
CS344: Introduction to ArtificialCS344: Introduction to Artificial
Intelligenceg

(associated lab: CS386)
Pushpak Bhattacharyya

CSE Dept.,
IIT B bIIT Bombay

Lecture 27, 28: Prolog
h17th and 21st March, 2011

Introduction

PROgramming in LOGic
Emphasis on what rather than howEmphasis on what rather than how

Problem in Declarative Form

Logic Machine

Basic MachineBasic Machine

A Typical Prolog program
Compute_length ([],0).
Compute_length ([Head|Tail], Length):-

Compute_length (Tail,Tail_length),
Length is Tail_length+1.

High level explanation:
The length of a list is 1 plus the length of the
t il f th li t bt i d b i th fi ttail of the list, obtained by removing the first
element of the list.

This is a declarative description of theThis is a declarative description of the
computation.

FundamentalsFundamentals

(absolute basics for writing Prolog
Programs)g)

Facts
John likes Mary

like(john,mary)
Names of relationship and objects must begin
with a lower-case letter.
Relationship is written first (typically theRelationship is written first (typically the
predicate of the sentence).
Objects are written separated by commasObjects are written separated by commas
and are enclosed by a pair of round brackets.
The full stop character ‘.’ must come at the p
end of a fact.

More facts

Predicate InterpretationPredicate Interpretation

valuable(gold) Gold is valuable.

(j h ld) J h ldowns(john,gold) John owns gold.

father(john mary) John is the father offather(john,mary) John is the father of
Mary

gives (john book mary) John gives the book togives (john,book,mary) John gives the book to
Mary

Questions

Questions based on facts
Answered by matchingy g

Two facts match if their predicates are same
(spelt the same way) and the arguments (p y) g
each are same.

If matched, prolog answers yes, else no.
No does not mean falsity.y

Prolog does theorem proving

When a question is asked, prolog tries
to match transitively.to match transitively.
When no match is found, answer is no.
This means not provable from the givenThis means not provable from the given
facts.

Variables

Always begin with a capital letter
?- likes (john X)? likes (john,X).
?- likes (john, Something).

But notBut not
?- likes (john,something)

Example of usage of variable
Facts:

likes(john,flowers).
likes(john mary)likes(john,mary).
likes(paul,mary).

Question:
? l k (h)?- likes(john,X)

Answer:
X=flowers and wait
;
mary
;;
no

Conjunctions

Use ‘,’ and pronounce it as and.
Examplep

Facts:
likes(mary,food).
likes(mary,tea).
likes(john,tea).
likes(john,mary)(j , y)

?-
likes(mary,X),likes(john,X).
Meaning is anything liked by Mary also liked by John?

Backtracking (an inherent propertyBacktracking (an inherent property
of prolog programming)

likes(mary,X),likes(john,X)

likes(mary,food)
likes(mary,tea)
likes(john tea)likes(john,tea)
likes(john,mary)

1. First goal succeeds. X=food
2. Satisfy likes(john,food)y (j)

Backtracking (continued)
R t i t k d l d t i t ti f iReturning to a marked place and trying to resatisfy is

called Backtracking
likes(mary,X),likes(john,X)

likes(mary,food)
likes(mary,tea)
likes(john tea)likes(john,tea)
likes(john,mary)

1. Second goal fails
2. Return to marked placep

and try to resatisfy the first goal

Backtracking (continued)

likes(mary,X),likes(john,X)

likes(mary,food)
likes(mary,tea)
likes(john tea)likes(john,tea)
likes(john,mary)

1. First goal succeeds again, X=tea
2. Attempt to satisfy the likes(john,tea)p y (j)

Backtracking (continued)

likes(mary,X),likes(john,X)

likes(mary,food)
likes(mary,tea)
likes(john tea)likes(john,tea)
likes(john,mary)

1. Second goal also suceeds
2. Prolog notifies success and waits for a replyg p y

Rules
Statements about objects and their
relationships
Expess

If-then conditions
I use an umbrella if there is a rainI use an umbrella if there is a rain
use(i, umbrella) :- occur(rain).

Generalizations
All t lAll men are mortal
mortal(X) :- man(X).

Definitions
An animal is a bird if it has feathers
bird(X) :- animal(X), has_feather(X).

Syntax

<head> :- <body>
Read ‘:-’ as ‘if’Read :- as if .
E.G.

lik (j h X) lik (X i k t)likes(john,X) :- likes(X,cricket).
“John likes X if X likes cricket”.
i.e., “John likes anyone who likes cricket”.

Rules always end with ‘.’.

Another Example

sister_of (X,Y):- female (X),
parents (X M F)parents (X, M, F),
parents (Y, M, F).

X is a sister of Y is
X is a female and
X and Y have same parentsX and Y have same parents

Question Answering in presence Q g p
of rules

Facts
male (ram)male (ram).
male (shyam).
female (sita)female (sita).
female (gita).
parents (shyam gita ram)parents (shyam, gita, ram).
parents (sita, gita, ram).

Question Answering: Y/N type: is sita the
sister of shyam?sister of shyam?

?- sister_of (sita, shyam)

female(sita)
parents(sita,M,F) parents(shyam,M,F)

parents(sita,gita,ram)
parents(shyam,gita,ram)

p (,g ,)

success

Question Answering: wh-type: whose
sister is sita?sister is sita?

?- ?- sister_of (sita, X)

female(sita)
parents(sita,M,F) parents(Y,M,F)

parents(sita,gita,ram)

parents(Y,gita,ram)

p (,g ,)

Success

parents(shyam,gita,ram)

Success
Y=shyam

Rules
Statements about objects and their
relationships
Expess

If-then conditions
I use an umbrella if there is a rainI use an umbrella if there is a rain
use(i, umbrella) :- occur(rain).

Generalizations
All t lAll men are mortal
mortal(X) :- man(X).

Definitions
An animal is a bird if it has feathers
bird(X) :- animal(X), has_feather(X).

Make and BreakMake and Break

Fundamental to Prolog

Prolog examples using making
and breaking lists

%incrementing the elements of a list to produce another list
incr1([],[]).
incr1([H1|T1],[H2|T2]) :- H2 is H1+1, incr1(T1,T2).

%appending two lists; (append(L1,L2,L3) is a built is
function in Prolog)
append1([],L,L).pp ([], ,)
append1([H|L1],L2,[H|L3]):- append1(L1,L2,L3).

%reverse of a list (reverse(L1 L2) is a built in function%reverse of a list (reverse(L1,L2) is a built in function
reverse1([],[]).
reverse1([H|T],L):- reverse1(T,L1),append1(L1,[H],L).

Remove duplicates
Problem: to remove duplicates from a list

rem_dup([],[]).
rem_dup([H|T],L) :- member(H,T), !, rem_dup(T,L).

d ([H|T] [H|L1]) d (T L1)rem_dup([H|T],[H|L1]) :- rem_dup(T,L1).

Note: The cut ! in the second clause needed since afterNote: The cut ! in the second clause needed, since after
succeeding at member(H,T), the 3rd clause should
not be tried even if rem_dup(T,L) fails, which prolog

ill h i dwill otherwise do.

Member (membership in a list)

member(X,[X|_]).
member(X [|L]):- member(X L)member(X,[_|L]):- member(X,L).

Union (lists contain unique elements)

union([],Z,Z).
union([X|Y] Z W):-union([X|Y],Z,W):-

member(X,Z),!,union(Y,Z,W).
union([X|Y] Z [X|W]): union(Y Z W)union([X|Y],Z,[X|W]):- union(Y,Z,W).

Intersection (lists contain uniqueIntersection (lists contain unique
elements)

intersection([],Z,[]).
intersection([X|Y] Z [X|W]):-intersection([X|Y],Z,[X|W]):-

member(X,Z),!,intersection(Y,Z,W).
intersection([X|Y] Z W):intersection([X|Y],Z,W):-

intersection(Y,Z,W).

Prolog Programs are close to Natural
LanguageLanguage
Important Prolog Predicate:
member(e, L) /* true if e is an element of list L(,) /
member(e,[e|L1). /* e is member of any list which it

starts
member(e,[_|L1]):- member(e,L1) /*otherwise e is

member of a list if the tail of the list contains e
Contrast this with:Contrast this with:

P.T.O.

Prolog Programs are close to Natural
Language, C programs are notLanguage, C programs are not
For (i=0;i<length(L);i++){

if (e==a[i])([])
break(); /*e found in a[]

}
If (i<length(L){

success(e,a); /*print location where e appears in
a[]/*a[]/*

else
failure();failure();

}
What is i doing here? Is it natural to our thinking?

Machine should ascend to the level of
manman

A prolog program is an example of reduced
hi lik Cman-machine gap, unlike a C program

That said, a very large number of programs
f o tn mbe ing p olog p og m getfar outnumbering prolog programs gets
written in C
The demand of practicality many timesThe demand of practicality many times
incompatible with the elegance of ideality
But the ideal should nevertheless be strivenBut the ideal should nevertheless be striven
for

P l P FlProlog Program Flow,
BackTracking and CutBackTracking and Cut

Controlling the program flow

Prolog’s computation

Depth First Search
Pursues a goal till the endPursues a goal till the end

Conditional AND; falsity of any goal
prevents satisfaction of furtherprevents satisfaction of further
clauses.
C diti l OR ti f ti fConditional OR; satisfaction of any
goal prevents further clauses being
e al atedevaluated.

Control flow (top level)

Given
g:- a b c (1)g:- a, b, c. (1)
g:- d, e, f; g. (2)

If prolog cannot satisfy (1), control will
automatically fall through to (2).

Control Flow within a rule

Taking (1),
g:- a, b, c.g: a, b, c.

If a succeeds, prolog will try to satisfy b,
succeding which c will be tried.succeding which c will be tried.

For ANDed clauses, control flows forward
till the ‘.’, iff the current clause is true.till the . , iff the current clause is true.

For ORed clauses, control flows forward
till the ‘.’, iff the current clausetill the . , iff the current clause
evaluates to false.

What happens on failure

h i di l diREDO the immediately preceding
goal.

Fundamental Principle of prolog p p g
programming

l l h l lAlways place the more general rule
AFTER a specific rule.

CUT

Cut tells the system that

IF YOU HAVE COME THIS FAR

DO NOT BACKTRACK

EVEN IF YOU FAIL SUBSEQUENTLY.

‘CUT’ WRITTEN AS ‘!’ ALWAYS
SUCCEEDS.

Fail

This predicate always fails.
Cut and Fail combination is used toCut and Fail combination is used to
produce negation.
Since the LHS of the neck cannotSince the LHS of the neck cannot
contain any operator, A ~B is
implemented asimplemented as

B :- A, !, Fail.

Prolog and Himalayan Club
example

(Zohar Manna, 1974):
Problem: A, B and C belong to the Himalayan club.
Every member in the club is either a mountainEvery member in the club is either a mountain
climber or a skier or both. A likes whatever B
dislikes and dislikes whatever B likes. A likes rain
and snow No mountain climber likes rain Everyand snow. No mountain climber likes rain. Every
skier likes snow. Is there a member who is a
mountain climber and not a skier?

Gi k l d hGiven knowledge has:
Facts
RulesRules

A syntactically wrong prolog
program!
1. belong(a).
2. belong(b).
3 belong(c)3. belong(c).
4. mc(X);sk(X) :- belong(X) /* X is a mountain climber or skier or

both if X is a member; operators NOT allowed in the head of a
horn clause; hence wrong*/horn clause; hence wrong*/

5. like(X, snow) :- sk(X). /*all skiers like snow*/
6. \+like(X, rain) :- mc(X). /*no mountain climber likes rain; \+ is

h b f l l */the not operator; negation by failure; wrong clause*/
7. \+like(a, X) :- like(b,X). /* a dislikes whatever b likes*/
8. like(a, X) :- \+like(b,X). /* a dislikes whatever b likes*/
9. like(a,rain).
10. like(a,snow).
?- belong(X) mc(X) \+sk(X)? belong(X),mc(X),\+sk(X).

Correct (?) Prolog Program
belong(a).
belong(b).
belong(c)belong(c).
belong(X):-\+mc(X),\+sk(X), !, fail.
belong(X).
like(a,rain).(,)
like(a,snow).
like(a,X) :- \+ like(b,X).
like(b,X) :- like(a,X),!,fail.
like(b,X).
mc(X):-like(X,rain),!,fail.
mc(X).
sk(X): \+like(X snow) ! failsk(X):- \+like(X,snow),!,fail.
sk(X).
g(X):-belong(X),mc(X),\+sk(X),!. /*without this cut, Prolog will look for next answer

on being given ‘;’ and return ‘c’ which is wrong*/

Himalayan club problem: working vesion
belong(a).
belong(b).
belong(c).

belong(X):-notmc(X),notsk(X),!, fail. /*contraposition to have horn clause
belong(X).

like(a,rain).
like(a,snow).
like(a,X) :- dislike(b,X).
like(b,X) :- like(a,X),!,fail.
like(b,X).

mc(X):-like(X,rain),!,fail.
mc(X).
notsk(X):- dislike(X,snow). /*contraposition to have horn clause
notmc(X):- mc(X),!,fail.
notmc(X).

dislike(P,Q):- like(P,Q),!,fail.
dislike(P,Q).

g(X):-belong(X),mc(X),notsk(X),!.

