CS344: Introduction to Artificial

 Intelligence (associated lab: CS386)Pushpak Bhattacharyya CSE Dept., IIT Bombay

Lecture-3: Fuzzy Inferencing: Inverted Pendulum

Inferencing

- Two methods of inferencing in classical logic
- Modus Ponens
- Given p and $p \rightarrow q$, infer q
- Modus Tolens
- Given $\sim q$ and $p \rightarrow q$, infer $\sim p$
- How is fuzzy inferencing done?

A look at reasoning

- Deduction: $p, p \rightarrow q /-q$
- Induction: $p_{1,}, p_{2,}, p_{3,}, . . /-$ for_all p
- Abduction: $q, p \rightarrow q /-p$
- Default reasoning: Non-monotonic reasoning: Negation by failure
- If something cannot be proven, its negation is asserted to be true
- E.g., in Prolog

Completeness and Soundness

- Completeness question
- Provability - Is the machine powerful enough to establish a fact?
- Soundness - Anything that is proved to be true is indeed true
- Truth - Is the fact true?

Fuzzy Modus Ponens in terms of truth values

- Given $t(p)=1$ and $t(p \rightarrow q)=1$, infer $t(q)=1$
- In fuzzy logic,
- given $t(p)>=a, 0<=a<=1$
- and $t(p \rightarrow>q)=c, 0<=c<=1$
- What is $t(q)$
- How much of truth is transferred over the channel

$$
p \longmapsto q
$$

Lukasiewitz formula

 for Fuzzy Implication- $\mathrm{t}(\mathrm{P})=$ truth value of a proposition/predicate. In fuzzy logic $\mathrm{t}(\mathrm{P})=[0,1]$
- $\mathrm{t}(P \rightarrow Q)=\min [1,1-\mathrm{t}(\mathrm{P})+\mathrm{t}(\mathrm{Q})]$

Lukasiewitz definition of implication

Use Lukasiewitz definition

- $t(p \rightarrow q)=\min [1,1-t(p)+t(q)]$
- We have $t(p->q)=c$, i.e., $\min [1,1-t(p)+t(q)]=c$
- Case 1:
- $c=1$ gives $1-t(p)+t(q)>=1$, i.e., $t(q)>=a$
- Otherwise, $1-t(p)+t(q)=c$, i.e., $t(q)>=c+a-1$
- Combining, $t(q)=\max (0, a+c-1)$
- This is the amount of truth transferred over the channel $p \rightarrow q$

ANDING of Clauses on the LHS of implication

$$
t(P \wedge Q)=\min (t(P), t(Q))
$$

Eg: If pressure is high then Volume is low

$$
t(\text { high }(\text { pressure }) \rightarrow \text { low(volume }))
$$

Fuzzy Inferencing

Core
The Lukasiewitz rule
$\mathrm{t}(P \rightarrow Q)=\min [1,1+\mathrm{t}(\mathrm{P})-\mathrm{t}(\mathrm{Q})]$
An example
Controlling an inverted pendulum
$\dot{\theta}=d \theta / d t=$ angular velocity

Motor

The goal: To keep the pendulum in vertical position $(\theta=0)$ in dynamic equilibrium. Whenever the pendulum departs from vertical, a torque is produced by sending a current ' i '

Controlling factors for appropriate current
Angle θ, Angular velocity θ°

Some intuitive rules

If θ is + ve small and θ° is - ve small
then current is zero
If θ is +ve small and θ° is +ve small
then current is -ve medium

Control Matrix

Each cell is a rule of the form
If θ is <> and θ° is <>
then i is <>
4 "Centre rules"

1. if $\theta==$ Zero and $\theta^{\circ}==$ Zero then $\mathrm{i}=$ Zero
2. if θ is + ve small and $\theta^{\circ}==$ Zero then i is - ve small
3. if θ is -ve small and $\theta==$ Zero then i is +ve small
4. if $\theta==$ Zero and θ° is + ve small then i is -ve small
5. if $\theta==$ Zero and θ° is -ve small then i is +ve small

Linguistic variables

1. Zero

2. +ve small
3. -ve small

Profiles

Inference procedure

1. Read actual numerical values of θ and θ°
2. Get the corresponding μ values $\mu_{\text {Zero }}, \mu_{(+ \text {ve small })}$, $\mu_{(-v e ~ s m a l l)}$. This is called FUZZIFICATION
3. For different rules, get the fuzzy i values from the R.H.S of the rules.
4. "Collate" by some method and get ONE current value. This is called DEFUZZIFICATION
5. Result is one numerical value of i.

Rules Involved

if $\boldsymbol{\theta}$ is Zero and $\mathrm{d} \boldsymbol{\theta} / \mathrm{dt}$ is Zero then i is Zero if $\boldsymbol{\theta}$ is Zero and $\mathrm{d} \theta / \mathrm{dt}$ is +ve small then i is -ve small if $\boldsymbol{\theta}$ is +ve small and $\mathrm{d} \boldsymbol{\theta} / \mathrm{dt}$ is Zero then i is -ve small if $\boldsymbol{\theta}+\mathrm{ve}$ small and $\mathrm{d} \boldsymbol{\theta} / \mathrm{dt}$ is +ve small then i is -ve medium

Fuzzification

```
Suppose \(\boldsymbol{\theta}\) is 1 radian and \(\mathrm{d} \theta / \mathrm{dt}\) is \(1 \mathrm{rad} / \mathrm{sec}\)
\(\mu_{\text {zero }}(\boldsymbol{\theta}=1)=0.8\) (say)
\(\mu_{\text {+ve-small }}(\theta=1)=0.4\) (say)
\(\mu_{\text {zero }}(\mathrm{d} \theta / \mathrm{dt}=1)=0.3\) (say)
\(\mu_{\text {+ve-small }}(\mathrm{d} \theta / \mathrm{dt}=1)=0.7\) (say)
```


Fuzzification

Suppose θ is 1 radian and $\mathrm{d} \theta / \mathrm{dt}$ is $\mathbf{1 ~ r a d / s e c ~}$
$\mu_{\text {zero }}(\boldsymbol{\theta}=1)=0.8$ (say)
$\mu_{\text {+ve-small }}(\theta=1)=0.4$ (say)
$\mu_{\text {zero }}(\mathrm{d} \theta / \mathrm{dt}=1)=0.3$ (say)
$\mu_{\text {+ve-small }}(\mathrm{d} \mathrm{\theta} / \mathrm{dt}=1)=0.7$ (say)
if $\boldsymbol{\theta}$ is Zero and $\mathbf{d \theta} / \mathrm{dt}$ is Zero then \mathbf{i} is Zero $\min (0.8,0.3)=0.3$
hence $\mu_{\text {zero }}(i)=0.3$
if $\boldsymbol{\theta}$ is Zero and $\mathrm{d} \boldsymbol{\theta} / \mathrm{dt}$ is +ve small then i is -ve small
$\min (0.8,0.7)=0.7$
hence $\mu_{\text {-ve-small }}(i)=0.7$
if $\boldsymbol{\theta}$ is $\boldsymbol{+ v e}$ small and $\mathrm{d} \boldsymbol{\theta} / \mathrm{dt}$ is Zero then i is -ve small
$\min (0.4,0.3)=0.3$
hence μ-ve-small(i)=0.3
if $\boldsymbol{\theta}+\mathrm{ve}$ small and $\mathrm{d} \boldsymbol{\theta} / \mathrm{dt}$ is +ve small then i is -ve medium $\min (0.4,0.7)=0.4$
hence $\mu_{\text {-ve-medium }}(i)=0.4$

Finding i

Possible candidates:
$i=0.5$ and -0.5 from the "zero" profile and $\mu=0.3$
$i=-0.1$ and -2.5 from the "-ve-small" profile and $\mu=0.3$
$i=-1.7$ and -4.1 from the "-ve-small" profile and $\mu=0.3$

Defuzzification: Finding i by the centroid method

Possible candidates:
i is the x-coord of the centroid of the areas given by the blue trapezium, the green trapeziums and the black trapezium

