CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., **IIT Bombay** Lecture 23: Perceptrons and their computing power 8th March, 2011 (Lectures 21 and 22 were on Text Entailment by Prasad Joshi)

A perspective of AI Artificial Intelligence - Knowledge based computing Disciplines which form the core of AI - inner circle Fields which draw from these disciplines - outer circle.

Neuron - "classical"

- Dendrites
 - Receiving stations of neurons
 - Don't generate action potentials
- Cell body
 - Site at which information received is integrated
- Axon
 - Generate and relay action potential
 - Terminal
 - Relays information to next neuron in the pathway

http://www.educarer.com/images/brain-nerve-axon.jpg

Computation in Biological Neuron

- Incoming signals from synapses are summed up at the soma
- Σ , the biological "inner product"
- On crossing a threshold, the cell "fires" generating an action potential in the axon hillock region

Synaptic inputs: Artist's conception

The Perceptron Model

A perceptron is a computing element with input lines having associated weights and the cell having a threshold value. The perceptron model is motivated by the biological neuron.

Features of Perceptron

- Input output behavior is discontinuous and the derivative does not exist at $\Sigma w_i x_i = \theta$
- $\Sigma w_i x_i \theta$ is the net input denoted as net
- Referred to as a linear threshold element linearity because of **x** appearing with power **1**

• **y**= **f(net)**: Relation between y and net is nonlinear

Computation of Boolean functions

AND of 2 inputs

X1	x2	У
0	0	0
0	1	0
1	0	0
1	1	1

The parameter values (weights & thresholds) need to be found.

Computing parameter values

w1 * 0 + w2 * 0 <=
$$\theta \rightarrow \theta$$
 >= 0; since y=0
w1 * 0 + w2 * 1 <= $\theta \rightarrow w2$ <= θ ; since y=0
w1 * 1 + w2 * 0 <= $\theta \rightarrow w1$ <= θ ; since y=0
w1 * 1 + w2 *1 > $\theta \rightarrow w1$ + w2 > θ ; since y=1
w1 = w2 = = 0.5

satisfy these inequalities and find parameters to be used for computing AND function.

Other Boolean functions

- OR can be computed using values of w1 = w2 =
 and = 0.5
- XOR function gives rise to the following inequalities:

 $w1 * 0 + w2 * 0 <= \theta \rightarrow \theta >= 0$

 $w1 * 0 + w2 * 1 > \theta \rightarrow w2 > \theta$

 $w1 * 1 + w2 * 0 > \theta \rightarrow w1 > \theta$

w1 * 1 + w2 *1 <= $\theta \rightarrow$ w1 + w2 <= θ

No set of parameter values satisfy these inequalities.

Threshold functions

n # Boolean functions (2^2^n) #Threshold Functions (2ⁿ²)

1	4	4
2	16	14
3	256	128
4	64K	1008

- Functions computable by perceptrons threshold functions
- **#TF becomes negligibly small for larger values** of **#BF.**
- For n=2, all functions except XOR and XNOR are computable.

Concept of Hyper-planes

Σ w_ix_i = θ defines a linear surface in the (W,θ) space, where W=<w₁,w₂,w₃,...,w_n> is an n-dimensional vector.

 \mathbf{X}_1

 X_{2}

 A point in this (W,θ) space defines a perceptron.

X₃

X_n

Perceptron Property Two perceptrons may have different parameters but same functional values. Example of the simplest perceptron У w.x>0 gives y=1θ w.x ≤ 0 gives y=0 Depending on different values of W_1 w and θ , four different functions are possible \mathbf{X}_1

Counting the number of functions for the simplest perceptron For the simplest perceptron, the equation w.x= θ . is Substituting x=0 and x=1, we get $\theta = 0$ and $w = \theta$. $w = \theta$ **R4** These two lines intersect to **R3** $\theta = 0$ R2 form four regions, which correspond to the four functions.

Fundamental Observation

The number of TFs computable by a perceptron is equal to the number of regions produced by 2ⁿ hyper-planes, obtained by plugging in the values <x₁,x₂,x₃,...,x_n> in the equation

$$\sum_{i=1}^{n} w_i x_i = \theta$$

 The geometrical observation
 Problem: m linear surfaces called hyperplanes (each hyper-plane is of (d-1)-dim) in d-dim, then what is the max. no. of regions produced by their intersection?

i.e. $R_{m,d} = ?$

Co-ordinate Spaces We work in the <X₁, X₂> space or the <w₁, w₂, θ> space

New regions created = Number of intersections on the incoming line by the original lines

Total number of regions = Original number of regions + New regions created

Number of computable functions by a neuron Y $w1^*x1 + w2^*x2 = \theta$ $(0,0) \Rightarrow \theta = 0:P1$ $(0,1) \Rightarrow w2 = \theta:P2$ $(1,0) \Rightarrow w1 = \theta:P3$ $(1,1) \Rightarrow w1 + w2 = \theta:P4$ x1x2

P1, P2, P3 and P4 are planes in the <W1,W2, θ > space

Number of computable functions by a neuron (cont...)

- P1 produces 2 regions
- P2 is intersected by P1 in a line. 2 more new regions are produced.
 Number of regions = 2+2 = 4
- P3 is intersected by P1 and P2 in 2 intersecting lines. 4 more regions are produced.

 P3

 Number of regions

 P3

 P3
- P4 is intersected by P1, P2 and P3 in 3 intersecting lines. 6 more regions are P4 uced. Number of regions = 8 + 6 = 14
- Thus, a single neuron can compute 14 Boolean functions which are linearly separable.

Points in the same region

 X_1

If X_2 $W_1^*X_1 + W_2^*X_2 > \Theta$ $W_1'^*X_1 + W_2'^*X_2 > \Theta'$ Then If $\langle W_1, W_2, \Theta \rangle$ and

If $\langle W_1, W_2, \Theta \rangle$ and $\langle W_1', W_2', \Theta' \rangle$ share a region then they compute the same function