G =nk is 
the optimal path from p to G,
( ) ( ) ( ) h*( )C(n1,n2)+c(n2,n3)+…+c(nk-1,nk)=h*(p)



Forward proof (contd.)

Now by M.R.
h( ) h( ) ( )h(p)<=h(n1)+c(p,n1)
h(n1)<=h(n2)+c(n1,n2)
h(n )<=h(n )+c(n n )h(n2)<=h(n3)+c(n2,n3)
h(n3)<=h(n4)+c(n3,n4)
…
h(nk-1)<=h(G)+c(nk-1,G)

h(G)=0; summing the inequalities,
h(p)<=C(n1,n2)+c(n2,n3)+…+c(nk-1,nk)=h*(p); proved
Backward proof, by producing a counter example.



Lab assignmentab ass g e t

Implement A* algorithm for the following 
problems:

8 puzzle8 puzzle
Missionaries and Cannibals
Robotic Blocks world

S ifi iSpecifications:
Try different heuristics and compare with baseline 
case, i.e., the breadth first search.
Violate the condition h ≤ h*. See if the optimal 
path is still found. Observe the speedup.


