CS344: Introduction to Artificial
Intelligence

(associated lab: CS386)

Pushpak Bhattacharyya
CSE Dept.,
1T Bombay

Lecture 30: Perceptron training
convergence; Feedforward N/W

24t March, 2011

PTA on NAND

NAND: Y
X2 X1 Y
0 O 1
0 1 1 W2 W1
1 O 1
1 1 1 X2 X1

Converted To

Y% ©
X1 X0=-1

WZ/M

X2

Preprocessing

NAND Augmented:

X2 X1 Xo Y

o 0 -1 1

0O 1 -1 1
0o -1 1
1 -1

NAND-0 class Negated
X2 Xi Xo
Vo: O 0 -1
Vi: O 1 -1

V2. 1 0 -1
V3. -1 1 -1

Vectors for which
W=<W2 W1 WO0> has to
be found such that
W.Vi>0

PTA Algo steps

Algorithm:
1. Initialize and Keep adding the failed vectors
until W. Vi > 0 is true.

Step0: W = <0,0, 0>
Wi = <0,0,0> + <0,0,-1> <{Vo Fails}

= <0,0, -1>

W2 = <0,0, -1> + <-1, -1, 1> {V3 Fails}
= <-1,-1, 0>

W3 = <-1,-1,0> + <0, 0, -1> {Vo Fails}
= <-1, -1, -1>

W4 = <-1,-1,-1> + <0, 1, -1> {V1 Fails}

<-1, 0, -2>

Trying convergence

Ws = <-1,0, -2> + <-1, -1, -1> {V3 Fails}
= <-2,-1,-1>
We = <-2,-1,-1> + <0, 1, -1> {V1 Fails}
= <-2,0,-2>
Wz = <-2,0,-2>+<1,0, -1> {Vo Fails}
= <-1,0, -3>
Ws = <-1,0,-3> + <-1, -1, -1> {V3 Fails}
= <-2,-1,-2>
Wo = <-2,-1,-2> +<1,0, -1> {V2 Fails}
= <-1, -1, -3>

Trying convergence

Wi = <-1,-1,-3> + <-1,-1,-1> {V3 Fails}

= <-2,-2,-2>

<-2,-2,-2>+<0,1, -1> {V1 Fails}

= <-2,-1,-3>

<-2,-1,-3> + <-1, -1, -1> {V3 Fails}

= <-3, -2, -2>

<-3,-2,-2>+<0,1, -1> {V1 Fails}

= <-3,-1, -3>

Wi4 = <-3,-1,-3> + <0, 1, -1> {V2 Fails}
= <-2,-1, -4>

Wi1

W12

W13

Converged!

Wis = <-2,-1, 4> + <-1, -1, -1> {V3 Fails}
<-3, -2, -3>

-3,-2,-3>+<1,0, -1> {V2 Fails}
<-2, -2, 4>

-2, -4> + <-1, -1, -1> {V3 Fails}
-3, -3, -3>

-3,-3>+ <0, 1, -1> {V1 Fails}
-3, -2, -4>

Wie =

W17

A\

Wigs =

(JO

I
A AN A
I\)

/\\

W2= -3, Wi=-2, Wo=0=-4

PTA convergence

Statement of Convergence of
PTA

s Statement:

Whatever be the initial choice of weights and
whatever be the vector chosen for testing, P1A

converges if the vectors are from a linearly
separable function.

Proof of Convergence of PTA

= Suppose w,, is the weight vector at the nt
step of the algorithm.

= At the beginning, the weight vector is w,

= Go from w; to w;,; when a vector X; fails
the test w;X; > 0 and update w; as
Wipq =W + Xj
= Since Xjs form a linearly separable
function,
I w* s.t. w¥X; > 0 V]

Proof of Convergence of PTA
(cntd.)
= Consider the expression
G(w,) = w, . w*
| Wi
where w, = weight at nth iteration
s G(w,) = [w.|.|W*|.cos6
| Wi
where 6 = angle between w, and w*
s G(w,) = [w*|.cos 6
s G(w,) < |w¥| (as-1<cos6<1)

Behavior of Numerator of G

Wh - w* = (Wn—l T Xn_lfail) . W¥
= Wp.1 - wW* + Xn_lfail . W¥
= (Wo + X2) oo wx + X wR
* 0 1 -1 %
= Wo . W+ (X0 + Xl Fove + XM). W

w* . Xlc. is always positive: note
carefully

= Suppose IX;| =2 &, where & is the
minimum magnltude

s Numof G = |wy.w*| +nd. |w¥|
= S0, numerator of G grows with n.

Behavior of Denominator of G

s W | =Vw,.w,

= \/ (Wn-l + Xn_lfail)2

-V (Whg)? + 20 Wiy XM+ (X0)2

<\ (Wn-l)2 + (Xn_lfail)& (@s Wy 1. Xn-lfa“
<0)

<V (Wo)? + (X0)2+ (Xl)% .o + (XM,

)2

= |X| = p (max magnitude)
= S0, Denom < v (wW,)? + np?

Some Observations

= Numerator of G grows as n
= Denominator of G grows as V n

=> Numerator grows faster than
denominator

= If PTA does not terminate, G(w,,) values
will become unbounded.

Some Observations contd.

s But, as |G(w,)| < |w*| which is finite,
this is impossible!

= Hence, PTA has to converge.

= Proof is due to Marvin Minsky.

Convergence of PTA proved

. Whatever be the initial choice of weights and
whatever be the vector chosen for testing, P1A
converges if the vectors are from a linearly
separable function.

Feedforward Network

Limitations of perceptron

= Non-linear separability is all pervading

= Single perceptron does not have enough
computing power

= Eg: XOR cannot be computed by
perceptron

Solutions

= Tolerate error (Ex: pocket algorithm used
by connectionist expert systems).

= Try to get the best possible hyperplane using
only perceptrons

= Use higher dimension surfaces
Ex: Degree - 2 surfaces like parabola

= Use layered network

Pocket Algorithm

= Algorithm evolved in 1985 — essentially
uses PTA

= Basic Idea:

~ Always preserve the best weight obtained
so far in the “pocket”

» Change weights, if found better (i.e.
changed weights result in reduced error).

XOR using 2 layers

X X, = (Xlx_Z)v (sz)
= OR(AND(x,,NOT (x,)), AND(NOT (Xx,), X,)))

e Non-LS function expressed as a linearly separable
function of individual linearly separable functions.

Example - XOR

w;=1/ <

6 =0.5
w,=1 & Calculation of XOR

X1,

XX,

X{ | X, |X X
2

0 [0 |0

o (1 |1

1 {0 |0

1 (1 |0

Calculation of x,x,

6=1 0<0O
W=~ w,=1.5 w2>©

Wli<®
X1 X3 Wit w2 < ©

Example - XOR

Some Terminology

= A multilayer feedforward neural
network has

= Input layer
« Output layer
= Hidden layer (assists computation)

Output units and hidden units are called
computation units.

Training of the MLP

= Multilayer Perceptron (MLP)

= Question:- How to find weights for the
hidden layers when no target output is
available?

= Credit assignment problem — to be
solved by " Gradient Descent’

