CS344: Introduction to Artificial Intelligence (associated lab: CS386)

> Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 17, 18: Predicate Calculus 15th and 16th Feb, 2011

Predicate Calculus: well known examples

Man is mortal : rule

 $\forall x[man(x) \rightarrow mortal(x)]$

- shakespeare is a man man(shakespeare)
- To infer shakespeare is mortal mortal(shakespeare)

Inferencing: Forward Chaining

- $\blacksquare man(x) \rightarrow mortal(x)$
 - Dropping the quantifier, implicitly Universal quantification assumed
 - man(shakespeare)
- Goal mortal(shakespeare)
 - Found in one step
 - x = shakespeare, unification

Backward Chaining

- $\blacksquare man(x) \rightarrow mortal(x)$
- Goal mortal(shakespeare)
 - x = shakespeare
 - Travel back over and hit the fact asserted
 - man(shakespeare)

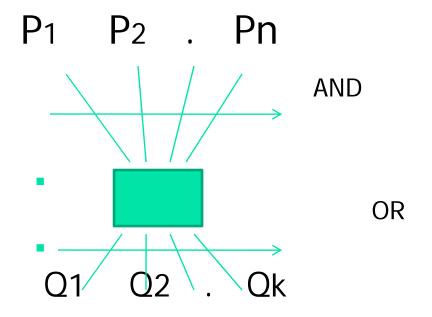
Factors influencing Forward and Backward chaining

- Is the goal precisely known?
- Fan-in and Fan-out of rules.

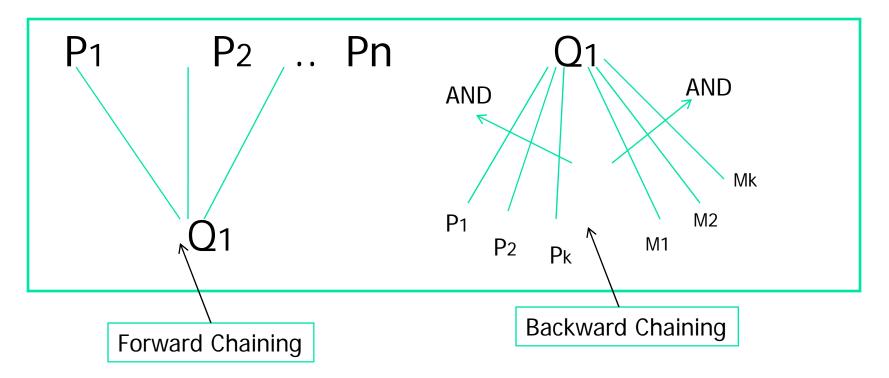
Rule Structure

- R1:
 P1 ^ P2 ^ P3 ^ ^ Pn
 Q1

 R2:
 P1 ^ P2 ^ P3 ^ ^ Pn
 Q2
- Rk: P1 ^ P2 ^ P3 ^ ^ Pn Qk

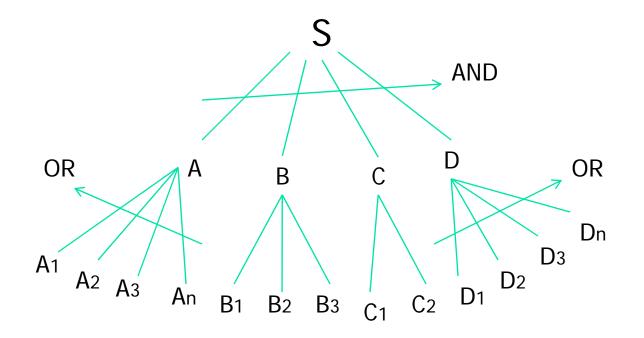


Pictorial Representation of Forward and Backward chaining



• If Fan-out is less Forward chaining is preferable ?

Important Data structure: AND-OR Graph



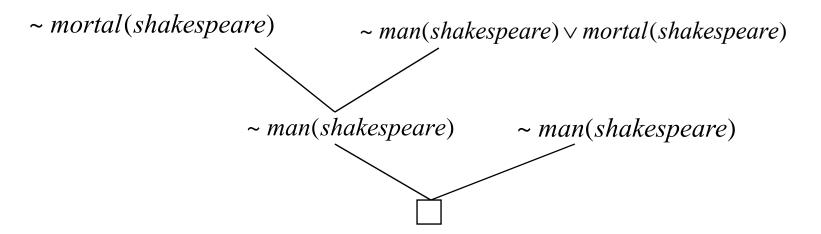
• Structure of AND-OR Graph decides the direction of inferencing.

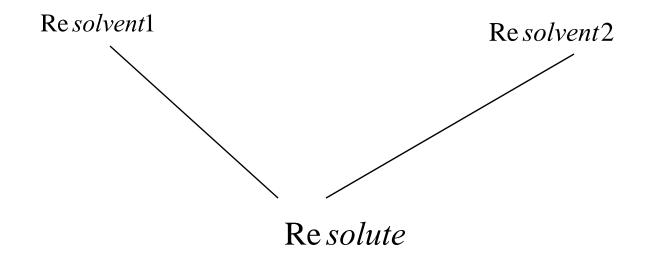
Resolution - Refutation

- $\blacksquare man(x) \rightarrow mortal(x)$
 - Convert to clausal form
 - ~man(shakespeare) \/ mortal(x)
- Clauses in the knowledge base
 - ~man(shakespeare) \/ mortal(x)
 - man(shakespeare)
 - mortal(shakespeare)

Resolution – Refutation contd

- Negate the goal
 - ~man(shakespeare)
- Get a pair of resolvents





Search in resolution

Heuristics for Resolution Search

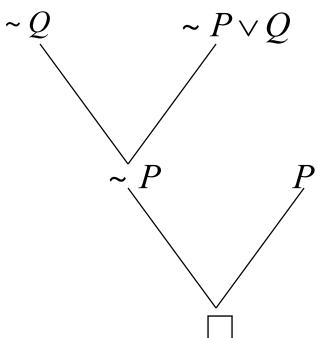
- Goal Supported Strategy
 - Always start with the negated goal
- Set of support strategy
 - Always one of the resolvents is the most recently produced resolute

Inferencing in Predicate Calculus

- Forward chaining
 - Given P, $P \rightarrow Q$, to infer Q
 - P, match *L*.*H*.*S* of
 - Assert Q from *R*.*H*.*S*
- Backward chaining
 - Q, Match R.H.S of $P \rightarrow Q$
 - assert P
 - Check if P exists
- Resolution Refutation
 - Negate goal
 - Convert all pieces of knowledge into clausal form (disjunction of literals)
 - See if contradiction indicated by null clause a be derived

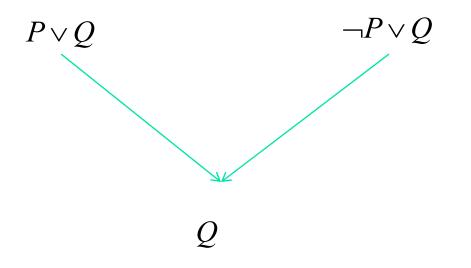
- 1. P
- 2. $P \rightarrow Q$ converted to $\sim P \lor Q$
- 3. **~** Q

Draw the resolution tree (actually an inverted tree). Every node is a clausal form and branches are intermediate inference steps.



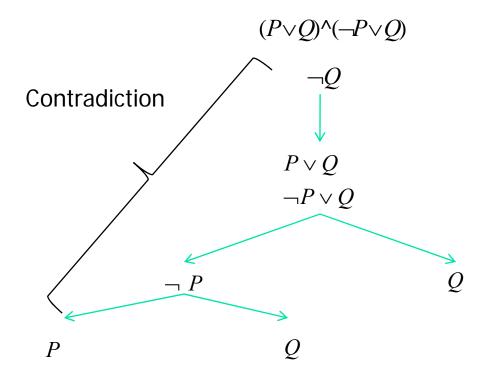
Theoretical basis of Resolution

- Resolution is proof by contradiction
- resolvent1 .AND. resolvent2 => resolute is a tautology



Tautologiness of Resolution

Using Semantic Tree



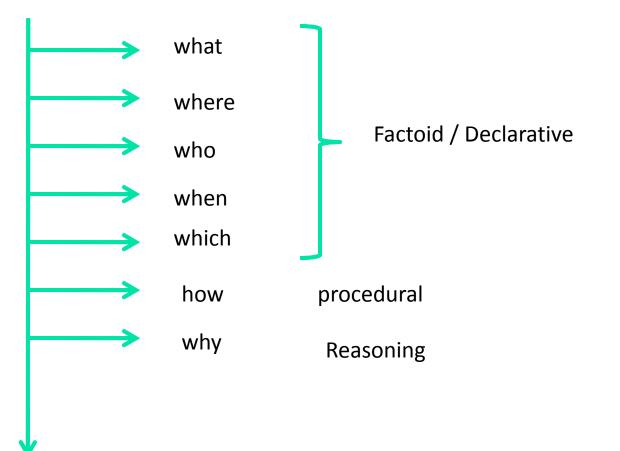
Theoretical basis of Resolution (cont ...)

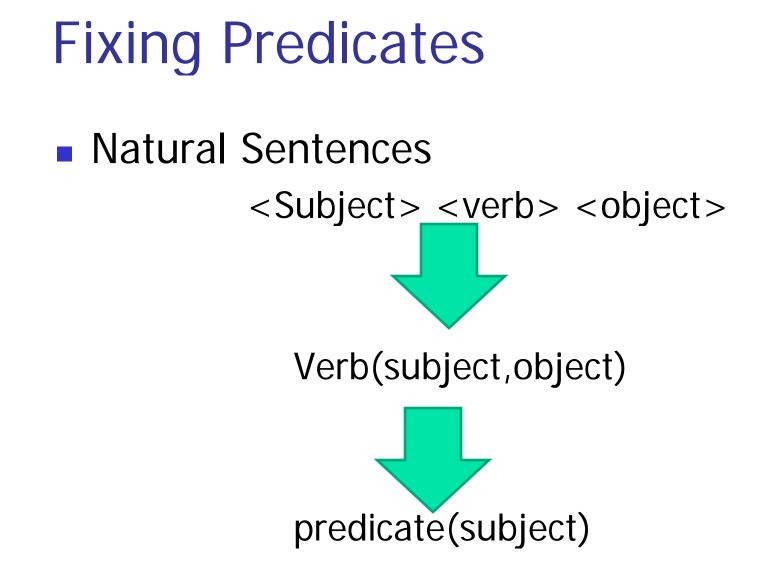
- Monotone Inference
 - Size of Knowledge Base goes on increasing as we proceed with resolution process since intermediate resolvents added to the knowledge base
- Non-monotone Inference
 - Size of Knowledge Base does not increase
 - Human beings use non-monotone inference

Terminology

- Pair of clauses being <u>resolved</u> is called the <u>Resolvents</u>. The resulting clause is called the <u>Resolute</u>.
- Choosing the correct pair of resolvents is a matter of search.

Wh-Questions and Knowledge





Examples

- Ram is a boy
 - Boy(Ram)?
 - Is_a(Ram,boy)?
- Ram Playes Football
 - Plays(Ram,football)?
 - Plays_football(Ram)?

Knowledge Representation of Complex Sentence

In every city there is a thief who is beaten by every policeman in the city"

 $\forall x [city(x) \rightarrow \{ \exists y ((thief(y) \land lives_in(y, x)) \land \forall z (poleceman(z, x) \rightarrow beaten_by(z, y))) \}]$

Himalayan Club example

- Introduction through an example (Zohar Manna, 1974):
 - Problem: A, B and C belong to the Himalayan club. Every member in the club is either a mountain climber or a skier or both. A likes whatever B dislikes and dislikes whatever B likes. A likes rain and snow. No mountain climber likes rain. Every skier likes snow. *Is there a member who is a mountain climber and not a skier?*
- Given knowledge has:
 - Facts
 - Rules

Example contd.

- Let *mc* denote mountain climber and *sk* denotes skier.
 Knowledge representation in the given problem is as follows:
 - 1. member(A)
 - 2. member(B)
 - 3. member(C)
 - 4. $\forall x [member(x) \rightarrow (mc(x) \lor sk(x))]$
 - 5. $\forall x[mc(x) \rightarrow \sim like(x, rain)]$
 - $6. \quad \forall x[sk(x) \rightarrow like(x, snow)]$
 - $\mathbf{z} \quad \forall \mathbf{x}[like(B, \mathbf{x}) \rightarrow ~like(A, \mathbf{x})]$
 - 8. $\forall x[\sim like(B, x) \rightarrow like(A, x)]$
 - 9. like(A, rain)
 - *10. like(A, snow)*
 - 11. Question: $\exists x [member(x) \land mc(x) \land \neg sk(x)]$
- We have to infer the 11th expression from the given 10.
- Done through Resolution Refutation.

Club example: Inferencing

- 1. *member(A)*
- 2. *member(B)*
- 3. *member(C)*
- 4. $\forall x[member(x) \rightarrow (mc(x) \lor sk(x))]$
 - Can be written as

 $\sim member(x) \bigvee_{mc(x)}^{[member(x)} \bigvee_{sk(x)}^{(mc(x) \lor sk(x))]}$

- 5. $\forall x[sk(x) \rightarrow lk(x, snow)]$ - $\sim sk(x) \lor lk(x, snow)$
- 6. $\forall x[mc(x) \rightarrow \sim lk(x, rain)]$ - $\sim mc(x) \lor \sim lk(x, rain)$

7. $\forall x[like(A, x) \rightarrow \sim lk(B, x)]$

 $\sim like(A,x) \vee \sim lk(B,x)$

8.
$$\forall x [\sim lk(A, x) \rightarrow lk(B, x)]$$

- $lk(A, x) \lor lk(B, x)$

- 9. lk(A, rain)
- 10. lk(A, snow)
- 11. $\exists x [member(x) \land mc(x) \land \thicksim sk(x)]$
 - Negate- $\forall x [\sim member(x) \lor \sim mc(x) \lor sk(x)]$

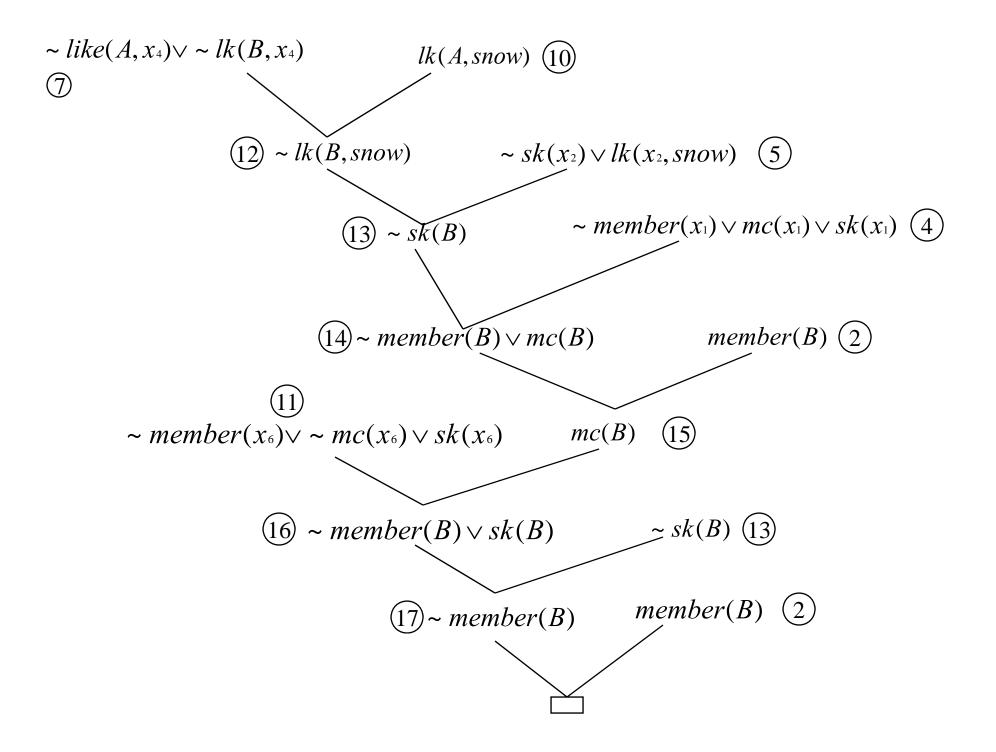
- Now standardize the variables apart which results in the following
- 1. *member(A)*
- 2. *member(B)*
- 3. *member(C)*
- 4. ~ member(x_1) \lor mc(x_1) \lor sk(x_1)

5. ~
$$sk(x_2) \lor lk(x_2, snow)$$

6. ~
$$mc(x_3) \lor \sim lk(x_3, rain)$$

7. ~
$$like(A, x_4) \lor \sim lk(B, x_4)$$

- 8. $lk(A, x_5) \vee lk(B, x_5)$
- 9. lk(A, rain)
- 10. lk(A, snow)
- 11. ~ member(x_6) \lor ~ $mc(x_6) \lor$ $sk(x_6)$



Interpretation in Logic

- Logical expressions or formulae are "FORMS" (placeholders) for whom <u>contents</u> are created through interpretation.
- Example:

 $\exists F[\{F(a) = b\} \land \forall x \{P(x) \rightarrow (F(x) = g(x, F(h(x))))\}]$

- This is a Second Order Predicate Calculus formula.
- Quantification on 'F' which is a function.

Examples

Interpretation:1 D=N (natural numbers) a = 0 and b = 1 $X \in N$ P(x) stands for x > 0q(m,n) stands for $(m \times n)$ h(x) stands for (x - 1)Above interpretation defines Factorial Examples (contd.)

Interpretation:2

D={strings)

$$a = b = \lambda$$

P(x) stands for "x is a non empty string" g(m, n) stands for "append head of m to n"

h(x) stands for *tail(x)*

 Above interpretation defines "reversing a string"