CS344: Introduction to Artificial Intelligence

Pushpak Bhattacharyya CSE Dept.,
IIT Bombay

Lecture 8 and 9- Predicate Calculus;
Interpretation; Inferencing

Predicate Calculus: well known examples

- Man is mortal : rule
$\forall x[\operatorname{man}(x) \rightarrow$ mortal $(x)]$
- shakespeare is a man
man(shakespeare)
- To infer shakespeare is mortal mortal(shakespeare)

Wh-Questions and Knowledge

Fixing Predicates

- Natural Sentences
<Subject> <verb> <object>

Verb(subject,object)

predicate(subject)

Examples

- Ram is a boy
- Boy(Ram)?
- Is_a(Ram,boy)?
- Ram Playes Football
- Plays(Ram,football)?
- Plays_football(Ram)?

Knowledge Representation of Complex Sentence

- "In every city there is a thief who is beaten by every policeman in the city"
$\forall x[\operatorname{city}(\mathrm{x}) \rightarrow\{\exists \mathrm{y}(($ thief $(\mathrm{y}) \wedge$ lives_in $(\mathrm{y}, \mathrm{x})) \wedge \forall \mathrm{z}($ poleceman $(\mathrm{z}, \mathrm{x}) \rightarrow$ beaten_by $(\mathrm{z}, \mathrm{y})))\}]$

Interpretation in Logic

- Logical expressions or formulae are "FORMS" (placeholders) for whom contents are created through interpretation.
- Example:

$$
\exists F[\{F(a)=b\} \wedge \forall x\{P(x) \rightarrow(F(x)=g(x, F(h(x))))\}]
$$

- This is a Second Order Predicate Calculus formula.
- Quantification on ' F ' which is a function.

Examples

- Interpretation: 1
$D=N$ (natural numbers)
$a=O$ and $b=1$
$x \in N$
$P(x)$ stands for $x>0$
$g(m, n)$ stands for ($m x n$)
$h(x)$ stands for $(x-1)$
- Above interpretation defines Factorial

Examples (contd.)

- Interpretation: 2

$$
\begin{aligned}
D & =\{\text { strings }) \\
a & =b=\lambda
\end{aligned}
$$

$P(x)$ stands for " x is a non empty string"
$g(m, n)$ stands for "append head of m to n "
$h(x)$ stands for tail (x)

- Above interpretation defines "reversing a string"

Forward Chaining/ Inferencing

- man $(x) \rightarrow$ mortal (x)
- Dropping the quantifier, implicitly Universal quantification assumed
- man(shakespeare)
- Goal mortal(shakespeare)
- Found in one step
- $\mathrm{x}=$ shakespeare, unification

Backward Chaining/ I nferencing

- man $(x) \rightarrow$ mortal (x)
- Goal mortal(shakespeare)
- x = shakespeare
- Travel back over and hit the fact asserted
- man(shakespeare)

I nferencing

AND-OR Graphs

- $P(x) \rightarrow Q(x)$ AND $R(x)$
- $P(x) \rightarrow M(x)$

AND-OR Graphs

- Whole rule base can be represented as an AND-OR graph
- AO* Search: A* like search on AND-OR graphs

Deciding the Strategy

- Forward Chaining/Backward Chaining is decided from:
- AO Graph and,
- OR Fan-Out and,
- Fan-In of Goal Node

Hilbert's Logical Axioms

- $P(x) \rightarrow(Q(x) \rightarrow P(x))$
- $[P(x) \rightarrow(Q(x) \rightarrow R(x))] \rightarrow[(P(x) \rightarrow$ $Q(x)) \rightarrow(P(x) \rightarrow Q(x))]$
- $\sim(\sim P(x)) \rightarrow P(x)$

Resolution - Refutation contd

- Negate the goal
- ~mortal(shakespeare)
- Get a pair of resolvents

Resolution Tree

Search in resolution

- Heuristics for Resolution Search
- Goal Supported Strategy
- Always start with the negated goal
- Set of support strategy
- Always one of the resolvents is the most recently produced resolute

Search in resolution

- Heuristics for Resolution Search
- Goal Supported Strategy
- Always start with the negated goal
- Set of support strategy
- Always one of the resolvents is the most recently produced resolute

Inferencing in Predicate Calculus

- Forward chaining
- Given $\mathrm{P}, P \rightarrow Q$, to infer Q
- P, match L.H.S of
- Assert Q from R.H.S
- Backward chaining
- Q, Match R.H.S of $\quad P \rightarrow Q$
- assert P
- Check if P exists
- Resolution - Refutation
- Negate goal
- Convert all pieces of knowledge into clausal form (disjunction of literals)
- See if contradiction indicated by null clause \square can be derived

1. P
2. $P \rightarrow Q$ converted to $\sim P \vee Q$
3. $\sim Q$

Draw the resolution tree (actually an inverted tree). Every node is a clausal form and branches are intermediate inference steps.

Terminology

- Pair of clauses being resolved is called the Resolvents. The resulting clause is called the Resolute.
- Choosing the correct pair of resolvents is a matter of search.

Himalayan Club example

- Introduction through an example (Zohar Manna, 1974):
- Problem: A, B and C belong to the Himalayan club. Every member in the club is either a mountain climber or a skier or both. A likes whatever B dislikes and dislikes whatever B likes. A likes rain and snow. No mountain climber likes rain. Every skier likes snow. Is there a member who is a mountain climber and not a skier?
- Given knowledge has:
- Facts
- Rules

Example contd.

- Let $m c$ denote mountain climber and $s k$ denotes skier. Knowledge representation in the given problem is as follows:

1. member (A)
2. member (B)
3. member(C)
4. $\quad \forall x[\operatorname{member}(x) \rightarrow(m c(x) \vee s k(x))]$
5. $\forall x[m c(x) \rightarrow \sim$ like $(x$, rain $)]$
6. $\forall x[\operatorname{sk}(x) \rightarrow$ like $(x$, snow $)]$
7. $\forall x[\operatorname{like}(B, x) \rightarrow \sim \operatorname{like}(A, x)]$
8. $\quad \forall x[\sim \operatorname{like}(B, x) \rightarrow \operatorname{like}(A, x)]$
9. like $(A$, rain)
10. like(A, snow)
11. Question: $\exists x[m e m b e r(x) \wedge m c(x) \wedge \sim s k(x)]$

- We have to infer the $11^{\text {th }}$ expression from the given 10.
- Done through Resolution Refutation.

Club example: Inferencing

1. member (A)
2. member (B)
3. member (C)
4. $\forall x[\operatorname{member}(x) \rightarrow(\operatorname{mc}(x) \vee \operatorname{sk}(x))]$

- Can be written as

5. $\forall x[\operatorname{sk}(x) \rightarrow \operatorname{lk}(x$, snow $)]$

$$
\sim \operatorname{sk}(x) \vee l k(x, s n o w)
$$

6. $\forall x[m c(x) \rightarrow \sim l k(x, r a i n)]$

$$
\sim m c(x) \vee \sim \operatorname{lk}(x, r a i n)
$$

7. $\forall x[l i k e(A, x) \rightarrow \sim l k(B, x)]$

$$
\sim \operatorname{like}(A, x) \vee \sim \operatorname{lk}(B, x)
$$

8. $\quad \forall x[\sim \operatorname{lk}(A, x) \rightarrow \operatorname{lk}(B, x)]$

$$
\operatorname{lk}(A, x) \vee \operatorname{lk}(B, x)
$$

9. $\quad l k(A$, rain $)$
10. $\quad l k(A$, snow $)$
11. $\exists x[\operatorname{member}(x) \wedge m c(x) \wedge \sim \operatorname{sk}(x)]$

- Negate- $\forall x[\sim \operatorname{member}(x) \vee \sim m c(x) \vee \operatorname{sk}(x)]$
- Now standardize the variables apart which results in the following

1. member (A)
2. member (B)
3. member (C)
4. $\sim \operatorname{member}\left(x_{1}\right) \vee m c\left(x_{1}\right) \vee s k\left(x_{1}\right)$
5. $\sim \operatorname{sk}\left(x_{2}\right) \vee l k\left(x_{2}\right.$, snow $)$
6. $\sim m c\left(x_{3}\right) \vee \sim l k\left(x_{3}\right.$, rain $)$
7. $\sim \operatorname{like}\left(A, x_{4}\right) \vee \sim \operatorname{lk}\left(B, x_{4}\right)$
8. $\quad l k\left(A, x_{5}\right) \vee l k\left(B, x_{5}\right)$
9. $l k(A$, rain $)$
10. $\operatorname{lk}(A$, snow $)$
11. $\sim \operatorname{member}\left(x_{6}\right) \vee \sim \operatorname{mc}\left(x_{6}\right) \vee \operatorname{sk}\left(x_{6}\right)$

Assignment

- Prove the inferencing in the Himalayan club example with different starting points, producing different resolution trees.
- Think of a Prolog implementation of the problem
- Prolog Reference (Prolog by Chockshin \& Melish)

