CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay

> Lecture 29: Perceptron training and convergence 22nd March, 2011

The Perceptron Model

A perceptron is a computing element with input lines having associated weights and the cell having a threshold value. The perceptron model is motivated by the biological neuron.

Features of Perceptron

- Input output behavior is discontinuous and the derivative does not exist at $\Sigma w_i x_i = \theta$
- $\Sigma w_i x_i \theta$ is the net input denoted as net
- Referred to as a linear threshold element linearity because of **x** appearing with power **1**

• **y**= **f(net)**: Relation between y and net is nonlinear

Perceptron Training Algorithm (PTA)

Preprocessing:

1. The computation law is modified to

3. Negate all the zero-class examples

Example to demonstrate preprocessing

OR perceptron

1-class <1,1>, <1,0>, <0,1> 0-class <0,0>

Augmented x vectors:-1-class <-1,1,1> , <-1,1,0> , <-1,0,1> 0-class <-1,0,0>

Negate 0-class:- <1,0,0>

Example to demonstrate preprocessing cont.

Now the vectors are

Perceptron Training Algorithm

- Start with a random value of w ex: <0,0,0...>
- 2. Test for wx_i > 0 If the test succeeds for i=1,2,...n then return w
- 3. Modify w, $w_{next} = w_{prev} + x_{fail}$

PTA on NAND

Preprocessing

NAND Augmented:				NAND-0 class Negated				
X 2	X_1	X 0	Y		X 2	X 1	X 0	
0	0	-1	1	V0:	0	0	-1	
0	1	-1	1	V1:	0	1	-1	
1	0	-1	1	V2:	1	0	-1	
1	1	-1	0	V 3:	-1	1	-1	
					Vectors for which W= <w2 w0="" w1=""> has to</w2>			

Vectors for which W=<W2 W1 W0> has to be found such that W. Vi > 0

PTA Algo steps

Algorithm:

1. Initialize and Keep adding the failed vectors until W. Vi > 0 is true.

Trying convergence

$$W5 = \langle -1, 0, -2 \rangle + \langle -1, -1, -1 \rangle \quad \{V3 \text{ Fails}\}$$

= $\langle -2, -1, -1 \rangle$
W6 = $\langle -2, -1, -1 \rangle + \langle 0, 1, -1 \rangle \quad \{V1 \text{ Fails}\}$
= $\langle -2, 0, -2 \rangle$
W7 = $\langle -2, 0, -2 \rangle + \langle 1, 0, -1 \rangle \quad \{V0 \text{ Fails}\}$
= $\langle -1, 0, -3 \rangle$
W8 = $\langle -1, 0, -3 \rangle + \langle -1, -1, -1 \rangle \quad \{V3 \text{ Fails}\}$
= $\langle -2, -1, -2 \rangle$
W9 = $\langle -2, -1, -2 \rangle + \langle 1, 0, -1 \rangle \quad \{V2 \text{ Fails}\}$
= $\langle -1, -1, -3 \rangle$

Trying convergence

$$W10 = \langle -1, -1, -3 \rangle + \langle -1, -1, -1 \rangle$$
 {V3 Fails}
= $\langle -2, -2, -2 \rangle$
W11 = $\langle -2, -2, -2 \rangle + \langle 0, 1, -1 \rangle$ {V1 Fails}
= $\langle -2, -1, -3 \rangle$
W12 = $\langle -2, -1, -3 \rangle + \langle -1, -1, -1 \rangle$ {V3 Fails}
= $\langle -3, -2, -2 \rangle$
W13 = $\langle -3, -2, -2 \rangle + \langle 0, 1, -1 \rangle$ {V1 Fails}
= $\langle -3, -1, -3 \rangle$
W14 = $\langle -3, -1, -3 \rangle + \langle 0, 1, -1 \rangle$ {V2 Fails}
= $\langle -2, -1, -4 \rangle$

Converged!

$$W_{15} = \langle -2, -1, -4 \rangle + \langle -1, -1, -1 \rangle \quad \{V_3 \text{ Fails}\}$$

= $\langle -3, -2, -3 \rangle$
W_{16} = $\langle -3, -2, -3 \rangle + \langle -1, 0, -1 \rangle \quad \{V_2 \text{ Fails}\}$
= $\langle -2, -2, -4 \rangle$
W_{17} = $\langle -2, -2, -4 \rangle + \langle -1, -1, -1 \rangle \quad \{V_3 \text{ Fails}\}$
= $\langle -3, -3, -3 \rangle$
W_{18} = $\langle -3, -3, -3 \rangle + \langle 0, 1, -1 \rangle \quad \{V_1 \text{ Fails}\}$
= $\langle -3, -2, -4 \rangle$

 $W_2 = -3$, $W_1 = -2$, $W_0 = \Theta = -4$

PTA convergence

Statement of Convergence of PTA

Statement:

Whatever be the initial choice of weights and whatever be the vector chosen for testing, PTA converges if the vectors are from a linearly separable function.

Proof of Convergence of PTA

- Suppose w_n is the weight vector at the nth step of the algorithm.
- At the beginning, the weight vector is w_0
- Go from w_i to w_{i+1} when a vector X_j fails the test w_iX_j > 0 and update w_i as w_{i+1} = w_i + X_j
- Since Xjs form a linearly separable function,

 $\exists w^* \text{ s.t. } w^*X_j > 0 \forall j$

Proof of Convergence of PTA (cntd.) Consider the expression $G(W_n) = W_n \cdot W^*$ W_n where $w_n =$ weight at nth iteration • $G(w_n) = |w_n| \cdot |w^*| \cdot \cos \theta$ W_n where θ = angle between w_n and w* • $G(w_n) = |w^*| \cdot \cos \theta$ • $G(w_n) \leq |w^*|$ (as $-1 \leq \cos \theta \leq 1$)

Behavior of Numerator of G

$$\begin{split} & w_{n} \cdot w^{*} = (w_{n-1} + X^{n-1}_{fail}) \cdot w^{*} \\ &= W_{n-1} \cdot W^{*} + X^{n-1}_{fail} \cdot W^{*} \\ &= (w_{n-2} + X^{n-2}_{fail}) \cdot W^{*} + X^{n-1}_{fail} \cdot W^{*} \dots \\ &= W_{0} \cdot W^{*} + (X^{0}_{fail} + X^{1}_{fail} + \dots + X^{n-1}_{fail}) \cdot W^{*} \\ & w^{*} \cdot X^{i}_{fail} \text{ is always positive: note carefully} \end{split}$$

- Suppose $|X_j| \ge \delta$, where δ is the minimum magnitude.
- Num of $G \ge |w_0 \cdot w^*| + n \delta \cdot |w^*|$
- So, numerator of G grows with n.

Behavior of Denominator of G

$$|W_{n}| = \sqrt{W_{n} \cdot W_{n}}$$

$$= \sqrt{(W_{n-1} + X^{n-1}_{fail})^{2}}$$

$$= \sqrt{(W_{n-1})^{2} + 2 \cdot W_{n-1} \cdot X^{n-1}_{fail} + (X^{n-1}_{fail})^{2}}$$

$$= \sqrt{(W_{n-1})^{2} + (X^{n-1}_{fail})^{2}}$$

$$= \sqrt{(W_{n})^{2} + (X^{0}_{fail})^{2} + (X^{1}_{fail})^{2} + \dots + (X^{n-1}_{fail})^{2}}$$

|X_j| ≤ ρ (max magnitude)
 So, Denom ≤ √ (w₀)² + nρ²

Some Observations

- Numerator of G grows as n
- Denominator of G grows as \sqrt{n}
 - => Numerator grows faster than denominator
- If PTA does not terminate, G(w_n) values will become unbounded.

Some Observations contd.

- But, as $|G(w_n)| \le |w^*|$ which is finite, this is impossible!
- Hence, PTA has to converge.
- Proof is due to Marvin Minsky.

Convergence of PTA proved

• Whatever be the initial choice of weights and whatever be the vector chosen for testing, PTA converges if the vectors are from a linearly separable function.