CS344: Introduction to Artificial Intelligence

> Pushpak Bhattacharyya CSE Dept., IIT Bombay

Lecture 30: Probabilistic Parsing: Algorithmics

(Lecture 28-29: two hours on student seminars on Default Reasoning, Child Language Acquisition and Short Term and Long Term Memory)

Formal Definition of PCFG

- A PCFG consists of
 - A set of terminals $\{w_k\}$, k = 1, ..., V

 $\{w_k\} = \{ child, teddy, bear, played... \}$

A set of non-terminals {Nⁱ}, i = 1,...,n

 $\{N_i\} = \{ NP, VP, DT... \}$

- A designated start symbol N¹
- A set of rules $\{N^i \rightarrow \zeta^j\}$, where ζ^j is a sequence of terminals & non-terminals NP \rightarrow DT NN
- A corresponding set of rule probabilities

Rule Probabilities

- Rule probabilities are such that $\forall i \sum_{i} P(N^{i} \rightarrow \zeta^{j}) = 1$ *E.g.*, $P(NP \rightarrow DTNN) = 0.2$ $P(NP \rightarrow NN) = 0.5$ $P(NP \rightarrow NPPP) = 0.3$
- P(NP \rightarrow DT NN) = 0.2
 - Means 20 % of the training data parses use the rule NP \rightarrow DT NN

Probabilistic Context Free Grammars

- $S \rightarrow NP VP$ 1.0
- NP \rightarrow DT NN 0.5
- NP \rightarrow NNS 0.3
- NP \rightarrow NP PP 0.2
- $PP \rightarrow P NP$ 1.0
- $VP \rightarrow VP PP$ 0.6
- $VP \rightarrow VBD NP 0.4$

- $DT \rightarrow the$ 1.0
- NN \rightarrow gunman 0.5
- NN \rightarrow building 0.5
- VBD \rightarrow sprayed 1.0
- NNS \rightarrow bullets 1.0

Example Parse t₁.

The gunman sprayed the building with bullets.

Another Parse t₂

The gunman sprayed the building with bullets.

Probability of a sentence

• Probability of a sentence = $P(w_{1m})$

$$P(w_{1m}) = \sum_{t} P(w_{1m}, t) \longrightarrow \text{Where t is a parse}$$

$$= \sum_{t} P(t)P(w_{1m} \mid t)$$

$$= \sum_{t: yield(t) = w_{1m}} P(t) \qquad \because P(w_{1m} \mid t) = 1 \quad \text{If t is a parse tree}$$

for the sentence

$$w_{1m'} \text{ this will be 1}$$

Assumptions of the PCFG model

Place invariance :

 $P(\text{NP} \rightarrow \text{DT NN})$ is same in locations 1 and 2

Context-free :

 $P(NP \rightarrow DT NN | anything outside "The child")$ = $P(NP \rightarrow DT NN)$

<u>ne</u>

Probability of a parse tree

- Domination : We say N_j dominates from k to I, symbolized as N^j_{k,l}, if W_{k,l} is derived from N_j
- P (tree | sentence) = P (tree | S_{1,1}) where S_{1,1} means that the start symbol S dominates the word sequence W_{1,1}
- P (t |s) approximately equals joint probability of constituent non-terminals dominating the sentence fragments (next slide)

 $= P (NP_{1,2}, VP_{3,1} | S_{1,1}) * P (DT_{1,1}, N_{2,2} | NP_{1,2}) * D(w_1 | DT_{1,1}) *$ $P (w_2 | N_{2,2}) * P (V_{3,3}, PP_{4,1} | VP_{3,1}) * P(w_3 | V_{3,3}) * P(P_{4,4}, NP_{5,1} | PP_{4,1}) * P(w_4 | P_{4,4}) * P (w_{5...1} | NP_{5,1})$ (Using Chain Rule, Context Freeness and Ancestor Freeness)

$\mathsf{HMM} \leftrightarrow \mathsf{PCFG}$

- O observed sequence ↔ W_{1m} sentence
- X state sequence ↔ t parse tree
- $\mu \mod H \leftrightarrow G \operatorname{grammar}$
- Three fundamental questions

HMM ↔ PCFG How likely is a certain observation given the model? ↔ How likely is a sentence given the grammar? $P(O \mid \mu) \leftrightarrow P(w_{1m} \mid G)$

■ How to choose a state sequence which best explains the observations? → How to choose a parse which best supports the sentence?

$HMM \leftrightarrow PCFG$

• How to choose the model parameters that best explain the observed data? \leftrightarrow How to choose rule probabilities which maximize the probabilities of the observed sentences? $\underset{\mu}{\operatorname{arg\,max}} P(O \mid \mu) \leftrightarrow \underset{G}{\operatorname{arg\,max}} P(w_{\operatorname{Im}} \mid G)$

Interesting Probabilities

Interesting Probabilities

- Random variables to be considered
 - The non-terminal being expanded.
 E.g., NP
 - The word-span covered by the non-terminal.
 E.g., (4,5) refers to words "the building"
- While calculating probabilities, consider:
 - The rule to be used for expansion : E.g., NP \rightarrow DT NN
 - The probabilities associated with the RHS nonterminals : *E.g.*, DT subtree's inside/outside probabilities & NN subtree's inside/outside probabilities

Outside Probability

 α_j(p,q) : The probability of beginning with N¹ & generating the non-terminal N^j_{pq} and all words outside w_p...w_q

$$\alpha_{j}(p,q) = P(w_{1(p-1)}, N_{pq}^{j}, w_{(q+1)m} \mid G)$$

Inside Probabilities

■ $β_j(p,q)$: The probability of generating the words $w_p...w_q$ starting with the non-terminal N^j_{pq} . $β_j(p,q) = P(w_{pq} | N^j_{pq}, G)$

Outside & Inside Probabilities:example $\alpha_{NP}(4,5)$ for "the building" = $P(\text{The gunman sprayed}, NP_{4,5}, \text{with bullets} | G)$ $\beta_{NP}(4,5)$ for "the building" = $P(\text{the building} | NP_{4,5}, G)$

Inside probabilities $\beta_i(p,q)$

Base case:

$$\beta_j(k,k) = P(w_k \mid N_{kk}^j, G) = P(N_{kk}^j \to w_k \mid G)$$

Base case is used for rules which derive the words or terminals directly

E.g., Suppose N^j = NN is being considered & NN \rightarrow building is one of the rules with probability 0.5 $\beta_{NN}(5,5) = P(building | NN_{5,5}, G)$

 $= P(NN_{5,5} \rightarrow building | G) = 0.5$

Induction Step

 Consider different splits of the words - indicated by d E.g., the huge building

Split here for d=2 d=3

 Consider different non-terminals to be used in the rule: NP → DT NN, NP → DT NNS are available options Consider summation over all these.

The Bottom-Up Approach

- The idea of induction
- Consider "the gunman"
- Base cases : Apply unary rules
 $DT \rightarrow the$ Prob = 1.0 $NN \rightarrow gunman$ Prob = 0.5

Induction : Prob that a NP covers these 2 words
 = P (NP → DT NN) * P (DT deriving the word "the") * P (NN deriving the word "gunman")
 = 0.5 * 1.0 * 0.5 = 0.25

- A parse triangle is constructed for calculating $\beta_j(p,q)$
- Probability of a sentence using $\beta_i(p,q)$:

$$P(w_{1m} \mid G) = P(N^1 \to w_{1m} \mid G) = P(w_{1m} \mid N_{1m}^1, G) = \beta_1(1, m)$$

	The (1)	gunman (2)	sprayed (3)	the (4)	building (5)	with (6)	bullets (7)
1	$\beta_{DT} = 1.0$						
2		$\beta_{NN} = 0.5$	/				
3			$\beta_{VBD} = 1.0$				
4				$\beta_{DT} = 1.0$			
5					$\beta_{NN} = 0.5$		
6						$\beta_P = 1.0$	
7							$\beta_{NNS} = 1.0$

• Fill diagonals with $\beta_j(k,k)$

	The (1)	gunman (2)	sprayed (3)	the (4)	building (5)	with (6)	bullets (7)
1	$\beta_{DT} = 1.0$	$\beta_{NP} = 0.25$					
2		$\beta_{_{NN}}=0.5$					
3			$\beta_{VBD} = 1.0$				
4				$\beta_{DT} = 1.0$			
5					$\beta_{_{NN}}=0.5$		
6						$\beta_P = 1.0$	
7							$\beta_{NNS} = 1.0$

• Calculate using induction formula $\beta_{NP}(1,2) = P(\text{the gunman} | NP_{1,2}, G)$

$$= P(NP \rightarrow DT NN) * \beta_{DT}(1,1) * \beta_{NN}(2,2)$$

= 0.5 * 1.0 * 0.5 = 0.25

Example Parse t₁

The gunman sprayed the building with bullets.

Another Parse t₂

The gunman sprayed the building with bullets.

	The (1)	gunman (2)	sprayed (3)	the (4)	building (5)	with (6)	bullets (7)
1	$\beta_{DT} = 1.0$	$\beta_{NP} = 0.25$					$\beta_s = 0.0465$
2		$\beta_{NN} = 0.5$					
3			$\beta_{VBD} = 1.0$		$\beta_{VP} = 1.0$		$\beta_{VP} = 0.186$
4				$\beta_{DT} = 1.0$	$\beta_{NP} = 0.25$		$\beta_{_{NP}} = 0.015$
5					$\beta_{NN} = 0.5$		
6						$\beta_P = 1.0$	$\beta_{PP} = 0.3$
7							$\beta_{NNS} = 1.0$

)

 $\beta_{VP}(3,7) = P(\text{sprayed the building with bullets } | VP_{3,7}, G)$

$$= P(VP \rightarrow VP PP) * \beta_{VP}(3,5) * \beta_{PP}(6,7)$$

+ $P(VP \rightarrow VBD NP) * \beta_{VBD}(3,3) * \beta_{NP}(4,7)$

= 0.6 * 1.0 * 0.3 + 0.4 * 1.0 * 0.015 = 0.186

Different Parses

- Consider
 - Different splitting points :
 - E.g., 5th and 3rd position
 - Using different rules for VP expansion :

 $\textit{E.g., VP} \rightarrow \textit{VP PP, VP} \rightarrow \textit{VBD NP}$

 Different parses for the VP "sprayed the building with bullets" can be constructed this way.

Probability of a Sentence

 $P(w_{1m}, N_{pq} | G) = \sum_{j} P(w_{1m} | N_{pq}^{j}, G) = \sum_{j} \alpha_{j}(p, q) \beta_{j}(p, q)$

 Joint probability of a sentence w_{1m} and that there is a constituent spanning words w_p to w_q is given as:

 $P(\text{The gunman....bullets}, N_{4,5} | G)$

