## CS344: Introduction to Artificial Intelligence (associated lab: CS386)

Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 14: AI, Logic, and Puzzle Solving 7<sup>th</sup> Feb, 2011 A puzzle (Zohar Manna, Mathematical Theory of Computation, 1974)

From Propositional Calculus

## Tourist in a country of truthsayers and liers

- Facts and Rules: In a certain country, people either always speak the truth or always lie. A tourist T comes to a junction in the country and finds an inhabitant S of the country standing there. One of the roads at the junction leads to the capital of the country and the other does not. S can be asked only yes/no questions.
- Question: What single yes/no question can T ask of S, so that the direction of the capital is revealed?

### **Diagrammatic representation**





Deciding the Propositions: a very difficult step- needs human intelligence

- P: Left road leads to capital
- Q: S always speaks the truth

Meta Question: What question should the tourist ask

- The form of the question
- Very difficult: needs human intelligence
- The tourist should ask
  - Is R true?
  - The answer is "yes" if and only if the left road leads to the capital
  - The structure of R to be found as a function of P and Q

# A more mechanical part: use of truth table

| Р | Q | S's<br>Answer | R |
|---|---|---------------|---|
| Т | Т | Yes           | Т |
| Т | F | Yes           | F |
| F | Т | No            | F |
| F | F | No            | Т |

Get form of R: quite mechanical

From the truth table
 *R is of the form (P x-nor Q) or (P ≡ Q)*

# Get *R* in English/Hindi/Hebrew...

- Natural Language Generation: non-trivial
- The question the tourist will ask is
  - Is it true that the left road leads to the capital if and only if you speak the truth?
- Exercise: A more well known form of this question asked by the tourist uses the X-OR operator instead of the X-Nor. What changes do you have to incorporate to the solution, to get that answer?

### Himalayan Club example

- Introduction through an example (Zohar Manna, 1974):
  - Problem: A, B and C belong to the Himalayan club. Every member in the club is either a mountain climber or a skier or both. A likes whatever B dislikes and dislikes whatever B likes. A likes rain and snow. No mountain climber likes rain. Every skier likes snow. *Is there a member who is a mountain climber and not a skier?*
- Given knowledge has:
  - Facts
  - Rules

#### Example contd.

- Let *mc* denote mountain climber and *sk* denotes skier.
  Knowledge representation in the given problem is as follows:
  - 1. member(A)
  - 2. member(B)
  - 3. member(C)
  - 4.  $\forall x [member(x) \rightarrow (mc(x) \lor sk(x))]$
  - 5.  $\forall x[mc(x) \rightarrow \sim like(x, rain)]$
  - $6. \quad \forall x[sk(x) \rightarrow like(x, snow)]$
  - $\mathbf{z} \quad \forall \mathbf{x}[like(B, \mathbf{x}) \rightarrow ~like(A, \mathbf{x})]$
  - 8.  $\forall x[\sim like(B, x) \rightarrow like(A, x)]$
  - 9. like(A, rain)
  - *10. like(A, snow)*
  - 11. Question:  $\exists x [member(x) \land mc(x) \land \neg sk(x)]$
- We have to infer the 11<sup>th</sup> expression from the given 10.
- Done through Resolution Refutation.

#### Club example: Inferencing

- 1. member(A)
- 2. *member(B)*
- 3. *member(C)*
- 4.  $\forall x[member(x) \rightarrow (mc(x) \lor sk(x))]$ 
  - Can be written as

 $\sim member(x) \bigvee_{mc(x)}^{[member(x)} \bigvee_{sk(x)}^{(mc(x) \lor sk(x))]}$ 

- 5.  $\forall x[sk(x) \rightarrow lk(x, snow)]$ -  $\sim sk(x) \lor lk(x, snow)$
- 6.  $\forall x[mc(x) \rightarrow \sim lk(x, rain)]$   $- \qquad \sim mc(x) \lor \sim lk(x, rain)$ 7.  $\forall x[like(A, x) \rightarrow \sim lk(B, x)]$

 $\sim like(A,x) \vee \sim lk(B,x)$ 

8. 
$$\forall x [\sim lk(A, x) \rightarrow lk(B, x)]$$
  
-  $lk(A, x) \lor lk(B, x)$ 

- 9. lk(A, rain)
- 10. lk(A, snow)
- 11.  $\exists x [member(x) \land mc(x) \land \thicksim sk(x)]$ 
  - Negate-  $\forall x [\sim member(x) \lor \sim mc(x) \lor sk(x)]$

- Now standardize the variables apart which results in the following
- 1. member(A)
- 2. *member(B)*
- 3. *member(C)*
- 4. ~ member( $x_1$ )  $\lor$  mc( $x_1$ )  $\lor$  sk( $x_1$ )

5. ~ 
$$sk(x_2) \lor lk(x_2, snow)$$

6. ~  $mc(x_3) \lor \sim lk(x_3, rain)$ 

7. ~ 
$$like(A, x_4) \lor \sim lk(B, x_4)$$

- 8.  $lk(A, x_5) \vee lk(B, x_5)$
- 9. lk(A, rain)
- 10. lk(A, snow)
- 11. ~ member( $x_6$ )  $\lor$  ~  $mc(x_6) \lor$   $sk(x_6)$

