CS344: Introduction to Artificial Intelligence (associated lab: CS386)

Pushpak Bhattacharyya CSE Dept.,
IIT Bombay
Lecture 20: Neural Networks 28 ${ }^{\text {th }}$ Feb, 2011

A perspective of AI
Artificial Intelligence - Knowledge based computing Disciplines which form the core of AI - inner circle
Fields which draw from these disciplines - outer circle.

Symbolic AI

Connectionist AI is contrasted with Symbolic AI
Symbolic AI - Physical Symbol System Hypothesis

Every intelligent system can be constructed by storing and processing symbols and nothing more is necessary.

Symbolic AI has a bearing on models of computation such as

Turing Machine
Von Neumann Machine
Lambda calculus

Turing Machine \& Von Neumann Machine

Turing machine

VonNeumann Machine

Challenges to Symbolic AI

Motivation for challenging Symbolic AI A large number of computations and information process tasks that living beings are comfortable with, are not performed well by computers!

The Differences

Brain computation in living beings computers
Pattern Recognition
Learning oriented
Distributed \& parallel processing processing
Content addressable

TM computation in
Numerical Processing Programming oriented Centralized \& serial

Location addressable

The human brain

Seat of consciousness and cognition
Perhaps the most complex information processing machine in nature

Beginner's Brain Map

Brain : a computational machine?

Information processing: brains vs computers

- brains better at perception / cognition
- slower at numerical calculations
- parallel and distributed Processing
- associative memory

Brain : a computational machine? (contd.)

- Evolutionarily, brain has developed algorithms most suitable for survival
- Algorithms unknown: the search is on
- Brain astonishing in the amount of information it processes
- Typical computers: 10^{9} operations/sec
- Housefly brain: 10^{11} operations/sec

Brain facts \& figures

- Basic building block of nervous system: nerve cell (neuron)
- $\sim 10^{12}$ neurons in brain
- $\sim 10^{15}$ connections between them
- Connections made at "synapses"
- The speed: events on millisecond scale in neurons, nanosecond scale in silicon chips

Higher brain

Maslow's hierarchy

Higher brain (responsible for higher needs)

Higher brain

Mapping of Brain

Left Brain and Right Brain

Neuron - "classical"

- Dendrites
- Receiving stations of neurons
- Don't generate action potentials
- Cell body
- Site at which information received is integrated
- Axon
- Generate and relay action potential
- Terminal
- Relays information to next neuron in the pathway

http://www.educarer.com/images/brain-nerve-axon.jpg

Computation in Biological Neuron

- Incoming signals from synapses are summed up at the soma
. Σ, the biological "inner product"
- On crossing a threshold, the cell "fires" generating an action potential in the axon hillock region

The biological neuron

Pyramidal neuron, from the amygdala (Rupshi et al. 2005)

A CA1 pyramidal neuron (Mel et al. 2004)

Perceptron

The Perceptron Model

A perceptron is a computing element with input lines having associated weights and the cell having a threshold value. The perceptron model is motivated by the biological neuron.

Step function / Threshold function

$y \quad=1$ for $\Sigma w_{i} x_{i} \quad>=\boldsymbol{\theta}$
$=0$ otherwise

Features of Perceptron

- Input output behavior is discontinuous and the derivative does not exist at $\boldsymbol{\Sigma} \mathbf{w}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}=\boldsymbol{\theta}$
- $\boldsymbol{\Sigma} \mathbf{w}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}} \boldsymbol{- \theta}$ is the net input denoted as net
- Referred to as a linear threshold element - linearity because of \mathbf{x} appearing with power $\mathbf{1}$
- $\mathbf{y}=\mathbf{f}($ net $)$: Relation between y and net is nonlinear

Computation of Boolean functions

AND of 2 inputs

X1	$\mathbf{x 2}$	\mathbf{y}
0	0	0
0	1	0
1	0	0
1	1	1

The parameter values (weights \& thresholds) need to be found.

Computing parameter values

$$
\begin{gathered}
\mathrm{w} 1 * 0+\mathrm{w} 2 * 0<=\theta \rightarrow \theta>=0 ; \text { since } \mathrm{y}=0 \\
\mathrm{w} 1 * 0+\mathrm{w} 2 * 1<=\theta \rightarrow \mathrm{w} 2<=\theta ; \text { since } \mathrm{y}=0 \\
\mathrm{w} 1 * 1+\mathrm{w} 2 * 0<=\theta \rightarrow \mathrm{w} 1<=\theta ; \text { since } \mathrm{y}=0 \\
\mathrm{w} 1 * 1+\mathrm{w} 2 * 1>\theta \rightarrow \mathrm{w} 1+\mathrm{w} 2>\theta ; \text { since } \mathrm{y}=1 \\
\mathrm{w} 1=\mathrm{w} 2==0.5
\end{gathered}
$$

satisfy these inequalities and find parameters to be used for computing AND function.

Other Boolean functions

- $O R$ can be computed using values of $w 1=w 2=$ 1 and $=0.5$
- XOR function gives rise to the following inequalities:
$\mathrm{w} 1^{*} 0+\mathrm{w} 2 * 0<=\theta \rightarrow \theta>=0$
$\mathrm{w} 1^{*} 0+\mathrm{w} 2 * 1>\theta \rightarrow \mathrm{w} 2>\theta$
$\mathrm{w} 1 * 1+\mathrm{w} 2 * 0>\theta \rightarrow \mathrm{w} 1>\theta$
$\mathrm{w} 1 * 1+\mathrm{w} 2 * 1<=\theta \rightarrow \mathrm{w} 1+\mathrm{w} 2<=\theta$
No set of parameter values satisfy these inequalities.

Threshold functions

n \# Boolean functions ($\mathbf{2 ヘ}^{\wedge} \mathbf{2 ヘ}^{\wedge}$ n) \#Threshold Functions ($2^{\mathrm{n} 2}$)
14
216
4

2	16	14
3	256	128
4	$64 K$	1008

- Functions computable by perceptrons threshold functions
- \#TF becomes negligibly small for larger values of \#BF.
- For $\mathrm{n}=2$, all functions except XOR and XNOR are computable.

