CS344: Introduction to Artificial

Intelligence

 (associated lab: CS386)Pushpak Bhattacharyya CSE Dept., IIT Bombay
Lecture 25: Perceptrons; \# of regions; training and convergence
$14^{\text {th }}$ March, 2011

\section*{Functions in one-input Perceptron
 | $\begin{aligned} & w .0>\theta \\ & w .1>\theta \end{aligned}$ | | $\begin{aligned} & 0>\theta \\ & w>\theta \end{aligned}$ | True function | |
| :---: | :---: | :---: | :---: | :---: |
| $w .0 \leq \theta$ | | $\theta \geq 0$ | θ function | θ |
| $w .1 \leq \theta$ | | $w \leq \theta$ | $\} \theta$ function | |
| $\begin{aligned} & w .0 \leq \theta \\ & w .1>\theta \end{aligned}$ | | $\begin{aligned} & \theta \geq 0 \\ & w>\theta \end{aligned}$ | Identity function | |
| $\begin{aligned} & w .0>\theta \\ & w . l \leq \theta \end{aligned}$ | | $\begin{aligned} & 0<\theta \\ & w \leq \theta \end{aligned}$ | Complement function | X |

Functions in Simple Perceptron

$\frac{\theta \text { Function }}{\theta \geq 0}$
$w \leq \theta$

Multiple representations of a concept

Inductive Bias

- Once we have decided to use a particular representation, we have assumed "inductive bias"
- The inductive bias of a learning algorithm is the set of assumptions that the learner uses to predict outputs given inputs that it has not encountered (Mitchell, 1980).
- You can refer to:

A theory of the Learnable
LG Valiant - Communications of the ACM, 1984

Fundamental Observation

- The number of TFs computable by a perceptron is equal to the number of regions produced by 2^{n} hyper-planes,obtained by plugging in the values $\left\langle x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\rangle$ in the equation

$$
\sum_{i=1}{ }^{n} w_{i} x_{i}=\theta
$$

The geometrical observation

- Problem: m linear surfaces called hyperplanes (each hyper-plane is of (d-1)-dim) in d-dim, then what is the max. no. of regions produced by their intersection?
i.e., $R_{m, d}=$?

Co-ordinate Spaces

We work in the $\left\langle\mathrm{X}_{1}, \mathrm{X}_{2}\right\rangle$ space or the $<\mathrm{W}_{1}$, w $2, \theta>$ space

General equation of a Hyperplane: $\Sigma \mathrm{Wi} \mathrm{Xi}=\theta$

$$
0.5
$$

$$
x_{1}+x_{2}=0.5
$$

X1
Hyper-plane
(Line in 2-D)

Regions produced by lines

New regions created $=$ Number of intersections on the incoming line by the original lines
Total number of regions $=$ Original number of regions + New regions created

P1, P2, P3 and P4 are planes in the $<W 1, W 2, ~ \theta>$ space

Number of computable functions by a neuron (cont...)

- P1 produces 2 regions
- P2 is intersected by P1 in a line. 2 more new regions are produced. Number of regions $=2+2=4$

- P3 is intersected by P1 and P2 in 2 intersecting lines. 4 more regions are produced. Number of regions $=4+4=8$

- P4 is intersected by P1, P2 and P3 in 3 intersecting lines. 6 more regions are P4 juced. Number of regions $=8+6=14$
- Thus, a single neuron can compute 14 Boolean functions which are linearly separable.

Points in the same region

If

$W_{1} * X_{1}+W_{2} * X_{2}>\theta$ $\mathrm{W}_{1}{ }^{\prime} * \mathrm{X}_{1}+\mathrm{W}_{2}{ }^{\prime} * \mathrm{X}_{2}>\theta^{\prime}$
Then
If $\left\langle W_{1}, W_{2}, \theta\right\rangle$ and
$<W_{1}{ }^{\prime}, W_{2}^{\prime}, \theta^{\prime}>$ share a
region then they
compute the same
function

No. of Regions produced by Hyperplanes

Number of regions founded by n hyperplanes in d-dim passing through origin is given by the following recurrence relation

$$
R_{n, d}=R_{n-1, d}+R_{n-1, d-1}
$$

we use generating function as an operating function

Boundary condition:

$$
\begin{array}{lr}
R_{1, d}=2 & 1 \text { hyperplane in d-dim } \\
R_{n, 1}=2 & \text { n hyperplanes in 1-dim, } \\
\text { Reduce to n points thru origin }
\end{array}
$$

The generating function is

$$
f(x, y)=\sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n} y^{d}
$$

From the recurrence relation we have,

$$
R_{n, d}-R_{n-1, d}-R_{n-1, d-1}=0
$$

$R_{n-1, d}$ corresponds to 'shifting' n by 1 place, => multiplication by x
$R_{n-1, d-l}$ corresponds to 'shifting' n and d by 1 place $=>$ multiplication by $x y$

On expanding $f(x, y)$ we get

$$
\begin{aligned}
f(x, y) & =R_{1,1} \cdot x y+R_{1,2} \cdot x y^{2}+R_{1,3} \cdot x y^{3}+\ldots+R_{1, d} \cdot x y^{d}+\ldots . \infty \\
& +R_{2,1} \cdot x^{2} y+R_{2,2} \cdot x^{2} y^{2}+R_{2,3} \cdot x^{2} y^{3}+\ldots+R_{2, d} \cdot x^{2} y^{d}+\ldots \ldots \infty \\
& \ldots . . \\
& +R_{n, 1} \cdot x^{n} y+R_{n, 2} \cdot x^{n} y^{2}+R_{n, 3} \cdot x^{n} y^{3}+\ldots+R_{n, d} \cdot x^{n} y^{d}+\ldots . \infty
\end{aligned}
$$

$$
\begin{aligned}
f(x, y) & =\sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n} y^{d} \\
x \cdot f(x, y) & =\sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n+1} y^{d}=\sum_{n=2}^{\infty} \sum_{d=1}^{\infty} R_{n-1, d} \cdot x^{n} y^{d} \\
x y \cdot f(x, y) & =\sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} x^{n+1} y^{d+1}=\sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n-1, d-1 \cdot x^{n} y^{d}}^{x \cdot f(x, y)}=\sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n-1, d} \cdot x^{n} y^{d}+\sum_{n=2}^{\infty} R_{n-1,1 \cdot x^{n} y} \\
& =\sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n-1, d} \cdot x^{n} y^{d}+2 \cdot \sum_{n=2}^{\infty} x^{n} y
\end{aligned}
$$

$$
\begin{aligned}
f(x, y) & =\sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n} y^{d} \\
& =\sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n, d} \cdot x^{n} y^{d}+\sum_{d=1}^{\infty} R_{1, d} \cdot x y^{d}+\sum_{n=1}^{\infty} R_{n, 1} \cdot x^{n} y-R_{1,1} \cdot x y \\
& =\sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n, d} \cdot x^{n} y^{d}+2 x \cdot \sum_{d=1}^{\infty} x y^{d}+2 y \cdot \sum_{n=1}^{\infty} x^{n} y-2 x y
\end{aligned}
$$

After all this expansion,

$$
f(x, y)-x \cdot f(x, y)-x y \cdot f(x, y)
$$

$$
\begin{aligned}
& =\sum_{n=2}^{\infty} \sum_{d=2}^{\infty}\left(R_{n, d}-R_{n-1, d}-R_{n-1, d-1}\right) x^{n} y^{d} \\
& +2 y \cdot \sum_{n=1}^{\infty} x^{d}-2 x y-2 y \cdot \sum_{n=2}^{\infty} x+2 x \cdot \sum_{d=1}^{\infty} y^{d} \\
& =2 x \cdot \sum_{d=1}^{\infty} y^{d} \quad \text { since other two te }
\end{aligned}
$$

This implies

$$
\begin{aligned}
{[1-x-x y] f(x, y)=} & 2 x \cdot \sum_{d=1}^{\infty} y^{d} \\
f(x, y)= & \frac{1}{[1-x(1-y)]} \cdot 2 x \cdot \sum_{d=1}^{\infty} y^{d} \\
& =2 x \cdot\left[y+y^{2}+y^{3}+\ldots+y^{d}+\ldots . . \infty\right] . \\
& {\left[1+x(1+y)+x^{2}(1+y)^{2}+\ldots+x^{d}(1+y)^{d}+\ldots . . \infty\right] }
\end{aligned}
$$

also we have,

$$
f(x, y)=\sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n} y^{d}
$$

Comparing coefficients of each term in RHS we get,

Comparing co-efficients we get

$$
R_{n, d}=\sum_{i=0}^{d-1} \sim_{i}^{n-1}
$$

Perceptron Training Algorithm (PTA)

Preprocessing:

1. The computation law is modified to

$$
\begin{array}{lll}
y=1 & \text { if } \quad \sum w_{i} x_{i}>\theta \\
y=0 & \text { if } \quad \sum w_{i} x_{i}<\theta
\end{array}
$$

PTA - preprocessing cont...

2. Absorb θ as a weight

3. Negate all the zero-class examples

Example to demonstrate preprocessing

- OR perceptron

1-class <1,1>, <1,0>, <0,1>
0 -class <0,0>

Augmented x vectors:-
1-class $<-1,1,1\rangle,<-1,1,0\rangle,<-1,0,1\rangle$
0-class <-1,0,0>

Negate 0-class:- < 1,0,0>

Example to demonstrate preprocessing cont..

Now the vectors are

\[

\]

Perceptron Training Algorithm

1. Start with a random value of w ex: <0,0,0...>
2. Test for $w x_{i}>0$

If the test succeeds for $i=1,2, \ldots n$ then return w
3. Modify $\mathrm{w}, \mathrm{w}_{\text {next }}=\mathrm{w}_{\text {prev }}+\mathrm{X}_{\text {fail }}$

Tracing PTA on OR-example

$$
\begin{array}{lc}
w=<0,0,0\rangle & w x_{1} \text { fails } \\
w=<-1,0,1> & w x_{4} \text { fails } \\
w=<0,0 & w x_{2} \text { fails } \\
w=<-1,1,1> & w x_{1} \text { fails } \\
w=<0,1,2> & w x_{4} \text { fails } \\
w=<1,1,2> & w x_{2} \text { fails } \\
w=<0,2,2> & w x_{4} \text { fails } \\
w=<1,2,2> & \text { success }
\end{array}
$$

