CS344: Introduction to Artificial Intelligence (associated lab: CS386)

Pushpak Bhattacharyya CSE Dept., IIT Bombay
Lecture 14: AI, Logic, and Puzzle Solving $7^{\text {th }}$ Feb, 2011

A puzzle

(Zohar Manna, Mathematical Theory of Computation, 1974)

From Propositional Calculus

Tourist in a country of truth-

 sayers and liers- Facts and Rules: In a certain country, people either always speak the truth or always lie. A tourist T comes to a junction in the country and finds an inhabitant S of the country standing there. One of the roads at the junction leads to the capital of the country and the other does not. S can be asked only yes/ no questions.
- Question: What single yes/no question can T ask of S, so that the direction of the capital is revealed?

Diagrammatic representation

Answer to Question
"S speaks the truth" : Q
"S does not speak the truth": \bar{Q}

Left road leads to the capital: P lead to the capital: \bar{P}

YES
NO
YES
NO

Deciding the Propositions: a very difficult step- needs human intelligence

- P: Left road leads to capital
- Q: S always speaks the truth

Meta Question: What question should the tourist ask

- The form of the question
- Very difficult: needs human intelligence
- The tourist should ask
- Is R true?
- The answer is "yes" if and only if the left road leads to the capital
- The structure of R to be found as a function of P and Q

A more mechanical part: use of truth table

\mathbf{P}	Q	S's Answer	R
T	T	Yes	T
T	F	Yes	F
F	T	No	F
F	F	No	T

Get form of R: quite mechanical

- From the truth table
- R is of the form (P_{x}-nor Q) or ($P \equiv Q$)

Get R in

English/Hindi/Hebrew...

- Natural Language Generation: non-trivial
- The question the tourist will ask is
- Is it true that the left road leads to the capital if and only if you speak the truth?
- Exercise: A more well known form of this question asked by the tourist uses the X -OR operator instead of the X -Nor. What changes do you have to incorporate to the solution, to get that answer?

Himalayan Club example

- Introduction through an example (Zohar Manna, 1974):
- Problem: A, B and C belong to the Himalayan club. Every member in the club is either a mountain climber or a skier or both. A likes whatever B dislikes and dislikes whatever B likes. A likes rain and snow. No mountain climber likes rain. Every skier likes snow. Is there a member who is a mountain climber and not a skier?
- Given knowledge has:
- Facts
- Rules

Example contd.

- Let $m c$ denote mountain climber and $s k$ denotes skier. Knowledge representation in the given problem is as follows:

1. member (A)
2. member (B)
3. member(C)
4. $\quad \forall x[\operatorname{member}(x) \rightarrow(m c(x) \vee s k(x))]$
5. $\forall x[m c(x) \rightarrow \sim$ like $(x$, rain $)]$
6. $\forall x[\operatorname{sk}(x) \rightarrow$ like $(x$, snow $)]$
7. $\forall x[\operatorname{like}(B, x) \rightarrow \sim \operatorname{like}(A, x)]$
8. $\quad \forall x[\sim \operatorname{like}(B, x) \rightarrow \operatorname{like}(A, x)]$
9. like $(A$, rain)
10. like(A, snow)
11. Question: $\exists x[m e m b e r(x) \wedge m c(x) \wedge \sim s k(x)]$

- We have to infer the $11^{\text {th }}$ expression from the given 10.
- Done through Resolution Refutation.

Club example: Inferencing

1. member(A)
2. member (B)
3. member(C)
4. $\forall x[\operatorname{member}(x) \rightarrow(\operatorname{mc}(x) \vee \operatorname{sk}(x))]$

- Can be written as

$$
\sim \operatorname{member}(x) \vee \operatorname{member}(x)(x) \vec{m}(x)(\operatorname{mc}(x) \vee \operatorname{sk}(x))]
$$

5. $\forall x[\operatorname{sk}(x) \rightarrow l k(x$, snow $)]$

$$
\sim \operatorname{sk}(x) \vee l k(x, \text { snow })
$$

6. $\forall x[m c(x) \rightarrow \sim \operatorname{lk}(x$, rain $)]$

$$
\sim m c(x) \vee \sim \operatorname{lk}(x, r a i n)
$$

7. $\forall x[l i k e(A, x) \rightarrow \sim I k(B, x)]$

$$
\sim \operatorname{like}(A, x) \vee \sim \operatorname{lk}(B, x)
$$

8. $\quad \forall x[\sim \operatorname{lk}(A, x) \rightarrow \operatorname{lk}(B, x)]$

$$
\operatorname{lk}(A, x) \vee \operatorname{lk}(B, x)
$$

9. $\quad l k(A$, rain $)$
10. $\operatorname{lk}(A$, snow $)$
11. $\exists x[\operatorname{member}(x) \wedge m c(x) \wedge \sim \operatorname{sk}(x)]$

- Negate- $\forall x[\sim \operatorname{member}(x) \vee \sim \operatorname{mc}(x) \vee \operatorname{sk}(x)]$
- Now standardize the variables apart which results in the following

1. member(A)
2. member(B)
3. member(C)
4. $\sim \operatorname{member}\left(x_{1}\right) \vee m c\left(x_{1}\right) \vee s k\left(x_{1}\right)$
5. $\sim \operatorname{sk}\left(x_{2}\right) \vee l k\left(x_{2}\right.$, snow $)$
6. $\sim m c\left(x_{3}\right) \vee \sim \operatorname{lk}\left(x_{3}\right.$, rain $)$
7. $\sim \operatorname{like}\left(A, x_{4}\right) \vee \sim \operatorname{lk}\left(B, x_{4}\right)$
8. $\quad l k\left(A, x_{5}\right) \vee l k\left(B, x_{5}\right)$
9. $\operatorname{lk}(A$, rain $)$
10. $\operatorname{lk}(A$, snow $)$
11. $\sim \operatorname{member}\left(x_{6}\right) \vee \sim \operatorname{mc}\left(x_{6}\right) \vee \operatorname{sk}\left(x_{6}\right)$

