# CS344: INTRODUCTION TO ARTIFICIAL INTELLIGENCE 

Pushpak Bhattacharyya<br>CSE Dept.,<br>IIT Bombay<br>Lecture 38: PAC Learning, VC dimension; Self Organization

## VC-dimension

Gives a necessary and sufficient condition for PAC learnability.

## Def:-

## Let C be a concept class, i.e., it has

 members c1, c2,c3,...... as concepts in it.

## Let $S$ be a subset of $U$ (universe).

Now if all the subsets of $S$ can be produced by intersecting with $\mathrm{C}_{\mathrm{i}}{ }^{s}$, then we say C shatters S.

# The highest cardinality set $S$ that can be shattered gives the VC-dimension of C. 

$$
V C-\operatorname{dim}(C)=|S|
$$

VC-dim: Vapnik-Cherronenkis dimension.







## Fundamental Theorem of PAC learning (Ehrenfeuct et. al, 1989)

- A Concept Class $C$ is learnable for all probability distributions and all concepts in $C$ if and only if the VC dimension of $C$ is finite
- If the VC dimension of $C$ is $d$, then...(next page)


## Fundamental theorem (contd)

(a) for $0<\varepsilon<1$ and the sample size at least $\max [(4 / \varepsilon) \log (2 / \delta),(8 d / \varepsilon) \log (13 / \varepsilon)]$ any consistent function $A: S_{c} \rightarrow C$ is a learning function for C
(b) for $0<\varepsilon<1 / 2$ and sample size less than $\max [((1-\varepsilon) / \varepsilon) \ln (1 / \delta), d(1-2(\varepsilon(1-\delta)+\delta))]$
No function $A: S_{c} \rightarrow H$, for any hypothesis space is a learning function for $C$.

## Book

1. Computational Learning Theory, M. H. G. Anthony, N. Biggs, Cambridge Tracts in Theoretical Computer Science, 1997.

Paper's<br>1. A theory of the learnable, Valiant, LG (1984), Communications of the ACM 27(11):1134-1142.

2. Learnability and the VC-dimension, A Blumer, A Ehrenfeucht, D Haussler, M Warmuth - Journal of the ACM, 1989.

## SELF ORGANIZATION

## Self Organization

Biological Motivation


## Higher brain



## Maslow's hierarchy




## Mapping of Brain



## Left Brain and Right Brain

Dichotomy


Left Brain - Logic, Reasoning, Verbal ability Right Brain - Emotion, Creativity


Maps in the brain. Limbs are mapped to brain

## Character Reognition



## KOHONEN NET

- Self Organization or Kohonen network fires a group of neurons instead of a single one.
- The group "some how" produces a "picture" of the cluster.
- Fundamentally SOM is competitive learning.
- But weight changes are incorporated on a neighborhood.
- Find the winner neuron, apply weight change for the winner and its "neighbors".


Neurons on the contour are the "neighborhood" neurons.

## Weight change rule for SOM



[^0]
## Pictorially




## Clusters:




[^0]:    $\delta(n)$ is a decreasing function of $n$
    $n(n)$ learning rate is also a decreasing function of $n$ $0<\eta(n)<\eta(n-1)<=1$

