CS344: Introduction to Artificial

Intelligence (associated lab: CS386)

Pushpak Bhattacharyya

CSE Dept., IIT Bombay
Lecture 23: Perceptrons and their computing power $8^{\text {th }}$ March, 2011
(Lectures 21 and 22 were on Text Entailment by
Prasad Joshi)

A perspective of AI
Artificial Intelligence - Knowledge based computing Disciplines which form the core of AI - inner circle
Fields which draw from these disciplines - outer circle.

Neuron - "classical"

- Dendrites
- Receiving stations of neurons
- Don't generate action potentials
- Cell body
- Site at which information received is integrated
- Axon
- Generate and relay action potential
- Terminal
- Relays information to next neuron in the pathway

http://www.educarer.com/images/brain-nerve-axon.jpg

Computation in Biological Neuron

- Incoming signals from synapses are summed up at the soma
. Σ, the biological "inner product"
- On crossing a threshold, the cell "fires" generating an action potential in the axon hillock region

The Perceptron Model

A perceptron is a computing element with input lines having associated weights and the cell having a threshold value. The perceptron model is motivated by the biological neuron.

Step function / Threshold function

$y \quad=1$ for $\Sigma w_{i} x_{i} \quad>=\boldsymbol{\theta}$
$=0$ otherwise

Features of Perceptron

- Input output behavior is discontinuous and the derivative does not exist at $\boldsymbol{\Sigma} \mathbf{w}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}=\boldsymbol{\theta}$
- $\boldsymbol{\Sigma} \mathbf{w}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}} \boldsymbol{- \theta}$ is the net input denoted as net
- Referred to as a linear threshold element - linearity because of \mathbf{x} appearing with power $\mathbf{1}$
- $\mathbf{y}=\mathbf{f}($ net $)$: Relation between y and net is nonlinear

Computation of Boolean functions

AND of 2 inputs

X1	$\mathbf{x 2}$	\mathbf{y}
0	0	0
0	1	0
1	0	0
1	1	1

The parameter values (weights \& thresholds) need to be found.

Computing parameter values

$$
\begin{gathered}
\mathrm{w} 1 * 0+\mathrm{w} 2 * 0<=\theta \rightarrow \theta>=0 ; \text { since } \mathrm{y}=0 \\
\mathrm{w} 1 * 0+\mathrm{w} 2 * 1<=\theta \rightarrow \mathrm{w} 2<=\theta ; \text { since } \mathrm{y}=0 \\
\mathrm{w} 1 * 1+\mathrm{w} 2 * 0<=\theta \rightarrow \mathrm{w} 1<=\theta ; \text { since } \mathrm{y}=0 \\
\mathrm{w} 1 * 1+\mathrm{w} 2 * 1>\theta \rightarrow \mathrm{w} 1+\mathrm{w} 2>\theta ; \text { since } \mathrm{y}=1 \\
\mathrm{w} 1=\mathrm{w} 2==0.5
\end{gathered}
$$

satisfy these inequalities and find parameters to be used for computing AND function.

Other Boolean functions

- $O R$ can be computed using values of $w 1=w 2=$ 1 and $=0.5$
- XOR function gives rise to the following inequalities:
$\mathrm{w} 1^{*} 0+\mathrm{w} 2 * 0<=\theta \rightarrow \theta>=0$
$\mathrm{w} 1^{*} 0+\mathrm{w} 2 * 1>\theta \rightarrow \mathrm{w} 2>\theta$
$\mathrm{w} 1 * 1+\mathrm{w} 2 * 0>\theta \rightarrow \mathrm{w} 1>\theta$
$\mathrm{w} 1 * 1+\mathrm{w} 2 * 1<=\theta \rightarrow \mathrm{w} 1+\mathrm{w} 2<=\theta$
No set of parameter values satisfy these inequalities.

Threshold functions

n \# Boolean functions ($\mathbf{2 ヘ}^{\wedge} \mathbf{2 ヘ}^{\wedge}$ n) \#Threshold Functions ($2^{\mathrm{n} 2}$)
14
216
4

2	16	14
3	256	128
4	$64 K$	1008

- Functions computable by perceptrons threshold functions
- \#TF becomes negligibly small for larger values of \#BF.
- For $\mathrm{n}=2$, all functions except XOR and XNOR are computable.

Concept of Hyper-planes

- $\Sigma w_{i} x_{i}=\theta$ defines a linear surface in the (W, θ) space, where $\left.W=<W_{1}, W_{2}, W_{3}, \ldots, W_{n}\right\rangle$ is an n-dimensional vector.
- A point in this (W, θ) space defines a perceptron.

Perceptron Property

- Two perceptrons may have different parameters but same functional values.
- Example of the simplest perceptron

$$
\begin{aligned}
& w . x>0 \text { gives } y=1 \\
& w . x \leq 0 \text { gives } y=0
\end{aligned}
$$

Depending on different values of w and θ, four different functions are possible

Simple perceptron contd.

0-function
Identity Function
$\theta \geq 0$
$\mathrm{w} \leq 0$
$\theta \geq 0$
$\mathrm{w}>0$

Complement Function

$$
\begin{aligned}
& \theta<0 \\
& \mathrm{w} \leq 0
\end{aligned}
$$

Counting the number of functions for the simplest perceptron

- For the simplest perceptron, the equation is $w . x=\theta$.
Substituting $x=0$ and $x=1$, we get $\theta=0$ and $w=\theta$.
These two lines intersect to form four regions, which correspond to the four functions.

Fundamental Observation

- The number of TFs computable by a perceptron is equal to the number of regions produced by 2^{n} hyper-planes,obtained by plugging in the values $\left\langle x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\rangle$ in the equation

$$
\sum_{i=1}{ }^{n} w_{i} x_{i}=\theta
$$

The geometrical observation

- Problem: m linear surfaces called hyperplanes (each hyper-plane is of (d-1)-dim) in d-dim, then what is the max. no. of regions produced by their intersection? i.e. $R_{m, d}=$?

Co-ordinate Spaces

 We work in the $\left\langle X_{1}, X_{2}\right\rangle$ space or the $<W_{1}$, w $2, \theta>$ space

General equation of a Hyperplane: $\Sigma \mathrm{Wi} X i=\theta$

$$
W 1=W 2=1, \theta=
$$

$$
0.5
$$

$$
x 1+x 2=0.5
$$

Hyperplane /l ino in 2.

New regions created = Number of intersections on the incoming line by the original lines
Total number of regions $=$ Original number of regions + New regions created

Number of computable functions by a neuron ${ }^{r}$
$w 1 * x 1+w 2 * x 2=\theta$
$(0,0) \Rightarrow \theta=0: P 1$
$(0,1) \Rightarrow w 2=\theta: P 2$
$(1,0) \Rightarrow w 1=\theta: P 3$
$(1,1) \Rightarrow w 1+w 2=\theta: P 4$

P1, P2, P3 and P4 are planes in the $<\mathrm{W} 1, \mathrm{~W} 2, ~ \theta>$ space

Number of computable functions by a neuron (cont...)

- P1 produces 2 regions
- P2 is intersected by P1 in a line. 2 more new regions are produced. Number of regions $=2+2=4$

- P3 is intersected by P1 and P2 in 2 intersecting lines. 4 more regions are produced. Number of regions $=4+4=8$

- P4 is intersected by P1, P2 and P3 in 3 intersecting lines. 6 more regions are P4 juced. Number of regions $=8+6=14$
- Thus, a single neuron can compute 14 Boolean functions which are linearly separable.

Points in the same region

If
$W_{1} * X_{1}+W_{2} * X_{2}>\theta$ $W_{1}{ }^{*} * X_{1}+W_{2}{ }^{*} * X_{2}>\theta^{\prime}$
Then

$$
\begin{aligned}
& \text { If }\left\langle W_{1}, W_{2}, \theta\right\rangle \text { and } \\
& \left.<W_{1}^{\prime}, W_{2}^{\prime}, \theta^{\prime}\right\rangle \text { share a } \\
& \text { region then they } \\
& \text { compute the same } \\
& \text { function }
\end{aligned}
$$

