## CS344: Introduction to Artificial

# Intelligence (associated lab: CS386) 

## Pushpak Bhattacharyya

CSE Dept., IIT Bombay
Lecture 24: Perceptrons and their computing power (cntd)
$10^{\text {th }}$ March, 2011

## Threshold functions

n \# Boolean functions ( $\mathbf{2 ヘ}^{\wedge} \mathbf{2 ヘ}^{\wedge}$ n) \#Threshold Functions (2 ${ }^{\mathrm{n} 2}$ )
14
216
4

| 2 | 16 | 14 |
| :--- | :--- | :--- |
| 3 | 256 | 128 |
| 4 | $64 K$ | 1008 |

- Functions computable by perceptrons threshold functions
- \#TF becomes negligibly small for larger values of \#BF.
- For $\mathrm{n}=2$, all functions except XOR and XNOR are computable.


## Concept of Hyper-planes

- $\Sigma w_{i} x_{i}=\theta$ defines a linear surface in the $(W, \theta)$ space, where $\left.W=<W_{1}, W_{2}, W_{3}, \ldots, W_{n}\right\rangle$ is an n-dimensional vector.
- A point in this $(W, \theta)$ space defines a perceptron.


## Perceptron Property

- Two perceptrons may have different parameters but same function
- Example of the simplest perceptron

$$
\begin{aligned}
& w . x>0 \text { gives } y=1 \\
& w . x \leq 0 \text { gives } y=0
\end{aligned}
$$

Depending on different values of $w$ and $\theta$, four different functions are possible

## Simple perceptron contd.



0-function
Identity Function
$\theta \geq 0$
$\mathrm{w} \leq 0$
$\theta \geq 0$
$\mathrm{w}>0$

Complement Function

$$
\begin{aligned}
& \theta<0 \\
& \mathrm{w} \leq 0
\end{aligned}
$$

## Counting the number of functions for the simplest perceptron

- For the simplest perceptron, the equation is $w . x=\theta$.
Substituting $x=0$ and $x=1$, we get $\theta=0$ and $w=\theta$.
These two lines intersect to form four regions, which correspond to the four functions.


## Fundamental Observation

- The number of TFs computable by a perceptron is equal to the number of regions produced by $2^{n}$ hyper-planes,obtained by plugging in the values $\left\langle x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\rangle$ in the equation

$$
\sum_{i=1}{ }^{n} w_{i} x_{i}=\theta
$$

## AND of 2 inputs

| $\mathbf{X 1}$ | $\mathbf{x 2}$ | $\mathbf{y}$ |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

The parameter values (weights \& thresholds) need to be found.


## Constraints on w1, w2 and $\boldsymbol{\theta}$

$$
\begin{gathered}
\mathrm{w} 1 * 0+\mathrm{w} 2 * 0<=\theta \rightarrow \theta>=0 ; \text { since } \mathrm{y}=0 \\
\mathrm{w} 1 * 0+\mathrm{w} 2 * 1<=\theta \rightarrow \mathrm{w} 2<=\theta ; \text { since } \mathrm{y}=0 \\
\mathrm{w} 1 * 1+\mathrm{w} 2 * 0<=\theta \rightarrow \mathrm{w} 1<=\theta ; \text { since } \mathrm{y}=0 \\
\mathrm{w} 1 * 1+\mathrm{w} 2 * 1>\theta \rightarrow \mathrm{w} 1+\mathrm{w} 2>\theta ; \text { since } \mathrm{y}=1 \\
\mathrm{w} 1=\mathrm{w} 2==0.5
\end{gathered}
$$

These inequalities are satisfied by ONE particular region

## The geometrical observation

- Problem: $m$ linear surfaces called hyperplanes (each hyper-plane is of (d-1)-dim) in d-dim, then what is the max. no. of regions produced by their intersection?
i.e., $R_{m, d}=$ ?


## Co-ordinate Spaces

We work in the $\left\langle\mathrm{X}_{1}, \mathrm{X}_{2}\right\rangle$ space or the $<\mathrm{W}_{1}$, w $2, \theta>$ space


General equation of a Hyperplane: $\Sigma \mathrm{Wi} \mathrm{Xi}=\theta$

$$
0.5
$$

$$
x_{1}+x_{2}=0.5
$$

X1
Hyper-plane
(Line in 2-D)

## Regions produced by lines



New regions created $=$ Number of intersections on the incoming line by the original lines
Total number of regions $=$ Original number of regions + New regions created

Number of computable functions by a neuron ${ }^{r}$
$w 1 * x 1+w 2 * x 2=\theta$
$(0,0) \Rightarrow \theta=0: P 1$
$(0,1) \Rightarrow w 2=\theta: P 2$
$(1,0) \Rightarrow w 1=\theta: P 3$
$(1,1) \Rightarrow w 1+w 2=\theta: P 4$


P1, P2, P3 and P4 are planes in the $<\mathrm{W} 1, \mathrm{~W} 2, ~ \theta>$ space

## Number of computable functions by a neuron (cont...)

- P1 produces 2 regions
- P2 is intersected by P1 in a line. 2 more new regions are produced. Number of regions $=2+2=4$

- P3 is intersected by P1 and P2 in 2 intersecting lines. 4 more regions are produced. Number of regions $=4+4=8$

- P4 is intersected by P1, P2 and P3 in 3 intersecting lines. 6 more regions are P4 juced. Number of regions $=8+6=14$
- Thus, a single neuron can compute 14 Boolean functions which are linearly separable.


## Points in the same region

## If

$W_{1} * X_{1}+W_{2} * X_{2}>\theta$ $\mathrm{W}_{1}{ }^{\prime} * \mathrm{X}_{1}+\mathrm{W}_{2}{ }^{\prime} * \mathrm{X}_{2}>\theta^{\prime}$
Then
If $\left\langle W_{1}, W_{2}, \theta\right\rangle$ and
$<W_{1}{ }^{\prime}, W_{2}^{\prime}, \theta^{\prime}>$ share a
region then they
compute the same
function

## No. of Regions produced by Hyperplanes

Number of regions founded by $n$ hyperplanes in d-dim passing through origin is given by the following recurrence relation

$$
R_{n, d}=R_{n-1, d}+R_{n-1, d-1}
$$

we use generating function as an operating function

Boundary condition:

$$
\begin{aligned}
& R_{1, d}=2 \\
& R_{n, 1}=2
\end{aligned}
$$

1 hyperplane in d-dim n hyperplanes in 1-dim,
Reduce to $n$ points thru origin

The generating function is

$$
f(x, y)=\sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n} y^{d}
$$

From the recurrence relation we have,

$$
R_{n, d}-R_{n-1, d}-R_{n-1, d-1}=0
$$

$R_{n-1, d}$ corresponds to 'shifting' n by 1 place, $\Rightarrow>$ multiplication by $x$
$R_{n-1, d-1}$ corresponds to 'shifting' n and d by 1 place $=>$ multiplication by $x y$

On expanding $f(x, y)$ we get

$$
\begin{aligned}
f(x, y) & =R_{1,1} \cdot x y+R_{1,2} \cdot x y^{2}+R_{1,3} \cdot x y^{3}+\ldots+R_{1, d} \cdot x y^{d}+\ldots . . \infty \\
& +R_{2,1} \cdot x^{2} y+R_{2,2} \cdot x^{2} y^{2}+R_{2,3} \cdot x^{2} y^{3}+\ldots+R_{2, d} \cdot x^{2} y^{d}+\ldots . . \infty \\
& \ldots \\
& +R_{n, 1} \cdot x^{n} y+R_{n, 2} \cdot x^{n} y^{2}+R_{n, 3} \cdot x^{n} y^{3}+\ldots+R_{n, d} \cdot x^{n} y^{d}+\ldots . . \infty
\end{aligned}
$$

$$
\begin{aligned}
& f(x, y)=\sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n} y^{d} \\
& x \cdot f(x, y)=\sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n+1} y^{d}=\sum_{n=2}^{\infty} \sum_{d=1}^{\infty} R_{n-1, d, d} \cdot x^{n} y^{d} \\
& x y \cdot f(x, y)=\sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n+1} y^{d+1}=\sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n-1, d-\alpha-1} \cdot x^{n} y^{d} \\
& x \cdot f(x, y)=\sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n-1, d} \cdot x^{n} y^{d}+\sum_{n=2}^{\infty} R_{n-11, ~} \cdot x^{n} y \\
& =\sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n-1, d} \cdot x^{n} y^{d}+2 \cdot \sum_{n=2}^{\infty} x^{n} y
\end{aligned}
$$

$$
\begin{aligned}
f(x, y) & =\sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n} y^{d} \\
& =\sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n, d} \cdot x^{n} y^{d}+\sum_{d=1}^{\infty} R_{1, d} \cdot x y^{d}+\sum_{n=1}^{\infty} R_{n, 1} \cdot x^{n} y-R_{1,1} \cdot x y \\
& =\sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n, d} \cdot x^{n} y^{d}+2 x \cdot \sum_{d=1}^{\infty} x y^{d}+2 y \cdot \sum_{n=1}^{\infty} x^{n} y-2 x y
\end{aligned}
$$

After all this expansion,

$$
f(x, y)-x \cdot f(x, y)-x y \cdot f(x, y)
$$

$$
\begin{aligned}
& =\sum_{n=2}^{\infty} \sum_{d=2}^{\infty}\left(R_{n, d}-R_{n-1, d}-R_{n-1, d-1}\right) x^{n} y^{d} \\
& +2 y \cdot \sum_{n=1}^{\infty} x^{d}-2 x y-2 y \cdot \sum_{n=2}^{\infty} x+2 x \cdot \sum_{d=1}^{\infty} y^{d} \\
& =2 x \cdot \sum_{d=1}^{\infty} y^{d} \quad \text { since other two te }
\end{aligned}
$$

This implies

$$
\begin{aligned}
{[1-x-x y] f(x, y) } & =2 x \cdot \sum_{d=1}^{\infty} y^{d} \\
f(x, y) & =\frac{1}{[1-x(1-y)]} \cdot 2 x \cdot \sum_{d=1}^{\infty} y^{d} \\
& =2 x \cdot\left[y+y^{2}+y^{3}+\ldots+y^{d}+\ldots . \infty\right] . \\
& {\left[1+x(1+y)+x^{2}(1+y)^{2}+\ldots+x^{d}(1+y)^{d}+\ldots . . \infty\right] }
\end{aligned}
$$

also we have,

$$
f(x, y)=\sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n} y^{d}
$$

Comparing coefficients of each term in RHS we get,

Comparing co-efficients we get

$$
R_{n, d}=\sum_{i=0}^{d-1} C_{i}^{n-1}
$$

