CS344: Introduction to Artificial

 Intelligence (associated lab: CS386)Pushpak Bhattacharyya
CSE Dept.,
IIT Bombay

Lecture-4: Fuzzy Control of Inverted Pendulum + Propositional Calculus based puzzles

Lukasiewitz formula

 for Fuzzy Implication- $\mathrm{t}(\mathrm{P})=$ truth value of a proposition/predicate. In fuzzy logic $\mathrm{t}(\mathrm{P})=[0,1]$
- $\mathrm{t}(P \rightarrow Q)=\min [1,1-\mathrm{t}(\mathrm{P})+\mathrm{t}(\mathrm{Q})]$

Lukasiewitz definition of implication

Use Lukasiewitz definition

- $t(p \rightarrow q)=\min [1,1-t(p)+t(q)]$
- We have $t(p->q)=c$, i.e., $\min [1,1-t(p)+t(q)]=c$
- Case 1:
- $c=1$ gives $1-t(p)+t(q)>=1$, i.e., $t(q)>=a$
- Otherwise, $1-t(p)+t(q)=c$, i.e., $t(q)>=c+a-1$
- Combining, $t(q)=\max (0, a+c-1)$
- This is the amount of truth transferred over the channel $p \rightarrow q$

Fuzzification and Defuzzification

Precise number (Input)

ANDING of Clauses on the LHS of implication

$$
t(P \wedge Q)=\min (t(P), t(Q))
$$

Eg: If Pressure is high AND Volume is low then make Temperature Low

Hence $\operatorname{Mu}\left(T_{0}\right)=M u\left(P_{0}\right)$

Fuzzy Inferencing

Core
The Lukasiewitz rule
$\mathrm{t}(P \rightarrow Q)=\min [1,1+\mathrm{t}(\mathrm{P})-\mathrm{t}(\mathrm{Q})]$
An example
Controlling an inverted pendulum
$\dot{\theta}=d \theta / d t=$ angular velocity

Motor

The goal: To keep the pendulum in vertical position $(\theta=0)$ in dynamic equilibrium. Whenever the pendulum departs from vertical, a torque is produced by sending a current ' i '

Controlling factors for appropriate current
Angle θ, Angular velocity θ°

Some intuitive rules

If θ is + ve small and θ° is - ve small
then current is zero
If θ is +ve small and θ° is +ve small
then current is -ve medium

Control Matrix

Each cell is a rule of the form
If θ is <> and θ° is <>
then i is <>
4 "Centre rules"

1. if $\theta==$ Zero and $\theta^{\circ}==$ Zero then $\mathrm{i}=$ Zero
2. if θ is + ve small and $\theta^{\circ}==$ Zero then i is - ve small
3. if θ is -ve small and $\theta==$ Zero then i is +ve small
4. if $\theta==$ Zero and θ° is + ve small then i is -ve small
5. if $\theta==$ Zero and θ° is -ve small then i is +ve small

Linguistic variables

1. Zero

2. +ve small
3. -ve small

Profiles

Inference procedure

1. Read actual numerical values of θ and θ°
2. Get the corresponding μ values $\mu_{\text {Zero }}, \mu_{(+ \text {ve small })}$, $\mu_{(-v e ~ s m a l l)}$. This is called FUZZIFICATION
3. For different rules, get the fuzzy i values from the R.H.S of the rules.
4. "Collate" by some method and get ONE current value. This is called DEFUZZIFICATION
5. Result is one numerical value of i.

Rules Involved

if $\boldsymbol{\theta}$ is Zero and $\mathrm{d} \boldsymbol{\theta} / \mathrm{dt}$ is Zero then i is Zero if $\boldsymbol{\theta}$ is Zero and $\mathrm{d} \theta / \mathrm{dt}$ is +ve small then i is -ve small if $\boldsymbol{\theta}$ is +ve small and $\mathrm{d} \boldsymbol{\theta} / \mathrm{dt}$ is Zero then i is -ve small if $\boldsymbol{\theta}+\mathrm{ve}$ small and $\mathrm{d} \boldsymbol{\theta} / \mathrm{dt}$ is +ve small then i is -ve medium

Fuzzification

```
Suppose \(\boldsymbol{\theta}\) is 1 radian and \(\mathrm{d} \theta / \mathrm{dt}\) is \(1 \mathrm{rad} / \mathrm{sec}\)
\(\mu_{\text {zero }}(\boldsymbol{\theta}=1)=0.8\) (say)
\(\mu_{\text {+ve-small }}(\theta=1)=0.4\) (say)
\(\mu_{\text {zero }}(\mathrm{d} \theta / \mathrm{dt}=1)=0.3\) (say)
\(\mu_{\text {+ve-small }}(\mathrm{d} \theta / \mathrm{dt}=1)=0.7\) (say)
```


Fuzzification

Suppose θ is 1 radian and $\mathrm{d} \theta / \mathrm{dt}$ is $\mathbf{1 ~ r a d / s e c ~}$
$\mu_{\text {zero }}(\boldsymbol{\theta}=1)=0.8$ (say)
$\mu_{\text {+ve-small }}(\theta=1)=0.4$ (say)
$\mu_{\text {zero }}(\mathrm{d} \theta / \mathrm{dt}=1)=0.3$ (say)
$\mu_{\text {+ve-small }}(\mathrm{d} \mathrm{\theta} / \mathrm{dt}=1)=0.7$ (say)
if $\boldsymbol{\theta}$ is Zero and $\mathbf{d \theta} / \mathrm{dt}$ is Zero then \mathbf{i} is Zero $\min (0.8,0.3)=0.3$
hence $\mu_{\text {zero }}(i)=0.3$
if $\boldsymbol{\theta}$ is Zero and $\mathrm{d} \boldsymbol{\theta} / \mathrm{dt}$ is +ve small then i is -ve small
$\min (0.8,0.7)=0.7$
hence $\mu_{\text {-ve-small }}(i)=0.7$
if $\boldsymbol{\theta}$ is $\boldsymbol{+ v e}$ small and $\mathrm{d} \boldsymbol{\theta} / \mathrm{dt}$ is Zero then i is -ve small
$\min (0.4,0.3)=0.3$
hence μ-ve-small(i)=0.3
if $\boldsymbol{\theta}+\mathrm{ve}$ small and $\mathrm{d} \boldsymbol{\theta} / \mathrm{dt}$ is +ve small then i is -ve medium $\min (0.4,0.7)=0.4$
hence $\mu_{\text {-ve-medium }}(i)=0.4$

Finding i

Possible candidates:
$i=0.5$ and -0.5 from the "zero" profile and $\mu=0.3$
$i=-0.1$ and -2.5 from the "-ve-small" profile and $\mu=0.3$
$i=-1.7$ and -4.1 from the "-ve-small" profile and $\mu=0.3$

Defuzzification: Finding i by the centroid method

Possible candidates:
i is the x-coord of the centroid of the areas given by the blue trapezium, the green trapeziums and the black trapezium

Propositional Calculus and Puzzles

Propositions

- Stand for facts/assertions
- Declarative statements
- As opposed to interrogative statements (questions) or imperative statements (request, order)

Operators
AND (\wedge), OR $(\vee), \operatorname{NOT}(\neg), \operatorname{IMPLICATION}(\Rightarrow)$
$=>$ and \neg form a minimal set (can express other operations)

- Prove it.

Tautologies are formulae whose truth value is always T, whatever the assignment is

Model

In propositional calculus any formula with n propositions has 2^{n} models (assignments)

- Tautologies evaluate to T in all models.

Examples:

1) $P \vee \neg P$
2) $\quad \neg(P \wedge Q) \Leftrightarrow(\neg P \vee \neg Q)$
e Morgan with AND

Semantic Tree/Tableau method of proving tautology

Start with the negation of the formula

Example 2:

A puzzle
 (Zohar Manna, Mathematical Theory of Computation, 1974)

From Propositional Calculus

Tourist in a country of truthsayers and liers

- Facts and Rules: In a certain country, people either always speak the truth or always lie. A tourist T comes to a junction in the country and finds an inhabitant S of the country standing there. One of the roads at the junction leads to the capital of the country and the other does not. S can be asked only yes/no questions.
- Question: What single yes/no question can T ask of S , so that the direction of the capital is revealed?

Diagrammatic representation

Deciding the Propositions: a very difficult step- needs human intelligence

- P: Left road leads to capital
- Q: S always speaks the truth

Meta Question: What question should the tourist ask

- The form of the question
- Very difficult: needs human intelligence
- The tourist should ask
- Is R true?
- The answer is "yes" if and only if the left road leads to the capital
- The structure of R to be found as a function of P and Q

A more mechanical part: use of truth table

\mathbf{P}	\mathbf{Q}	S's Answer	\mathbf{R}
T	T	Yes	T
T	F	Yes	F
F	T	No	F
F	F	No	T

Get form of R: quite mechanical

- From the truth table
- R is of the form ($P \times$ x-nor Q) or $(P \equiv Q)$

Get R in English/Hindi/Hebrew...

- Natural Language Generation: non-trivial
- The question the tourist will ask is
- Is it true that the left road leads to the capital if and only if you speak the truth?
- Exercise: A more well known form of this question asked by the tourist uses the X-OR operator instead of the X-Nor. What changes do you have to incorporate to the solution, to get that answer?

