CS344: Introduction to Artificial Intelligence

Pushpak Bhattacharyya
CSE Dept.,
IIT Bombay
Lecture 30: Probabilistic Parsing:
Algorithmics

(Lecture 28-29: two hours on student seminars on Default Reasoning, Child Language Acquisition and Short Term and Long Term Memory)

Formal Definition of PCFG

- A PCFG consists of
- A set of terminals $\left\{w_{k}\right\}, k=1, \ldots, V$
$\left\{w_{k}\right\}=\{$ child, teddy, bear, played...\}
- A set of non-terminals $\left\{\mathrm{N}^{\mathrm{i}}\right\}, \mathrm{i}=1, \ldots, \mathrm{n}$

$$
\left\{N_{i}\right\}=\{N P, V P, D T \ldots\}
$$

- A designated start symbol N^{1}
- A set of rules $\left\{\mathrm{N}^{\mathrm{i}} \rightarrow \zeta^{j}\right\}$, where ζ^{j} is a sequence of terminals \& non-terminals
NP \rightarrow DT NN
- A corresponding set of rule probabilities

Rule Probabilities

- Rule probabilities are such that

$$
\begin{aligned}
& \forall i \sum_{\mathrm{i}} \mathrm{P}\left(\mathrm{~N}^{i} \rightarrow \zeta^{j}\right)=1 \\
& \text { E.g., } \mathrm{P}(\mathrm{NP} \rightarrow \mathrm{DT} \mathrm{NN})=0.2 \\
& \quad \mathrm{P}(\mathrm{NP} \rightarrow \mathrm{NN})=0.5 \\
& \mathrm{P}(\mathrm{NP} \rightarrow \mathrm{NP} P \mathrm{PP})=0.3
\end{aligned}
$$

- $\mathrm{P}(\mathrm{NP} \rightarrow \mathrm{DT} N \mathrm{~N})=0.2$
- Means 20 \% of the training data parses use the rule NP \rightarrow DT NN

Probabilistic Context Free Grammars

- S \rightarrow NP VP 1.0
- NP \rightarrow DT NN 0.5
- NP \rightarrow NNS 0.3
- NP \rightarrow NP PP 0.2
- PP \rightarrow P NP 1.0
- VP \rightarrow VP PP 0.6
- VP \rightarrow VBD NP 0.4
- DT \rightarrow the
1.0
- NN \rightarrow gunman 0.5
- NN \rightarrow building 0.5
- VBD \rightarrow sprayed 1.0
- NNS \rightarrow bullets 1.0

Example Parse t_{1}

- The gunman sprayed the building with bullets.

Another Parse t_{2}

- The gunman sprayed the building with bullets.

Probability of a sentence

- Notation :
- w_{ab} - subsequence w_{a}.... w_{b}
- N_{j} dominates w_{a}.... W_{b} or $\operatorname{yield}\left(N_{j}\right)=w_{a} \ldots W_{b}$

- Probability of a sentence $=P\left(w_{1 m}\right)$

$$
\begin{aligned}
P\left(w_{1 m}\right) & =\sum_{t} P\left(w_{1 m}, t\right) \rightarrow \begin{array}{l}
\text { Where } t \text { is a parse } \\
\text { tree of the } \\
\text { sentence }
\end{array} \\
& =\sum_{t} P(t) P\left(w_{1 m} \mid t\right) \\
& =\sum_{t: y i e l d(t)=w_{1 m}} P(t) \quad \because P\left(w_{1 m} \mid t\right)=1 \begin{array}{l}
\text { If } \mathrm{t} \text { is a parse tree } \\
\text { for the sentence } \\
\\
\mathrm{w}_{1 m}, \text { this will be } 1 \\
!!
\end{array}
\end{aligned}
$$

Assumptions of the PCFG model

- Place invariance :
$\mathrm{P}(\mathrm{NP} \rightarrow \mathrm{DT} \mathrm{NN})$ is same in locations 1 and 2
- Context-free :

P(NP \rightarrow DT NN | anything outside "The child")

$$
=P(N P \rightarrow D T N N)
$$

- Ancestor free : At 2, $\mathrm{P}(\mathrm{NP} \rightarrow \mathrm{DT} \mathrm{NN} \mid$ its ancestor is VP) $=P(N P \rightarrow D T N N)$

Probability of a parse tree

- Domination : Wa cay N_{j} dominates from k to I , symbolized as $N_{k, 1}$, if $W_{k, 1}$ is derived from N_{j}
- $\mathrm{P}($ tree \mid sentence $)=\mathrm{P}\left(\right.$ tree $\left.\mid S_{1,1}\right)$
where $S_{1,1}$ means that the start symbol S dominates the word sequence $W_{1,1}$
- $\mathrm{P}(\mathrm{t} \mid \mathrm{s})$ approximately equals joint probability of constituent non-terminals dominating the sentence fragments (next slide)

Probability of a parse tree (cont.)

$$
\begin{aligned}
& \mathrm{P}(\mathrm{t} \mid \mathrm{s})=\mathrm{P}\left(\mathrm{t} \mid \mathrm{S}_{1,1}\right) \\
& =\mathrm{P}\left(\mathrm{NP}_{1,2}, \mathrm{DT}_{1,1}, \mathrm{w}_{1},\right. \\
& \mathrm{N}_{2,2}, \mathrm{w}_{2,} \\
& \mathrm{VP}_{3,1}, \mathrm{~V}_{3,3}, \mathrm{w}_{3},
\end{aligned}
$$

$$
\left.\mathrm{PP}_{4,1}, \mathrm{P}_{4,4}, \mathrm{w}_{4,}, N P_{5,1}, w_{5 \ldots} \mid \mathrm{s}_{1,1}\right)
$$

$$
=\mathrm{P}\left(\mathrm{NP}_{1,2}, \mathrm{VP}_{3,1} \mid \mathrm{S}_{1,1}\right) * \mathrm{P}\left(\mathrm{DT}_{1,1}, \mathrm{~N}_{2,2} \mid \mathrm{NP}_{1,2}\right) * \mathrm{D}\left(\mathrm{w}_{1} \mid \mathrm{D} T_{1,1}\right) *
$$

$$
P\left(w_{2} \mid N_{2,2}\right) * P\left(V_{3,3}, P P_{4,1} \mid V P_{3,1}\right) * P\left(w_{3} \mid V_{3,3}\right) * P\left(P_{4,4}, N P_{5,1} \mid\right.
$$

$$
\left.P P_{4,1}\right) * P\left(w_{4} \mid P_{4,4}\right) * P\left(w_{5, \ldots} \mid N P_{5,1}\right)
$$

(Using Chain Rule, Context Freeness and Ancestor Freeness)

$\mathrm{HMM} \leftrightarrow \mathrm{PCFG}$

- O observed sequence $\leftrightarrow \mathrm{w}_{1 \mathrm{~m}}$ sentence
- X state sequence $\leftrightarrow ~ t ~ p a r s e ~ t r e e ~$
- μ model \leftrightarrow G grammar
- Three fundamental questions

HMM \leftrightarrow PCFG

- How likely is a certain observation given the model? \leftrightarrow How likely is a sentence given the grammar?

$$
P(O \mid \mu) \leftrightarrow P\left(w_{1 m} \mid G\right)
$$

- How to choose a state sequence which best explains the observations? \leftrightarrow How to
 sentehce?

$\mathrm{HMM} \leftrightarrow \mathrm{PCFG}$

- How to choose the model parameters that best explain the observed data? \leftrightarrow How to choose rule probabilities which maximize the probabilities of the observed sentences?

$$
\underset{\mu}{\arg \max } P(O \mid \mu) \leftrightarrow \underset{G}{\arg \max } P\left(w_{1 m} \mid G\right)
$$

Interesting Probabilities

Interesting Probabilities

- Random variables to be considered
- The non-terminal being expanded. E.g., NP
- The word-span covered by the non-terminal. E.g., $(4,5)$ refers to words "the building"
- While calculating probabilities, consider:
- The rule to be used for expansion :
E.g., NP \rightarrow DT NN
- The probabilities associated with the RHS nonterminals : E.g., DT subtree's inside/outside probabilities \& NN subtree's inside/outside probabilities

Outside Probability

- $\alpha_{j}(\mathrm{p}, \mathrm{q})$: The probability of beginning with N^{1} \& generating the non-terminal N_{pq} and all words outside $\mathrm{w}_{\mathrm{p}} . . \mathrm{w}_{\mathrm{q}}$

$$
\alpha_{j}(p, q)=P\left(w_{1(p-1)}, N_{p q}^{j}, w_{(q+1) m} \mid G\right)
$$

Inside Probabilities

- $\beta_{j}(\mathrm{p}, \mathrm{q})$: The probability of generating the words $\mathrm{w}_{\mathrm{p}} . . \mathrm{w}_{\mathrm{q}}$ starting with the non-terminal $\mathrm{Ni}_{\mathrm{pq}}$.

$$
\beta_{j}(p, q)=P\left(w_{p q} \mid N_{p q}^{j}, G\right)
$$

Outside \& Inside Probabilities: example

 $\alpha_{N P}(4,5)$ for "the building"$=P\left(\right.$ The gunman sprayed, $N P_{4,5}$, with bullets $\left.\mid G\right)$
$\beta_{N P}(4,5)$ for "the building" $=P\left(\right.$ the building $\left.\mid N P_{4,5}, G\right)$

I nside probabilities $\beta_{\mathrm{i}}(\mathrm{p}, \mathrm{q})$

$$
\begin{aligned}
& \text { Base case: } \\
& \qquad \beta_{j}(k, k)=P\left(w_{k} \mid N_{k k}^{j}, G\right)=P\left(N_{k k}^{j} \rightarrow w_{k} \mid G\right)
\end{aligned}
$$

- Base case is used for rules which derive the words or terminals directly
E.g., Suppose $\mathrm{Nj}^{\mathrm{j}}=\mathrm{NN}$ is being considered \& NN \rightarrow building is one of the rules with probability 0.5

$$
\begin{aligned}
\beta_{N N}(5,5) & =P\left(\text { building } \mid N N_{5,5}, G\right) \\
& =P\left(N N_{5,5} \rightarrow \text { building } \mid G\right)=0.5
\end{aligned}
$$

Induction Step

- Consider different splits of the words - indicated by d E.g., the huge ${ }_{\uparrow}$ building

Split here for $d=2 \quad d=3$

- Consider different non-terminals to be used in the rule: NP \rightarrow DT NN, NP \rightarrow DT NNS are available options
Consider summation over all these.

The Bottom-Up Approach

- The idea of induction
- Consider "the gunman"
- Base cases : Apply unary rules DT \rightarrow the \quad Prob $=1.0$ $\mathrm{NN} \rightarrow$ gunman \quad Prob $=0.5$

The gunman

- Induction : Prob that a NP covers these 2 words
$=P(N P \rightarrow D T N N) * P(D T$ deriving the word "the") * P (NN deriving the word "gunman")
$=0.5 * 1.0 * 0.5=0.25$

Parse Triangle

- A parse triangle is constructed for calculating $\beta_{j}(p, q)$
- Probability of a sentence using $\beta_{\mathrm{j}}(\mathrm{p}, \mathrm{q})$:
$P\left(w_{1 m} \mid G\right)=P\left(N^{1} \rightarrow w_{1 m} \mid G\right)=P\left(w_{1 m} \mid N_{1 m}^{1}, G\right)=\beta_{1}(1, m)$

Parse Triangle

	The (1)	gunman (2)	sprayed (3)	the (4)	building (5)	with (6)	bullets (7)
1	$\beta_{D T}=1.0$						
2		$\beta_{N N}=0.5$					
3			$\beta_{V B D}=1.0$				
4				$\beta_{D T}=1.0$			
5					$\beta_{N N}=0.5$		
6						$\beta_{P}=1.0$	
7							$\beta_{\text {NNS }}=1.0$

- Fill diagonals with $\beta_{j}(k, k)$

Parse Triangle

	The (1)	gunman (2)	sprayed (3)	the (4)	building (5)	with (6)	bullets (7)
1	$\beta_{D T}=1.0$	$\beta_{N P}=0.25$					
2		$\beta_{N N}=0.5$					
3			$\beta_{\text {VBD }}=1.0$				
4				$\beta_{D T}=1.0$			
5					$\beta_{N N}=0.5$		
6						$\beta_{P}=1.0$	
7							$\beta_{\text {NNS }}=1.0$

- Calculate using induction formula $\beta_{N P}(1,2)=P\left(\right.$ the gunman $\left.\mid N P_{1,2}, G\right)$

$$
\begin{aligned}
& =P(N P \rightarrow D T N N) * \beta_{D T}(1,1) * \beta_{N N}(2,2) \\
& =0.5 * 1.0 * 0.5=0.25
\end{aligned}
$$

Example Parse t_{1}

- The gunman sprayed the building with bullets.

Another Parse t_{2}

- The gunman sprayed the building with bullets.

Parse Triangle

	The (1)	gunman (2)	sprayed (3)	the (4)	building (5)	with (6)	bullets (7)
1	$\beta_{D T}=1.0$	$\beta_{N P}=0.25$					$\beta_{S}=0.0465$
2		$\beta_{N N}=0.5$					
3			$\beta_{V B D}=1.0$		$\beta_{V P}=1.0$		$\beta_{V P}=0.186$
4				$\beta_{D T}=1.0$	$\beta_{N P}=0.25$		$\beta_{N P}=0.015$
5					$\beta_{N N}=0.5$		
6						$\beta_{P}=1.0$	$\beta_{P P}=0.3$
7							$\beta_{N N S}=1.0$

$\beta_{V P}(3,7)=P\left(\right.$ sprayed the building with bullets $\left.\mid V P_{3,7}, G\right)$

$$
=P(V P \rightarrow V P P P) * \beta_{V P}(3,5) * \beta_{P P}(6,7)
$$

$$
+P(V P \rightarrow V B D N P) * \beta_{V B D}(3,3) * \beta_{N P}(4,7)
$$

$$
=0.6 * 1.0 * 0.3+0.4 * 1.0 * 0.015=0.186
$$

Different Parses

- Consider
- Different splitting points :
E.g., 5th and $3^{\text {rd }}$ position
- Using different rules for VP expansion : E.g., VP \rightarrow VP PP, VP \rightarrow VBD NP
- Different parses for the VP "sprayed the building with bullets" can be constructed this way.

Outside Probabilities $\alpha_{j}(p, q)$

Probability of a Sentence

$$
P\left(w_{1 m}, N_{p q} \mid G\right)=\sum_{j} P\left(w_{1 m} \mid N_{p q}^{j}, G\right)=\sum_{j} \alpha_{j}(p, q) \beta_{j}(p, q)
$$

- Joint probability of a sentence $\mathrm{w}_{1 \mathrm{~m}}$ and that there is a constituent spanning words w_{p} to w_{q} is given as:

The gunman sprayed the building with $\begin{array}{llllll}\text { b凹llets } 2 & 3 & 4 & 5 & 6 & 7\end{array}$

