CS344: Introduction to Artificial
Intelligence

(associated lab: CS386)

Pushpak Bhattacharyya
CSE Dept.,
1T Bombay

Lecture 27, 28: Prolog
17t and 21t March, 2011

Introduction

= PROgramming in LOGiIc
= Emphasis on what rather than fow

y &
&
Ay

A Typical Prolog program

Compute length ([],0).

Compute length ([Head[Taill], Length):-
Compute length (Tall, Tall length),
Length is Tall length+1.

High level explanation:

The length of a list Is 1 plus the length of the
tall of the list, obtained by removing the first
element of the list,

This is a declarative description of the
computation.

Fundamentals

(absolute basics for writing Prolog
Programs)

Facts

= John likes Mary
s ltke(John,mary)

= Names of relationship and objects must begin
with a lower-case letter.

= Relationship is written 7irst (typically the
predicate of the sentence).

s Objects are written separated by commas
and are enclosed by a pair of round brackets.

= The full stop character ‘." must come at the
end of a fact.

More facts

Predicate Interpretation

valuable(gold) Gold is valuable.

owns(john,gold) John owns gold.

father(john,mary) John is the father of
Mary

gives (john,book,mary) |John gives the book to
Mary

Questions

s Questions based on facts
s _Answered by matchin

= If matched, prolog answers yes, else no.
= Mo does not mean falsity.

Prolog does theorem proving

= When a question Is asked, prolog tries
to match transitively.

= When no match i1s found, answer IS rno.

= This means not provable from the given
facts.

Variables

= Always begin with a capital letter
s 7- likes (john, X).
s 7- likes (John, Something).

s But not
s 7- likes (John,something)

Example of usage of variable

Facts:
likes(john, flowers).
likes(john,mary).
likes(paul,mary).
Question:
?- likes(john, X)
Answer:
X=flowers and wait

mary

no

Conjunctions

= Use ‘,” and pronounce it as and.

= Example

= Facts:
likes(mary,food).
likes(mary,tea).
likes(john,tea).
likes(john,mary)

likes(mary,X),likes(john,X).
Meaning /s anything liked by Mary also liked by John?

Backtracking (an inherent property
of prolog programming)

Iikes(mary,X),Iikes(john,X)

L >likes(mary,food)

likes(mary,tea)
likes(john,tea)
likes(john,mary)

1. First goal succeeds. X=food
2. Satisfy likes(john,food)

Backtracking (continued)

Returning to a marked place and trying to resatisfy is
called Backtracking

Iikes(mary,X),Iikes'(john,X)

L k >likes(mary,food)

likes(mary,tea)
likes(john,tea)
likes(john,mary)

1. Second goal fails
2. Return to marked place
and try to resatisfy the first goal

Backtracking (continued)

Iikesgmary,X),Iikes(john,X)

! likes(mary,food)

likes(mary,tea)
likes(john,tea)
likes(john,mary)

1. First goal succeeds again, X=tea
2. Attempt to satisfy the likes(john,tea)

Backtracking (continued)

Iikesgmary,X),Iike/s(john,X)

!\ likes(mary,food)

likes(mary,tea)
ikes(john,tea)
likes(john,mary)

1. Second goal also suceeds
2. Prolog notifies success and waits for a reply

Rules

Statements about objects and their
relationships

= Expess

= [I-then conditions
« [/ use an umbrella if there is a rain
= use(l, umbrella) :- occur(rain).
= Generalizations
« All men are mortal
« mortal(X) :- man(X).
= Definitions
« An animal is a bird If it has feathers
« bird(X) .- animal(X), has_feather(X).

Syntax

s <head> :- <body=>
= Read ‘:-’ as ‘If’.
s E.G.
s /kes(john,X) - likes(X,cricket).
s “John likes X if X likes cricket”,
n 1.e., “John likes anyone who likes cricket”.

= Rules always end with ‘.’

Another Example

sister of (X,Y).- female (X),
parents (X, M, F),
parents (Y, M, F).

X Is a sister of Y Is
X Is a female and
X and Y have same parents

Question Answering In presence
of rules

s Facts
= male (ram).
= male (shyam).
=« female (sita).
=« female (qgita).
= parents (shyam, gita, ram).
= parents (sita, gita, ram).

Question Answering: Y/N type: /s sita the
sister of shyam?

?- sister_of (sita, shyam)

| T

fe;aale(sita)

parents(sita,M,F)

parents(sita,gita,ram)

parents(shyam,M,F)

|

parents(shyam,gita,ram)

T

Question Answering: wh-type: whose
sister Is sita?

?- ?- sister_of (sita, X)

T

female(sita)

parents(sita,M,F)

parents(sita,gita,ram) |

N

Qarents(Y,M,F)

l

parents(Y,gita,ram)

parents(shyam,gita,ram)

Rules

Statements about objects and their
relationships

= Expess

= [I-then conditions
« [/ use an umbrella if there is a rain
= use(l, umbrella) :- occur(rain).
= Generalizations
« All men are mortal
« mortal(X) :- man(X).
= Definitions
« An animal is a bird If it has feathers
« bird(X) .- animal(X), has_feather(X).

Make and Break

Fundamental to Prolog

Prolog examples using making
and breaking lists

%incrementing the elements of a list to produce another list

incr1([1.[D-
incr1([H1|T1],[H2|T2]) :- H2 is H1+1, incrl(T1,T2).

%appending two lists; (append(L1,L2,L3) is a built is
function in Prolog)

appendl1([],L,L).

appendl1([H|L1],L2,[H|L3]):- appendl(L1,L2,L3).

%reverse of a list (reverse(L1,L2) is a built in function
reversel([].[D.
reversel([H|T],L):- reversel(T,L1),appendl(L1,[H],L).

Remove duplicates

Problem: to remove duplicates from a list

rem_dup([1,[D.
rem_dup([H|T].L) :- member(H,T), !, rem_dup(T,L).
rem_dup([H|T],[H|L1]) :- rem_dup(T,L1).

Ll

Note: The cut ! in the second clause needed, since after
succeeding at member(H,T), the 3" clause should
not be tried even if rem_dup(T,L) fails, which prolog
will otherwise do.

Member (membership in a list)

member(X,[X]|).
member(X,[|L]):- member(X,L).

Union (lists contain unigue elements)

union([],Z,2).

union([X|Y],Z,W):-
member(X,2),!,union(Y,Z,W).

union([X|Y],Z,[X|W]):- union(Y,Z,W).

Intersection (lists contain unique

elements)

Intersection([1,Z,[]).
iIntersection([X|Y],Z,[X|W]):-
member(X,2),!,intersection(Y,Z,W).

Intersection([X|Y],Z,W):-
iIntersection(Y,Z,W).

Prolog Programs are close to Natural
Language
Important Prolog Predicate:

member(e, L) /* true if e is an element of list L

member(e,[e[L1). /* e Is member of any list which it
starts

member(e,[[L1]):- member(e,L1) /*otherwise e IS
member of a list If the tail of the list contains e

Contrast this with:
P.T.O.

Prolog Programs are close to Natural
Language, C programs are not
For (1I=0;1<length(L),1++){
If (e==afi])
break(),; /*e found in af]
/
If (iI<length(L){
success(e,a), /*print location where e appears in
afl/*
else
failure(),
/

What is /doing here? Is it natural to our thinking?

Machine should ascend to the level of
man

= A prolog program is an example of reduced
man-machine gap, unlike a C program

= That said, a very large number of programs
far outnumbering prolog programs gets
written in C

= The demand of practicality many times
Incompatible with the elegance of ideality

s But the ideal should nevertheless be striven
for

Prolog Program Flow,
BackTracking and Cut

Controlling the program flow

Prolog’s computation

= Depth First Search
= Pursues a goal till the end

= Conditional AND; fal/sity of any goal
prevents satisfaction of further
clauses.

= Conditional OR; satisfaction of any
goal prevents further clauses being
evaluated.

Control flow (top level)

Given
g-a b c (1)
g--d e fg (2

If prolog cannot satisfy (1), control will
automatically fall through to (2).

Control Flow within a rule

Taking (1),
g:-a b, c.

If a succeeds, prolog will try to satisfy 5,
succeding which ¢ will be tried.

For ANDed clauses, control flows forward
till the *.’, Iff the current clause Is frue.

For ORed clauses, control flows forward
till the *.’, Iff the current clause
evaluates to false.

What happens on failure

= REDO the immediately preceding
goal.

Fundamental Principle of prolog
programming

= Always place the more general rule
AFTER a specific rule.

CUT

= Cut tells the system that
IF YOU HAVE COME THIS FAR
DO NOT BACKTRACK
EVEN IF YOU FAIL SUBSEQUENTLY.

‘CUT" WRITTEN AS " ALWAYS
SUCCEEDS.

Fall

= This predicate always falls.

s Cut and Far// combination iIs used to
produce negation.

= Since the LHS of the neck cannot
contain any operator, A =2 ~B IS
Implemented as

B.:-A 1 Fall.

Prolog and Himalayan Club
example

s (Lohar Manna, 1974):

= Problem: A, B and C belong to the Himalayan club.
Every member in the club is either a mountain
climber or a skier or both. A likes whatever B
dislikes and dislikes whatever B likes. A likes rain
and snow. No mountain climber likes rain. Every
skier likes snow. /s there a member who Is a
mountain climber and not a skier?

= Given knowledge has:
= Facts
= Rules

A syntactically wrong prolog
program!

1.

belong(a).

2. belong(b).
3.
4. mc(X);sk(X) :- belong(X) /* X is a mountain climber or skier or

belong(c).

both if X is a member; operators NOT allowed in the head of a
horn clause; hence wrong*/

. like(X, snow) :- sk(X). /*all skiers like snow*/
. \+like(X, rain) :- mc(X). /*no mountain climber likes rain; \+ is

the not operator; negation by failure; wrong clause*/

. \+like(a, X) :- like(b,X). /* a dislikes whatever b likes*/
8.
9.

like(a, X) :- \+like(b,X). /* a dislikes whatever b likes*/
like(a,rain).

10. like(a,snow).

2

belong(X),mc(X),\+sk(X).

Correct (?) Prolog Program

belong(a).

belong(b).

belong(c).

belong(X):-\+mc(X),\+sk(X), !, fail.

belong(X).

like(a,rain).

like(a,snow).

like(a,X) :- \+ like(b,X).

like(b,X) :- like(a,X),!,fail.

like(b,X).

mc(X):-like(X,rain),!,fail.

mc(X).

sk(X):- \+like(X,snow),! falil.

sk(X).

g(X):-belong(X),mc(X),\+sk(X),!. /*without this cut, Prolog will look for next answer
on being given ;" and return ‘c’ which is wrong*/

Himalayan club problem: working vesion

belong(a).
belong(b).
belong(c).

belong(X):-notmc(X),notsk(X),!, fail. /*contraposition to have horn clause
belong(X).

like(a,rain).

like(a,snow).

like(a,X) :- dislike(b,X).
like(b,X) :- like(a,X),!,falil.
like(b,X).

mc(X):-like(X,rain),!,fail.

mc(X).

notsk(X):- dislike(X,snow). /*contraposition to have horn clause
notmc(X):- mc(X),!,fail.

notmc(X).

dislike(P,Q):- like(P,Q),!,fail.
dislike(P,Q).

g(X):-belong(X),mc(X),notsk(X),!.

