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Functions in one-input 
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Functions in Simple 
Perceptron



Multiple representations of a concept
Algebra
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Inductive Bias
Once we have decided to use a particular 
representation, we have assumed “inductive p ,
bias”
The inductive bias of a learning algorithm is 
the set of assumptions that the learner usesthe set of assumptions that the learner uses 
to predict outputs given inputs that it has not 
encountered (Mitchell, 1980).

You can refer to: 

A theory of the Learnable
LG Valiant - Communications of the ACM, 1984



Fundamental ObservationFundamental Observation

The number of TFs computable by a perceptronThe number of TFs computable by a perceptron 
is equal to the number of regions produced by 
2n hyper-planes,obtained by plugging in the 
values <x1,x2,x3,…,xn> in the equation 

∑i=1
nwixi= θ



The geometrical observationThe geometrical observation

Problem: m linear surfaces called hyper-Problem: m linear surfaces called hyper
planes (each hyper-plane is of (d-1)-dim) 
in d-dim then what is the max no ofin d dim, then what is the max. no. of 
regions produced by their intersection?
i e R = ?i.e., Rm,d = ?



Co-ordinate Spaces

We work in the <X1 X2> space or the <w1We work in the <X1, X2> space or the <w1, 
w2, > space 
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W1 = W2 = 1, Ѳ = 
0.5
X1 + x2 = 0.5
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Hyper-planeW2 Hyper plane
(Line in 2-D)General equation of a Hyperplane:

Σ Wi Xi = Ѳ



Regions produced by lines

X2
L2

L3
Regions produced by lines 

X2
L1

L4

not necessarily passing 
through origin
L1: 2

L2: 2+2 = 4

L3: 2+2+3 = 7

L4 2 2 3 4

X1

L4: 2+2+3+4 = 
11

New regions created = Number of intersections on the incoming lineNew regions created  Number of intersections on the incoming line 
by the original lines 
Total number of regions = Original number of regions + New regions 
created



Number of computable 
functions by a neuron
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P1, P2, P3 and P4 are planes in the 
<W1,W2, > space



Number of computable functions by a neuron 
(cont )(cont…)

P1 produces 2 regionsp g
P2 is intersected by P1 in a line. 2 more new 
regions are produced.
Number of regions = 2+2 = 4 P2Number of regions = 2+2 = 4
P3 is intersected by P1 and P2 in 2 intersecting 
lines. 4 more regions are produced.

P2

P3
Number of regions = 4 + 4 = 8
P4 is intersected by P1, P2 and P3 in 3 
intersecting lines 6 more regions are produced

P3

P4intersecting lines. 6 more regions are produced.
Number of regions = 8 + 6 = 14
Thus, a single neuron can compute 14 Boolean 
f ti hi h li l bl

P4

functions which are linearly separable.



Points in the same regionPoints in the same region

X2If 2If  
W1*X1 + W2*X2 > Ѳ
W1’*X1 + W2’*X2 > Ѳ’
ThThen

If <W1,W2, Ѳ> and 
<W1’,W2’, Ѳ’> share a 

X1
region then they 
compute the same 
functionfunction



N f R i d d bNo. of Regions produced by 
HyperplanesHyperplanes



Number of regions founded by n hyperplanes in d-dim passingNumber of regions founded by n hyperplanes in d dim passing 
through origin is given by the following recurrence relation

111 −−+= − dnddn RRR n

we use generating function as an operating function

1,1,, 1 +− dnddn RRR n

Boundary condition:
1 hyperplane in d-dim21 =dR yp p

n hyperplanes in 1-dim, 
Reduce to n points thru origin 
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From the recurrence relation we have,
01,1,, 1 =−− −−− dnddn RRR n

Rn-1,d corresponds to ‘shifting’ n by 1 place, => multiplication by x
Rn-1,d-1  corresponds to ‘shifting’ n and d by 1 place => multiplication by xy

On expanding f(x,y) we get
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This impliesp
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Comparing coefficients of each term in RHS we get,



Comparing co-efficients we get
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Perceptron Training Algorithm p g g
(PTA)

Preprocessing:
1 The computation law is modified to1. The computation law is modified to

y = 1  if  ∑wixi > θ
f θy = o  if  ∑wixi < θ

θ ≤ θ

.   .   . 

θ, ≤

w1 w2 wn .   .   . 

θ, <

w1 w2 w3 wn
w3

x1 x2 x3 xn x1 x2 x3 xn



PTA – preprocessing cont…

2. Absorb θ as a weight

θθ

.   .   . w1 w2 w3 wn

x2 x3 xnx1

w0=θ

x0= -1

.   .   . w1 w2 w
3

wn

x2 x3 xn
x1

3 ll h l l

n

3. Negate all the zero-class examples



Example to demonstrate p
preprocessing

OR perceptron
1-class <1,1> , <1,0> , <0,1>
0-class <0,0>

Augmented x vectors:-
1-class <-1,1,1> , <-1,1,0> , <-1,0,1>
0-class <-1,0,0>

N 0 l 1 0 0Negate 0-class:- <1,0,0>



Example to demonstrate p
preprocessing cont..

Now the vectors are
x x xx0 x1 x2

X1 -1   0   1
X2 -1   1   0
X3 -1   1   13

X4 1   0   0



Perceptron Training Algorithm

1. Start with a random value of w
ex: <0 0 0 >ex: <0,0,0…>

2. Test for wxi > 0
f h d fIf the test succeeds for i=1,2,…n

then return w
3. Modify w, wnext = wprev + xfail



Tracing PTA on OR-example

w=<0,0,0> wx1 fails
w=<-1,0,1> wx4 failsw < 1,0,1> wx4 fails
w=<0,0 ,1> wx2 fails
w=<-1 1 1> wx failsw=<-1,1,1> wx1 fails
w=<0,1,2> wx4 fails
w <1 1 2> wx failsw=<1,1,2> wx2 fails
w=<0,2,2> wx4 fails

2 2w=<1,2,2> success


