CS344: Introduction to Artificial Intelligence

Pushpak Bhattacharyya CSE Dept., IIT Bombay

Lecture 17– Theorems in A* (admissibility, Better performance of more informed heuristic, Effect of Monotone Restriction or Triangular Inequality) [Main Ref: Principle of AI by N.J. Nilsson]

General Graph search Algorithm

Graph G = (V, E)

1) Open List : $S^{(\emptyset, 0)}$ 6) OL : $E^{(B,7)}$, $F^{(D,8)}$, $G^{(D, 9)}$ Closed list : \emptyset CL : S, A, B, C, D

2) OL : $A^{(S,1)}$, $B^{(S,3)}$, $C^{(S,10)}$ CL : S 7) OL : F^(D,8), G^(D,9) CL : S, A, B, C, D, E

3) OL : $B^{(S,3)}$, $C^{(S,10)}$, $D^{(A,6)}$ CL : S, A CL : S, A, B, C, D, E, F

4) OL : $C^{(S,10)}$, $D^{(A,6)}$, $E^{(B,7)}$ 9) OL : Ø CL: S, A, B CL : S, A, B, C, D, E, F, G

5) OL : $D^{(A,6)}$, $E^{(B,7)}$ CL : S, A, B , C

Steps of GGS (*principles of AI, Nilsson,*)

- I. Create a search graph G, consisting solely of the start node S; put S on a list called OPEN.
- 2. Create a list called CLOSED that is initially empty.
- 3. Loop: if *OPEN* is empty, exit with failure.
- 4. Select the first node on *OPEN*, remove from *OPEN* and put on *CLOSED*, call this node *n*.
- 5. if *n* is the goal node, exit with the solution obtained by tracing a path along the pointers from *n* to *s* in *G*. (ointers are established in step 7).
- 6. Expand node *n*, generating the set *M* of its successors that are not ancestors of *n*. Install these memes of *M* as successors of *n* in *G*.

GGS steps (contd.)

- 7. Establish a pointer to *n* from those members of *M* that were not already in *G* (*i.e.*, not already on either *OPEN* or *CLOSED*). Add these members of *M* to *OPEN*. For each member of *M* that was already on *OPEN* or *CLOSED*, decide whether or not to redirect its pointer to *n*. For each member of M already on *CLOSED*, decide for each of its descendents in *G* whether or not to redirect its pointer.
- 8. Reorder the list *OPEN* using some strategy.
- 9. Go *LOOP.*

Algorithm A

A function *f* is maintained with each node

f(n) = g(n) + h(n), n is the node in the open list

Node chosen for expansion is the one with least *f* value

Algorithm A*

- One of the most important advances in AI
- g(n) = least cost path to n from S found so far
- h(n) <= h*(n) where h*(n) is the actual cost of optimal path to G(node to be found) from n

A* Algorithm- Properties

- Admissibility: An algorithm is called admissible if it always terminates and terminates in optimal path
- Theorem: A* is admissible.
- Lemma: Any time before A* terminates there exists on OL a node n such that f(n) <= f*(s)
- **Observation:** For optimal path $s \rightarrow n_1 \rightarrow n_2 \rightarrow ... \rightarrow g$
 - 1. $h^*(g) = 0, g^*(s)=0$ and
 - 2. $f^*(s) = f^*(n_1) = f^*(n_2) = f^*(n_3) \dots = f^*(g)$

A* Properties (contd.)

 $f^{*}(n_{i}) = f^{*}(s), \qquad n_{i} \neq s \text{ and } n_{i} \neq g$ Following set of equations show the above equality: $f^{*}(n_{i}) = g^{*}(n_{i}) + h^{*}(n_{i})$ $f^{*}(n_{i+1}) = g^{*}(n_{i+1}) + h^{*}(n_{i+1})$ $g^{*}(n_{i+1}) = g^{*}(n_{i}) + c(n_{i}, n_{i+1})$ $h^{*}(n_{i+1}) = h^{*}(n_{i}) - c(n_{i}, n_{i+1})$

Above equations hold since the path is optimal.

Admissibility of A*

A* always terminates finding an optimal path to the goal if such a path exists.

Intuition

(1) In the open list there always exists a node n such that $f(n) \le f^*(S)$.

(2) If A^* does not terminate, the *f* value of the nodes expanded become unbounded.

1) and 2) are together inconsistent

Hence A* must terminate

<u>Lemma</u>

Any time before A* terminates there exists in the open list a node n' such that $f(n') <= f^*(S)$

For any node n_i on optimal path, $f(n_i) = g(n_i) + h(n_i)$ $<= g^*(n_i) + h^*(n_i)$ Also $f^*(n_i) = f^*(S)$ Let n' be the first node in the optimal path that is in OL. Since <u>all</u> parents of n' have gone to CL,

 $g(n') = g^{*}(n')$ and $h(n') \le h^{*}(n')$ => $f(n') \le f^{*}(S)$

If A* does not terminate

Let *e* be the least cost of all arcs in the search graph.

Then $g(n) \ge e.l(n)$ where l(n) = # of arcs in the path from *S* to *n* found so far. If A* does not terminate, g(n) and hence $f(n) = g(n) + h(n) [h(n) \ge 0]$ will become unbounded.

This is not consistent with the lemma. So A* has to terminate.

2^{nd} part of admissibility of A*

The path formed by A* is optimal when it has terminated

Proof

Suppose the path formed is not optimal Let G be expanded in a non-optimal path. At the point of expansion of G,

$$f(G) = g(G) + h(G) = g(G) + 0 > g^{*}(G) = g^{*}(S) + h^{*}(S) = f^{*}(S) [f^{*}(S) = \text{cost of optimal path}]$$

This is a contradiction So path should be optimal

Better Heuristic Performs Better

Theorem

A version A_2^* of A^* that has a "better" heuristic than another version A_1^* of A^* performs at least "as well as" A_1^*

<u>Meaning of "better"</u> $h_2(n) > h_1(n)$ for all n

<u>Meaning of "as well as"</u> A_1^* expands at least all the nodes of A_2^*

<u>Proof</u> by induction on the search tree of A_2^* .

A* on termination carves out a tree out of G

Induction

on the depth k of the search tree of A_2^* . A_1^* before termination expands all the nodes of depth k in the search tree of A_2^* .

k=0. True since start node S is expanded by both

Suppose A_1^* terminates without expanding a node *n* at depth (*k*+1) of A_2^* search tree.

Since A_1^* has seen all the parents of *n* seen by A_2^* $g_1(n) \le g_2(n)$ (1)

Since A_1^* has terminated without expanding *n*, $f_1(n) \ge f^*(S)$ (2)

Any node whose f value is strictly less than $f^*(S)$ has to be expanded. Since A_2^* has expanded n $f_2(n) <= f^*(S)$ (3)

From (1), (2), and (3) $h_1(n) >= h_2(n)$ which is a contradiction. Therefore, A_1^* has to expand all nodes that A_2^* has expanded.

Exercise

If better means $h_2(n) > h_1(n)$ for some *n* and $h_2(n) = h_1(n)$ for others, then Can you prove the result ?

Monotone Restriction or Triangular Inequality of the Heuristic Function

Statement:

- if monotone restriction (also called triangular inequality) is satisfied, then for nodes in the closed list, redirection of parent pointer is not necessary.
- In other words, if any node 'n' is chosen for expansion from the open list, then $g(n)=g(n^*)$, where g(n) is the cost of the path from the start node 's' to 'n' at that point of the search when 'n' is chosen, and $g(n^*)$ is the cost of the optimal path from 's' to 'n'.
- A heuristic h(p) is said to satisfy the monotone restriction, if for all 'p', $h(p) <= h(p_c) + cost(p, p_c)$, where 'p_c' is the child of 'p'.

Proof

- Let S-N₁- N₂- N₃- N₄... N_m ... N_k be an optimal path from S to N_k (all of which might or might not have been explored).
- Let N_m be the last node on this path which is on the open list, i.e., all the ancestors from S up to N_{m-1} are in the closed list.

Proof (contd.)

- For every node N_{ρ} on the optimal path,
 - $g^*(N_p) + h(N_p) <= g^*(N_p) + C(N_p, N_{p+1}) + h(N_{p+1})$, by monotone restriction
 - $g^*(N_p)+h(N_p) \le g^*(N_{p+1})+h(N_{p+1})$ on the optimal path
 - $g^*(N_m) + h(N_m) \le g^*(N_k) + h(N_k)$ by transitivity
- Since all ancestors of N_m in the optimal path are in the closed list,
 - $g(N_m) = g^*(N_m)$
 - $=> f(N_m) = g(N_m) + h(N_m) = g^*(N_m) + h(N_m) < = g^*(N_k) + h(N_k)$

Proof (contd.)

- For every node N_{ρ} on the optimal path,
 - $g^*(N_p) + h(N_p) <= g^*(N_p) + C(N_p, N_{p+1}) + h(N_{p+1})$, by monotone restriction
 - $g^*(N_p)+h(N_p) \le g^*(N_{p+1})+h(N_{p+1})$ on the optimal path
 - $g^*(N_m) + h(N_m) \le g^*(N_k) + h(N_k)$ by transitivity
- Since all ancestors of N_m in the optimal path are in the closed list,
 - $g(N_m) = g^*(N_m)$
 - $=> f(N_m) = g(N_m) + h(N_m) = g^*(N_m) + h(N_m) < = g^*(N_k) + h(N_k)$

Proof (contd.)

• Now if N_{k} is chosen in preference to N_{m} • $f(N_k) \leq f(N_m)$ • $q(N_{\nu}) + h(N_{\nu}) <= g(N_m) + h(N_m)$ $= q^{*}(N_{m}) + h(N_{m})$ $<= q^{*}((N_{\nu}) + h(N_{\nu}))$ Hence, $q(N_k) < = g^*(N_k)$ • But $q(N_{\nu}) > = q^{*}(N_{\nu})$, by definition • Hence $q(N_{\mu}) = q^*(N_{\mu}) - proved$

Relationship between Monotone Restriction and Admissibility

- MR=>Admissibility, but not vice versa
 - *i.e.*, if a heuristic *h(p)* satisfies the monotone restriction, for all 'p',
 h(p)<=h(p_c)+cost(p, p_c), where 'p_c' is the child of 'p', then

h*(p)<=h*(p), for all p</p>

Forward proof

- Let $p \rightarrow n_1 \rightarrow n_2 \rightarrow n_3 \rightarrow \dots n_{k-1} \rightarrow G = n_k$ be the *optimal* from *p* to *G*
- By definition, *h(G)=0*
- Since $p \rightarrow n_1 \rightarrow n_2 \rightarrow n_3 \rightarrow \dots n_{k-1} \rightarrow G = n_k$ is the optimal path from p to G,
- $C(n_1, n_2) + c(n_2, n_3) + \dots + c(n_{k-1}, n_k) = h^*(p)$

Forward proof (contd.)

Now by M.R.

$$\begin{split} h(p) &<= h(n_1) + c(p, n_1) \\ h(n_1) &<= h(n_2) + c(n_1, n_2) \\ h(n_2) &<= h(n_3) + c(n_2, n_3) \\ h(n_3) &<= h(n_4) + c(n_3, n_4) \end{split}$$

. . .

$$h(n_{k-1}) < = h(G) + c(n_{k-1},G)$$

h(*G*)=0; summing the inequalities,

 $h(p) < = C(n_1, n_2) + c(n_2, n_3) + ... + c(n_{k-1}, n_k) = h^*(p); proved$ Backward proof, by producing a counter example.

Lab assignment

- Implement A* algorithm for the following problems:
 - 8 puzzle
 - Missionaries and Cannibals
 - Robotic Blocks world
- Specifications:
 - Try different heuristics and compare with baseline case, *i.e.*, the breadth first search.
 - Violate the condition h ≤ h*. See if the optimal path is still found. Observe the speedup.