CS344: Introduction to Artificial Intelligence (associated lab: CS386)

> Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 3: A* and its properties 6th Jan, 2011

Search building blocks

State Space : Graph of states (Express constraints and parameters of the problem)

- > Operators : Transformations applied to the states.
- > Start state : S_0 (Search starts from here)
- > Goal state : $\{G\}$ Search terminates here.
- > Cost : Effort involved in using an operator.
- > Optimal path : Least cost path

Examples

Problem 1 : 8 – puzzle

Tile movement represented as the movement of the blank space.

Operators:

- L : Blank moves left
- R : Blank moves right
- U : Blank moves up
- D : Blank moves down

$$C(L) = C(R) = C(U) = C(D) = 1$$

Problem 2: Missionaries and Cannibals

R

Constraints

- The boat can carry at most 2 people
- On no bank should the cannibals outnumber the missionaries

State : $\langle \#M, \#C, P \rangle$ #M = Number of missionaries on bank *L* #C = Number of cannibals on bank *L* P = Position of the boat

SO = <3, 3, L>G = < 0, 0, R >

<u>Operations</u>

- M2 = Two missionaries take boat
- M1 = One missionary takes boat
- C2 = Two cannibals take boat
- C1 = One cannibal takes boat
- MC = One missionary and one cannibal takes boat

Algorithmics of Search

General Graph search Algorithm

Graph G = (V,E)

- 1) Open List : $S^{(\emptyset, 0)}$ 6) OL : $E^{(B,7)}$, $F^{(D,8)}$, $G^{(D, 9)}$ Closed list : \emptyset CL : S, A, B, C, D
- 2) OL : $A^{(S,1)}$, $B^{(S,3)}$, $C^{(S,10)}$ CL : S

7) OL : F^(D,8), G^(D,9) CL : S, A, B, C, D, E

- 3) OL : $B^{(S,3)}$, $C^{(S,10)}$, $D^{(A,6)}$ CL : S, A CL : S, A, B, C, D, E, F
- 4) $OL : C^{(S,10)}, D^{(A,6)}, E^{(B,7)}$ 9) OL : Ø CL : S, A, B CL : S, A, B, C, D, E,F, G
- 5) OL : $D^{(A,6)}$, $E^{(B,7)}$ CL : S, A, B , C

Steps of GGS (*principles of AI, Nilsson,*)

- 1. Create a search graph G, consisting solely of the start node S; put S on a list called OPEN.
- 2. Create a list called CLOSED that is initially empty.
- 3. Loop: if *OPEN* is empty, exit with failure.
- 4. Select the first node on *OPEN*, remove from *OPEN* and put on *CLOSED*, call this node *n*.
- 5. if *n* is the goal node, exit with the solution obtained by tracing a path along the pointers from *n* to *s* in *G*. (ointers are established in step 7).
- 6. Expand node *n*, generating the set *M* of its successors that are not ancestors of *n*. Install these memes of *M* as successors of *n* in *G*.

GGS steps (contd.)

- 7. Establish a pointer to *n* from those members of *M* that were not already in *G* (*i.e.*, not already on either *OPEN* or *CLOSED*). Add these members of *M* to *OPEN*. For each member of *M* that was already on *OPEN* or *CLOSED*, decide whether or not to redirect its pointer to *n*. For each member of M already on *CLOSED*, decide for each of its descendents in *G* whether or not to redirect its pointer.
- 8. Reorder the list *OPEN* using some strategy.
- 9. Go *LOOP.*

Algorithm A

- A function *f* is maintained with each node

 f(n) = g(n) + h(n), n is the node in the open list

 Node chosen for expansion is the one with least *f* value
- For BFS: h = 0, g = number of edges in the path to S

• For DFS:
$$h = 0$$
, $g = \frac{1}{\text{No of edges in the path to S}}$

Algorithm A*

- One of the most important advances in AI
- g(n) = least cost path to n from S found so far
- h(n) <= h*(n) where h*(n) is the actual cost of optimal path to G(node to be found) from n

A* Algorithm – Definition and Properties

f(n) = g(n) + h(n)
 The node with the least value of f is chosen from the OL.

- $g(n) \ge g^*(n)$
- By definition, $h(n) \le h^*(n)$

8-puzzle: heuristics

Example: 8 puzzle

1	2	3
4	5	6
7	8	
g		

 $h^*(n)$ = actual no. of moves to transform *n* to *g*

- 1. $h_1(n) =$ no. of tiles displaced from their destined position.
- 2. $h_2(n) =$ sum of Manhattan distances of tiles from their destined position.

 $h_1(n) \le h^*(n)$ and $h_1(n) \le h^*(n)$

Comparison

A* Algorithm- Properties

- Admissibility: An algorithm is called admissible if it always terminates and terminates in optimal path
- Theorem: A* is admissible.
- Lemma: Any time before A* terminates there exists on OL a node n such that f(n) <= f*(s)</p>
- **Observation**: For optimal path $s \rightarrow n_1 \rightarrow n_2 \rightarrow ... \rightarrow g_l$
 - 1. $h^*(g) = 0, g^*(s) = 0$ and
 - 2. $f^*(s) = f^*(n_1) = f^*(n_2) = f^*(n_3) \dots = f^*(g)$

A* Properties (contd.)

 $f^{*}(n_{i}) = f^{*}(s), \qquad n_{i} \neq s \text{ and } n_{i} \neq g$ Following set of equations show the above equality: $f^{*}(n_{i}) = g^{*}(n_{i}) + h^{*}(n_{i})$ $f^{*}(n_{i+1}) = g^{*}(n_{i+1}) + h^{*}(n_{i+1})$ $g^{*}(n_{i+1}) = g^{*}(n_{i}) + c(n_{i}, n_{i+1})$ $h^{*}(n_{i+1}) = h^{*}(n_{i}) - c(n_{i}, n_{i+1})$

Above equations hold since the path is optimal.

Admissibility of A*

A* always terminates finding an optimal path to the goal if such a path exists.

Intuition

(1) In the open list there always exists a node n such that $f(n) \le f^*(S)$.

(2) If A^* does not terminate, the *f* value of the nodes expanded become unbounded.

1) and 2) are together inconsistent

Hence A* must terminate

<u>Lemma</u>

Any time before A* terminates there exists in the open list a node n' such that $f(n') \le f^*(S)$

For any node n_i on optimal path, $f(n_i) = g(n_i) + h(n_i)$ $<= g^*(n_i) + h^*(n_i)$ Also $f^*(n_i) = f^*(S)$ Let n' be the first node in the optimal path that is in OL. Since <u>all</u> parents of n' have gone to CL,

 $g(n') = g^{*}(n')$ and $h(n') \le h^{*}(n')$ => $f(n') \le f^{*}(S)$

If A* does not terminate

Let *e* be the least cost of all arcs in the search graph.

Then $g(n) \ge e.l(n)$ where l(n) = # of arcs in the path from *S* to *n* found so far. If A* does not terminate, g(n) and hence $f(n) = g(n) + h(n) [h(n) \ge 0]$ will become unbounded.

This is not consistent with the lemma. So A* has to terminate.

2^{nd} part of admissibility of A*

The path formed by A* is optimal when it has terminated

Proof

Suppose the path formed is not optimal Let *G* be expanded in a non-optimal path. At the point of expansion of *G*,

$$f(G) = g(G) + h(G) = g(G) + 0 > g^{*}(G) = g^{*}(S) + h^{*}(S) = f^{*}(S) [f^{*}(S) = \text{cost of optimal path}]$$

This is a contradiction So path should be optimal

Summary on Admissibility

- 1. A* algorithm halts
- *2.* A* algorithm finds optimal path
- 3. If f(n) < f*(S) then node n has to be expanded before termination
- 4. If A* does not expand a node *n* before termination then f(n) >= f*(S)

Better Heuristic Performs Better

Theorem

A version A_2^* of A^* that has a "better" heuristic than another version A_1^* of A^* performs at least "as well as" A_1^*

<u>Meaning of "better"</u> $h_2(n) > h_1(n)$ for all n

<u>Meaning of "as well as"</u> A_1^* expands at least all the nodes of A_2^*

<u>Proof</u> by induction on the search tree of A_2^* .

A* on termination carves out a tree out of G

Induction

on the depth k of the search tree of A_2^* . A_1^* before termination expands all the nodes of depth k in the search tree of A_2^* .

k=0. True since start node S is expanded by both

Suppose A_1^* terminates without expanding a node *n* at depth (*k*+1) of A_2^* search tree.

Since A_1^* has seen all the parents of *n* seen by A_2^* $g_1(n) \le g_2(n)$ (1)

Since A_1^* has terminated without expanding *n*, $f_1(n) \ge f^*(S)$ (2)

Any node whose *f* value is strictly less than $f^*(S)$ has to be expanded. Since A_2^* has expanded *n* $f_2(n) \le f^*(S)$ (3)

From (1), (2), and (3) $h_1(n) >= h_2(n)$ which is a contradiction. Therefore, A_1^* has to expand all nodes that A_2^* has expanded.

Exercise

If better means $h_2(n) > h_1(n)$ for some *n* and $h_2(n) = h_1(n)$ for others, then Can you prove the result ?

Lab assignment

- Implement A* algorithm for the following problems:
 - 8 puzzle
 - Missionaries and Cannibals
 - Robotic Blocks world
- Specifications:
 - Try different heuristics and compare with baseline case, *i.e.*, the breadth first search.
 - Violate the condition h ≤ h*. See if the optimal path is still found. Observe the speedup.