CS344: Introduction to Artificial Intelligence

Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 20-21– Natural Language Parsing

Parsing of Sentences

Are sentences flat linear structures? Why tree?

- Is there a principle in branching
- When should the constituent give rise to children?
- What is the hierarchy building principle?

Structure Dependency: A Case Study

Interrogative Inversion

(1) John will solve the problem.
Will John solve the problem?
Declarative Interrogative
(2) a. Susan must leave.

- b. Harry can swim. Can Harry swim?
- c. Mary has read the book. Has Mary read the book?
- d. Bill is sleeping.

Is Bill sleeping?

The section, "Structure dependency a case study" here is adopted from a talk given by Howard Lasnik (2003) in Delhi university.

Interrogative inversion Structure Independent (1st attempt)

(3) Interrogative inversion process

Beginning with a declarative, invert the first and second words to construct an interrogative.

Declarative

- (4) a. The woman must leave.
 - b. A sailor can swim.
 - c. No boy has read the book.
 - d. My friend is sleeping.

Interrogative

- *Woman the must leave?
- *Sailor a can swim?
- *Boy no has read the book?
- *Friend my is sleeping?

Interrogative inversion correct pairings

Compare the incorrect pairings in (4) with the correct pairings in (5):

Declarative

(5) a. The woman must leave.

b. A sailor can swim.

Must the woman leave?

Interrogative

Can a sailor swim?

- c. No boy has read the book. Has no boy read the book?
- d. My friend is sleeping.

Is my friend sleeping?

Interrogative inversion Structure Independent (2nd attempt)

(6) Interrogative inversion process:

 Beginning with a declarative, move the auxiliary verb to the front to construct an interrogative.

Declarative

(7) a. Bill could be sleeping.

- b. Mary has been reading.
- c. Susan should have left.

Interrogative *Be Bill could sleeping? Could Bill be sleeping? *Been Mary has reading? Has Mary been reading? *Have Susan should left? Should Susan have left?

Structure independent (3rd attempt):

- (8) Interrogative inversion process
- Beginning with a declarative, move the first auxiliary verb to the front to construct an interrogative.

Declarative

Interrogative

(9) a. The man who is here can swim. *Is the man who here can swim?b. The boy who will play has left. *Will the boy who play has left?

Structure Dependent Correct Pairings

For the above examples, fronting the second auxiliary verb gives the correct form:

Declarative Interrogative

(10) a.The man who is here can swim. Can the man who is here swim?b.The boy who will play has left. Has the boy who will play left?

Natural transformations are structure dependent

- (11) Does the child acquiring English learn these properties?
- (12) We are not dealing with a peculiarity of English. No known human language has a transformational process that would produce pairings like those in (4), (7) and (9), repeated below:
- (4) a. The woman must leave. *Woman the must leave?
- (7) a. Bill could be sleeping. *Be Bill could sleeping?
- (9) a. The man who is here can swim. *Is the man who here can swim?

Deeper trees needed for capturing sentence structure

[*The big book of poems with the Blue cover*] is on the table.

Other languages

Other languages: contd

PPs are at the same level: *flat with respect to the head word "book"*

[*The big book of poems with the Blue cover*] is on the table.

"Constituency test of Replacement" runs into problems

- One-replacement:
 - I bought the big [book of poems with the blue cover] not the small [one]
 - One-replacement targets book of poems with the blue cover
- Another one-replacement:
 - I bought the big [book of poems] with the blue cover not the small [one] with the red cover
 - One-replacement targets book of poems

More deeply embedded structure

To target N₁'

I want [_{NP}this [_{N'}big book of poems with the red cover] and not [_Nthat [_None]] Bar-level projectionsAdd intermediate structures

- NP→ (D) N'
- $N' \rightarrow$ (AP) $N' \mid N'$ (PP) $\mid N$ (PP)
- () indicates optionality

New rules produce this tree

As opposed to this tree

V-bar

- What is the element in verbs corresponding to *one-replacement* for nouns
- do-so or did-so

As opposed to this tree

I [eat beans with a fork]

No constituent that groups together V and NP and excludes $\ensuremath{\mathsf{PP}}$

constituents

I [eat beans] with a fork but Ram [does so] with a spoon/ $VP \rightarrow V'$ V_2' $V' \rightarrow V'$ (PP) $V' \rightarrow V (NP)$ PP NP with a fork eat beans

How to target V₁'

Parsing Algorithms

A simplified grammar

- $S \rightarrow NP VP$
- NP \rightarrow DT N | N
- $VP \rightarrow V ADV \mid V$

- AP→(AP) A
- PP→P NP
- NP \rightarrow (D) (AP+) N (PP+)
- VP→(AP+) (VAUX) V (AP+) ({NP/S'}) (AP+) (PP+) (AP+)
- S→{NP/S'} VP
- S'→(C) S

A segment of English Grammar

Top-Down Parsing

Termination Condition : All inputs over. No symbols remaining. Note: Input symbols can be pushed back.

Discussion for Top-Down Parsing

- This kind of searching is goal driven.
- Gives importance to textual precedence (rule precedence).
- No regard for data, a priori (useless expansions made).

Bottom-Up Parsing (pictorial representation)

Problem with Top-Down Parsing

- Left Recursion
 - Suppose you have A-> AB rule.

Then we will have the expansion as follows:

. ((A)K) -> ((AB)K) -> ((ABB)K)

Combining top-down and bottom-up strategies

Top-Down Bottom-Up Chart Parsing

- Combines advantages of top-down & bottomup parsing.
- Does not work in case of left recursion.
 - e.g. "People laugh"
 - People noun, verb
 - Laugh noun, verb
 - Grammar $S \rightarrow NP VP$

 $NP \rightarrow DT N \mid N$ $VP \rightarrow V ADV \mid V$

Arcs in Parsing

- Each arc represents a <u>chart</u> which records
 - Completed work (left of .)
 - Expected work (right of .)

Example

Dealing With Structural Ambiguity

- Multiple parses for a sentence
 - The man saw the boy with a telescope.
 - The man saw the mountain with a telescope.
 - The man saw the boy with the ponytail.

At the level of syntax, all these sentences are ambiguous. But semantics can disambiguate 2nd & 3rd sentence. Prepositional Phrase (PP) Attachment Problem

 $V - NP_1 - P - NP_2$ (Here P means preposition) NP_2 attaches to NP_1 ? or NP_2 attaches to V ? Parse Trees for a Structurally Ambiguous Sentence

Let the grammar be – $S \rightarrow NP VP$ $NP \rightarrow DT N | DT N PP$ $PP \rightarrow P NP$ $VP \rightarrow V NP PP | V NP$ For the sentence,

"I saw a boy with a telescope"

