CS344: Introduction to Artificial

Intelligence (associated lab: CS386)

Pushpak Bhattacharyya
CSE Dept., IIT Bombay
Lecture 26: \# of regions; Prolog
15 ${ }^{\text {th }}$ March, 2011

Number of regions founded by n hyperplanes in d-dim passing through origin is given by the following recurrence relation

$$
R_{n, d}=R_{n-1, d}+R_{n-1, d-1}
$$

we use generating function as an operating function

Boundary condition:

$$
\begin{array}{lr}
R_{1, d}=2 & 1 \text { hyperplane in d-dim } \\
R_{n, 1}=2 & \text { n hyperplanes in 1-dim, } \\
& \text { Reduce to } \mathrm{n} \text { points thru origin }
\end{array}
$$

The generating function is

$$
f(x, y)=\sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n} y^{d}
$$

From the recurrence relation we have,

$$
R_{n, d}-R_{n-1, d}-R_{n-1, d-1}=0
$$

$R_{n-1, d}$ corresponds to 'shifting' n by 1 place, $=>$ multiplication by x
$R_{n-1, d-1}$ corresponds to 'shifting' n and d by 1 place => multiplication by $x y$

On expanding $f(x, y)$ we get

$$
\begin{aligned}
f(x, y) & =R_{1,1} \cdot x y+R_{1,2} \cdot x y^{2}+R_{1,3} \cdot x y^{3}+\ldots+R_{1, d} \cdot x y^{d}+\ldots . . \infty \\
& +R_{2,1} \cdot x^{2} y+R_{2,2} \cdot x^{2} y^{2}+R_{2,3} \cdot x^{2} y^{3}+\ldots+R_{2, d} \cdot x^{2} y^{d}+\ldots . . \infty \\
& \ldots . . \\
& +R_{n, 1} \cdot x^{n} y+R_{n, 2} \cdot x^{n} y^{2}+R_{n, 3} \cdot x^{n} y^{3}+\ldots+R_{n, d} \cdot x^{n} y^{d}+\ldots . . \infty
\end{aligned}
$$

$$
\begin{aligned}
& f(x, y)=\sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n} y^{d} \\
& x \cdot f(x, y)=\sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n+1} y^{d}=\sum_{n=2}^{\infty} \sum_{d=1}^{\infty} R_{n-1, d, ~} \cdot x^{n} y^{d} \\
& x y \cdot f(x, y)=\sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n+1} y^{d+1}=\sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n-1, d-1} \cdot x^{n} y^{d} \\
& x \cdot f(x, y)=\sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n-1, d} \cdot x^{n} y^{d}+\sum_{n=2}^{\infty} R_{n}-1, \cdot x^{n} y \\
& =\sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n-1, d} \cdot x^{n} y^{d}+2 \cdot \sum_{n=2}^{\infty} x^{n} y
\end{aligned}
$$

$$
\begin{aligned}
f(x, y) & =\sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n} y^{d} \\
& =\sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n, d} \cdot x^{n} y^{d}+\sum_{d=1}^{\infty} R_{1, d} \cdot x y^{d}+\sum_{n=1}^{\infty} R_{n, 1} \cdot x^{n} y-R_{1,1} \cdot x y \\
& =\sum_{n=2}^{\infty} \sum_{d=2}^{\infty} R_{n, d} \cdot x^{n} y^{d}+2 x \cdot \sum_{d=1}^{\infty} y^{d}+2 y \cdot \sum_{n=1}^{\infty} x^{n}-2 x y
\end{aligned}
$$

After all this expansion,

$$
f(x, y)-x \cdot f(x, y)-x y \cdot f(x, y)
$$

$$
\begin{aligned}
& =\sum_{n=2}^{\infty} \sum_{d=2}^{\infty}\left(R_{n, d}-R_{n-1, d}-R_{n-1, d}\right) x^{n} y^{d} \\
& +2 y \sum_{n=1}^{\infty} x^{n}-2 x y-2 y \sum_{n=2}^{\infty} x^{n}+2 x \sum_{d=1}^{\infty} y^{d} \\
& =2 x \sum_{d=1}^{\infty} y^{d} \quad \text { since other two terms become zero }
\end{aligned}
$$

This implies

$$
\begin{aligned}
& {[1-x-x y] f(x, y)=} \\
& \qquad \begin{aligned}
f(x, y) & =\frac{1}{[1-x(1-y)]} \cdot 2 x \sum_{d=1}^{\infty} y^{d} y^{d} \\
& =2 x\left[y+y^{2}+y^{3}+\ldots+y^{d}+\ldots . . \infty\right] \\
& {\left[1+x(1+y)+x^{2}(1+y)^{2}+\ldots+x^{d}(1+y)^{d}+\ldots . . \infty\right] }
\end{aligned}
\end{aligned}
$$

also we have,

$$
f(x, y)=\sum_{n=1}^{\infty} \sum_{d=1}^{\infty} R_{n, d} \cdot x^{n} y^{d}
$$

Comparing coefficients of each term in RHS we get,

Comparing co-efficients we get

$$
R_{n, d}=\sum_{i=0}^{d-1} C_{i}^{n-1}
$$

For peceptron

- $n=$ no. of inputs
- $d=n+1$
- $R_{n, d}$ comes out to be upper bounded by $O\left(2^{n-2}\right)$

Prolog

Introduction

- PROgramming in LOGic
- Emphasis on what rather than how

A Typical Prolog program

Compute_length ([],0).
Compute_length ([Head/Tail], Length):-
Compute_length (Tail, Tail_ length), Length is Tail_length+1.
High level explanation:
The length of a list is 1 plus the length of the tail of the list, obtained by removing the first element of the list.
This is a declarative description of the computation.

Fundamentals

(absolute basics for writing Prolog Programs)

Facts

- John likes Mary
- like(john,mary)
- Names of relationship and objects must begin with a lower-case letter.
- Relationship is written first (typically the predicate of the sentence).
- Objects are written separated by commas and are enclosed by a pair of round brackets.
- The full stop character '.' must come at the end of a fact.

More facts

Predicate	Interpretation
valuable(gold)	Gold is valuable.
owns(john,gold)	John owns gold.
father(john,mary)	John is the father of Mary
gives (john,book,mary)	John gives the book to Mary

Questions

- Questions based on facts
- Answered by matching

Two facts match if their predicates are same (spelt the same way) and the arguments each are same.

- If matched, prolog answers yes, else no.
- No does not mean falsity.

Prolog does theorem proving

- When a question is asked, prolog tries to match transitively.
- When no match is found, answer is no.
- This means not provable from the given facts.

Variables

- Always begin with a capital letter
- ?- likes (john, X).
- ?- likes (john, Something).
- But not
- ?- likes (john,something)

Example of usage of variable

Facts:

likes(john, flowers).
likes(john, mary).
likes(paul,mary).
Question:
?- likes(john, X)
Answer:
$X=$ flowers and wait
;
mary
;
no

Conjunctions

- Use ',' and pronounce it as and.
- Example
- Facts:
- likes(mary,food).
- likes(mary,tea).
- likes(john,tea).
- likes(john,mary)
- ?-
- likes(mary,X),likes(john, X).
- Meaning is anything liked by Mary also liked by John?

Backtracking (an inherent property of prolog programming)

1. First goal succeeds. $X=f$ food
2. Satisfy likes(john,food)

Backtracking (continued)

Returning to a marked place and trying to resatisfy is called Backtracking

1. Second goal fails
2. Return to marked place and try to resatisfy the first goal

Backtracking (continued)

1. First goal succeeds again, $X=t e a$
2. Attempt to satisfy the likes(john,tea)

Backtracking (continued)

1. Second goal also suceeds
2. Prolog notifies success and waits for a reply

Rules

- Statements about objects and their relationships
- Expess
- If-then conditions
- / use an umbrella if there is a rain
- use(i, umbrella) :- occur(rain).
- Generalizations
- All men are mortal
- mortal(X) :- man (X).
- Definitions
- An animal is a bird if it has feathers
- $\operatorname{bird}(X)$:- $\operatorname{animal}(X)$, has feather (X).

Syntax

- <head> :- <body>
- Read ':-' as ‘if’.
- E.G.
- likes(john, X) :- likes(X, cricket).
- "John likes X if X likes cricket".
- i.e., "John likes anyone who likes cricket".
- Rules always end with ' \quad ’.

Another Example

sister_ of (X, Y) :- female (X), parents ($X, M, F)$, parents ($Y, M, F)$.
X is a sister of Y is
X is a female and
X and Y have same parents

Question Answering in presence of rules

- Facts
- male (ram).
- male (shyam).
- female (sita).
- female (gita).
- parents (shyam, gita, ram).
- parents (sita, gita, ram).

Question Answering: Y/N type: is sita the sister of shyam?

Question Answering: wh-type: whose sister is sita?

Rules

- Statements about objects and their relationships
- Expess
- If-then conditions
- / use an umbrella if there is a rain
- use(i, umbrella) :- occur(rain).
- Generalizations
- All men are mortal
- mortal(X) :- man (X).
- Definitions
- An animal is a bird if it has feathers
- $\operatorname{bird}(X)$:- $\operatorname{animal}(X)$, has feather (X).

Make and Break

Fundamental to Prolog

Prolog examples using making and breaking lists

\%incrementing the elements of a list to produce another list incr1([],[]).
incrl([H1|T1],[H2|T2]):- H 2 is $\mathrm{H} 1+1$, incr1(T1,T2).
\%appending two lists; (append(L1,L2,L3) is a built is function in Prolog)
append1([],L,L).
append1([H|L1],L2,[H|L3]):- append1(L1,L2,L3).
\%reverse of a list (reverse($\mathrm{L} 1, \mathrm{~L} 2$) is a built in function reversel([],[]).
reversel([H|T],L):- reversel(T,L1),append1(L1,[H],L).

Remove duplicates

Problem: to remove duplicates from a list

```
rem_dup([],[]).
rem_dup([H|T],L) :- member(H,T), !, rem_dup(T,L).
rem_dup([H|T],[H|Ll]) :- rem_dup(T,L1).
```

Note: The cut! in the second clause needed, since after succeeding at member (H, T), the $3^{\text {rd }}$ clause should not be tried even if rem_dup(T,L) fails, which prolog will otherwise do.

Member (membership in a list)

member (X,[X|_]).
member(X,[_|L]):- member(X,L).

Union (lists contain unique elements)

union([],Z,Z).
union([X|Y],Z,W):member $(X, Z),!$, union (Y, Z, W).
union([X|Y],Z,[X|W]):- union(Y,Z,W).

I ntersection (lists contain unique elements)

intersection([],Z,[]).
intersection([X|Y],Z,[X|W]):member(X, Z), !, intersection(Y,Z,W).
intersection([X|Y],Z,W):intersection(Y,Z,W).

Prolog Programs are close to Natural Language

Important Prolog Predicate:
member(e, L) /* true if e is an element of list L member(e,[e/L1). /* e is member of any list which it starts
member(e,[_/L1]):- member(e,L1) /*otherwise e is member of a list if the tail of the list contains e Contrast this with:
P.T.O.

Prolog Programs are close to Natural Language, C programs are not
For ($i=0 ; i<l e n g t h(L) ; i++$) $\{$ if ($e==a[i]$) break(); /*e found in a[]
\}
If (i<length(L) $\{$
success(e, a); /*print location where e appears in a[J]*
else
failure();
\}
What is idoing here? Is it natural to our thinking?

Machine should ascend to the level of

man

- A prolog program is an example of reduced man-machine gap, unlike a C program
- That said, a very large number of programs far outnumbering prolog programs gets written in C
- The demand of practicality many times incompatible with the elegance of ideality
- But the ideal should nevertheless be striven for

Prolog Program Flow, BackTracking and Cut

Controlling the program flow

Prolog's computation

- Depth First Search
- Pursues a goal till the end
- Conditional AND; falsity of any goal prevents satisfaction of further clauses.
- Conditional OR; satisfaction of any goal prevents further clauses being evaluated.

Control flow (top level)

Given

$$
\begin{aligned}
& g:-a, b, c . \\
& g:-d, e, f ; g .
\end{aligned}
$$

If prolog cannot satisfy (1), control will automatically fall through to (2).

Control Flow within a rule

Taking (1),

$$
g:-a, b, c
$$

If a succeeds, prolog will try to satisfy b, succeding which c will be tried.
For ANDed clauses, control flows forward till the '.', iff the current clause is true.
For ORed clauses, control flows forward till the '.', iff the current clause evaluates to false.

What happens on failure

- REDO the immediately preceding goal.

Fundamental Principle of prolog programming

- Always place the more general rule AFTER a specific rule.

CUT
. Cut tells the system that
IF YOU HAVE COME THIS FAR

DO NOT BACKTRACK

EVEN IF YOU FA/L SUBSEQUENTLY.
'CUT’ WRITTEN AS ‘!’ ALWAYS SUCCEEDS.

Fail

- This predicate always fails.
- Cut and Fail combination is used to produce negation.
- Since the LHS of the neck cannot contain any operator, $A \rightarrow \sim B$ is implemented as

$$
B:-A,!, \text { Fail. }
$$

