CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya

CSE Dept., IIT Bombay

Lecture 24: Perceptrons and their computing power (cntd) 10th March, 2011

Threshold functions

n # Boolean functions (2^2^n) #Threshold Functions (2ⁿ²)

1	4	4
2	16	14
3	256	128
4	64K	1008

- Functions computable by perceptrons threshold functions
- **#TF becomes negligibly small for larger values** of **#BF.**
- For n=2, all functions except XOR and XNOR are computable.

Concept of Hyper-planes

Σ w_ix_i = θ defines a linear surface in the (W,θ) space, where W=<w₁,w₂,w₃,...,w_n> is an n-dimensional vector.

 \mathbf{X}_1

 X_{2}

A point in this (W,θ) space
 defines a perceptron.

X₃

X_n

Perceptron Property

- Two perceptrons may have different parameters but same function
- Example of the simplest perceptron w.x>0 gives y=1 $w.x\leq 0$ gives y=0Depending on different values of w and θ , four different functions are possible x_1

Counting the number of functions for the simplest perceptron For the simplest perceptron, the equation w.x= θ . is Substituting x=0 and x=1, we get $\theta = 0$ and $w = \theta$. $w = \theta$ **R4** These two lines intersect to R3 $\theta = 0$ R2 form four regions, which correspond to the four functions.

Fundamental Observation

The number of TFs computable by a perceptron is equal to the number of regions produced by 2ⁿ hyper-planes, obtained by plugging in the values <x₁,x₂,x₃,...,x_n> in the equation

$$\sum_{i=1}^{n} w_i x_i = \theta$$

AND of 2 inputs

X1	x2	y
0	0	0
0	1	0
1	0	0
1	1	1

The parameter values (weights & thresholds) need to be found.

Constraints on w1, w2 and θ

w1 * 0 + w2 * 0 <=
$$\theta \rightarrow \theta$$
 >= 0; since y=0
w1 * 0 + w2 * 1 <= $\theta \rightarrow w2$ <= θ ; since y=0
w1 * 1 + w2 * 0 <= $\theta \rightarrow w1$ <= θ ; since y=0
w1 * 1 + w2 *1 > $\theta \rightarrow w1$ + w2 > θ ; since y=1
w1 = w2 = = 0.5

These inequalities are satisfied by ONE particular region

The geometrical observation

Problem: *m* linear surfaces called hyperplanes (each hyper-plane is of (*d-1*)-dim) in d-dim, then what is the max. no. of regions produced by their intersection?

i.e., $R_{m,d} = ?$

Co-ordinate Spaces

We work in the <X₁, X₂> space or the <w₁, w₂, θ> space

Regions produced by lines

New regions created = Number of intersections on the incoming line by the original lines

Total number of regions = Original number of regions + New regions created

Number of computable functions by a neuron Y $w1^*x1 + w2^*x2 = \theta$ $(0,0) \Rightarrow \theta = 0:P1$ $(0,1) \Rightarrow w2 = \theta:P2$ $(1,0) \Rightarrow w1 = \theta:P3$ $(1,1) \Rightarrow w1 + w2 = \theta:P4$ x1x2

P1, P2, P3 and P4 are planes in the <W1,W2, θ > space

Number of computable functions by a neuron (cont...)

- P1 produces 2 regions
- P2 is intersected by P1 in a line. 2 more new regions are produced.

 Number of regions = 2+2 = 4
- P3 is intersected by P1 and P2 in 2 intersecting lines. 4 more regions are produced.

 P3

 Number of regions = 4 + 4 = 8
- P4 is intersected by P1, P2 and P3 in 3 intersecting lines. 6 more regions are P4 uced. Number of regions = 8 + 6 = 14
- Thus, a single neuron can compute 14 Boolean functions which are linearly separable.

Points in the same region

No. of Regions produced by Hyperplanes Number of regions founded by n hyperplanes in d-dim passing through origin is given by the following recurrence relation

$$R_{n,d} = R_{n-1,d} + R_{n-1,d-1}$$

we use generating function as an operating function

Boundary condition:

$$R_{1, d} = 2$$
1 hyperplane in d-dim $R_{n,1} = 2$ n hyperplanes in 1-dim,Reduce to n points thru origin

The generating function is
$$f(x, y) = \sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^n y^d$$

From the recurrence relation we have,

$$R_{n, d} - R_{n-1, d} - R_{n-1, d-1} = 0$$

 $R_{n-1,d}$ corresponds to 'shifting' n by 1 place, => multiplication by x $R_{n-1,d-1}$ corresponds to 'shifting' n and d by 1 place => multiplication by xy

On expanding f(x, y) we get

$$f(x, y) = R_{1,1} \cdot xy + R_{1,2} \cdot x y^{2} + R_{1,3} \cdot x y^{3} + \dots + R_{1,d} \cdot x y^{d} + \dots \infty$$

+ $R_{2,1} \cdot x^{2} y + R_{2,2} \cdot x^{2} y^{2} + R_{2,3} \cdot x^{2} y^{3} + \dots + R_{2,d} \cdot x^{2} y^{d} + \dots \infty$
.....
+ $R_{n,1} \cdot x^{n} y + R_{n,2} \cdot x^{n} y^{2} + R_{n,3} \cdot x^{n} y^{3} + \dots + R_{n,d} \cdot x^{n} y^{d} + \dots \infty$

$$f(x, y) = \sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n} y^{d}$$
$$x \cdot f(x, y) = \sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n+1} y^{d} = \sum_{n=2}^{\infty} \sum_{d=1}^{\infty} R_{n-1, d} \cdot x^{n} y^{d}$$
$$xy \cdot f(x, y) = \sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n+1} y^{d+1} = \sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n-1, d-1} \cdot x^{n} y^{d}$$

$$x \cdot f(x, y) = \sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n-1, d} \cdot x^n y^d + \sum_{n=2}^{\infty} R_{n-1, 1} \cdot x^n y^d$$
$$= \sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n-1, d} \cdot x^n y^d + 2 \cdot \sum_{n=2}^{\infty} x^n y$$

$$f(x, y) = \sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n} y^{d}$$

= $\sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n, d} \cdot x^{n} y^{d} + \sum_{d=1}^{\infty} R_{1, d} \cdot xy^{d} + \sum_{n=1}^{\infty} R_{n, 1} \cdot x^{n} y - R_{1, 1} \cdot xy$
= $\sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n, d} \cdot x^{n} y^{d} + 2x \cdot \sum_{d=1}^{\infty} xy^{d} + 2y \cdot \sum_{n=1}^{\infty} x^{n} y - 2xy$

After all this expansion,

$$f(x, y) - x \cdot f(x, y) - xy \cdot f(x, y)$$

= $\sum_{n=2}^{\infty} \sum_{d=2}^{\infty} (R_{n,d} - R_{n-1,d} - R_{n-1,d-1}) x^n y^d$
+ $2y \cdot \sum_{n=1}^{\infty} x^d - 2xy - 2y \cdot \sum_{n=2}^{\infty} x + 2x \cdot \sum_{d=1}^{\infty} y^d$
= $2x \cdot \sum_{d=1}^{\infty} y^d$ since other two terms become zero

This implies

$$[1-x-xy]f(x,y) = 2x \cdot \sum_{d=1}^{\infty} y^d$$

$$f(x,y) = \frac{1}{[1-x(1-y)]} \cdot 2x \cdot \sum_{d=1}^{\infty} y^d$$

$$= 2x \cdot [y+y^2+y^3+...+y^d+....\infty] \cdot$$

$$[1+x(1+y)+x^2(1+y)^2+...+x^d(1+y)^d+....\infty]$$

also we have,

$$f(x, y) = \sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n} y^{d}$$

Comparing coefficients of each term in RHS we get,

Comparing co-efficients we get

