CS344: Introduction to Artificial Intelligence (associated lab: CS386)

> Pushpak Bhattacharyya CSE Dept., IIT Bombay

Lecture–3: Fuzzy Inferencing: Inverted Pendulum

Inferencing

- Two methods of inferencing in classical logic
 - Modus Ponens
 - Given p and $p \rightarrow q$, infer q
 - Modus Tolens
 - Given $\sim q$ and $p \rightarrow q$, infer $\sim p$
- How is fuzzy inferencing done?

A look at reasoning

- Deduction: $p, p \rightarrow q/-q$
- Induction: p₁, p₂, p₃, .../- for_all p
- Abduction: $q, p \rightarrow q/-p$
- Default reasoning: Non-monotonic reasoning: Negation by failure
 - If something cannot be proven, its negation is asserted to be true
 - E.g., in Prolog

Completeness and Soundness

- Completeness question
 - Provability Is the machine powerful enough to establish a fact?
- Soundness Anything that is proved to be true is indeed true
 - Truth Is the fact true?

Fuzzy Modus Ponens in terms of truth values

- Given t(p)=1 and $t(p \rightarrow q)=1$, infer t(q)=1
- In fuzzy logic,
 - given *t(p)>=a, 0<=a<=1*
 - and t(p→>q)=c, 0<=c<=1</p>
 - What is t(q)
- How much of truth is transferred over the channel

Lukasiewitz formula for Fuzzy Implication
t(P) = truth value of a proposition/predicate. In fuzzy logic t(P) = [0,1]
t(P→Q) = min[1,1 -t(P)+t(Q)]

Lukasiewitz definition of implication

Use Lukasiewitz definition

- $t(p \rightarrow q) = min[1, 1 t(p) + t(q)]$
- We have t(p >q) = c, *i.e.*, min[1, 1 t(p) + t(q)] = c
- Case 1:
- c=1 gives 1 t(p) + t(q) > = 1, *i.e.*, t(q) > = a
- Otherwise, 1 t(p) + t(q) = c, *i.e.*, t(q) > = c + a 1
- Combining, t(q) = max(0, a+c-1)
- This is the amount of truth transferred over the channel $p \rightarrow q$

ANDING of Clauses on the LHS of implication

 $t(P \land Q) = \min(t(P), t(Q))$

Eg: If pressure is high then Volume is low

 $t(high(pressure) \rightarrow low(volume))$

Fuzzy Inferencing

- The Lukasiewitz rule
- $t(P \rightarrow Q) = \min[1, 1 + t(P) t(Q)]$

An example

The goal: To keep the pendulum in vertical position (θ =0) in dynamic equilibrium. Whenever the pendulum departs from vertical, a torque is produced by sending a current 'i'

Controlling factors for appropriate current

Angle θ , Angular velocity $\dot{\theta}$

Some intuitive rules

If θ is +ve small and $\dot{\theta}$ is -ve small

then current is zero

If θ is +ve small and $\dot{\theta}$ is +ve small

then current is -ve medium

Control Matrix

Each cell is a rule of the form

- If θ is \ll and $\dot{\theta}$ is \ll
- then i is <>
- <u>4 "Centre rules"</u>
- 1. if $\theta = =$ Zero and $\dot{\theta} = =$ Zero then i = Zero
- 2. if θ is +ve small and $\dot{\theta} =$ Zero then i is –ve small
- 3. if θ is -ve small and $\dot{\theta} =$ Zero then i is +ve small
- 4. if $\theta = =$ Zero and θ is +ve small then i is –ve small
- 5. if $\theta = =$ Zero and θ is –ve small then i is +ve small

Linguistic variables

- 1. Zero
- 2. +ve small
- 3. -ve small

Inference procedure

- 1. Read actual numerical values of θ and $\dot{\theta}$
- 2. Get the corresponding μ values μ_{Zero} , $\mu_{(+ve small)}$, $\mu_{(-ve small)}$. This is called FUZZIFICATION
- 3. For different rules, get the fuzzy *i* values from the R.H.S of the rules.
- 4. "Collate" by some method and get <u>ONE</u> current value. This is called DEFUZZIFICATION
- 5. Result is one numerical value of i.

Rules Involved

if θ is Zero and $d\theta/dt$ is Zero then i is Zero if θ is Zero and $d\theta/dt$ is +ve small then i is -ve small if θ is +ve small and $d\theta/dt$ is Zero then i is -ve small if θ +ve small and $d\theta/dt$ is +ve small then i is -ve medium

Fuzzification

Fuzzification

```
Suppose \theta is 1 radian and d\theta/dt is 1 rad/sec

\mu_{zero}(\theta = 1) = 0.8 (say)

\mu_{+ve-small}(\theta = 1) = 0.4 (say)

\mu_{zero}(d\theta/dt = 1) = 0.3 (say)

\mu_{+ve-small}(d\theta/dt = 1) = 0.7 (say)
```

if θ is Zero and $d\theta/dt$ is Zero then i is Zero min(0.8, 0.3)=0.3 hence $\mu_{zero}(i)=0.3$ if θ is Zero and $d\theta/dt$ is +ve small then i is -ve small min(0.8, 0.7)=0.7 hence $\mu_{-ve-small}(i)=0.7$ if θ is +ve small and $d\theta/dt$ is Zero then i is -ve small min(0.4, 0.3)=0.3 hence μ -ve-small(i)=0.3 if θ +ve small and $d\theta/dt$ is +ve small then i is -ve medium min(0.4, 0.7)=0.4 hence $\mu_{-ve-medium}(i)=0.4$

Finding *i*

Possible candidates:

i=0.5 and -0.5 from the "zero" profile and μ *=0.3 i=-0.1 and -2.5 from the "-ve-small" profile and* μ *=0.3 i=-1.7 and -4.1 from the "-ve-small" profile and* μ *=0.3*

Possible candidates:

i is the x-coord of the centroid of the areas given by the blue trapezium, the green trapeziums and the black trapezium