
CS344: Introduction to ArtificialCS344: Introduction to Artificial
Intelligenceg

(associated lab: CS386)
Pushpak Bhattacharyya

CSE Dept.,
IIT B bIIT Bombay

Lecture 30: Perceptron training
F df d N/Wconvergence; Feedforward N/W

24th March, 2011

PTA on NANDPTA on NAND
NAND: Y

X X YX2 X1 Y
0 0 1
0 1 1 W2 W1

Θ

0 1 1 W2 W1

1 0 1
1 1 1 X2 X11 1 1 X2 X1

Converted To

W2 W1 W0= Θ
Θ

X2 X1 X0=-1

PreprocessingPreprocessing
NAND Augmented: NAND-0 class Negated

X2 X1 X0 Y X2 X1 X0

0 0 -1 1 V0: 0 0 -1
0 1 -1 1 V1: 0 1 -1

1 0 -1 1 V2: 1 0 -1
1 1 -1 0 V3: -1 1 -11 1 1 0 V3: 1 1 1

Vectors for which
W=<W2 W1 W0> has to
be found such that
W. Vi > 0

PTA Algo stepsPTA Algo steps
Algorithm:
1. Initialize and Keep adding the failed vectors1. Initialize and Keep adding the failed vectors

until W. Vi > 0 is true.

Step 0: W = <0, 0, 0>Step 0: W <0, 0, 0>
W1 = <0, 0, 0> + <0, 0, -1> {V0 Fails}

= <0, 0, -1>
W2 = <0 0 -1> + <-1 -1 1> {V3 Fails}W2 = <0, 0, 1> + < 1, 1, 1> {V3 Fails}

= <-1, -1, 0>
W3 = <-1, -1, 0> + <0, 0, -1> {V0 Fails}

= <-1 -1 -1>= <-1, -1, -1>
W4 = <-1, -1, -1> + <0, 1, -1> {V1 Fails}

= <-1, 0, -2>

Trying convergenceTrying convergence
W5 = <-1, 0, -2> + <-1, -1, -1> {V3 Fails}

= < 2 1 1>= <-2, -1, -1>
W6 = <-2, -1, -1> + <0, 1, -1> {V1 Fails}

= <-2, 0, -2> , ,
W7 = <-2, 0, -2> + <1, 0, -1> {V0 Fails}

= <-1, 0, -3>
W < 1 0 3> + < 1 1 1> {V F il }W8 = <-1, 0, -3> + <-1, -1, -1> {V3 Fails}

= <-2, -1, -2>
W9 = <-2, -1, -2> + <1, 0, -1> {V2 Fails}W9 2, 1, 2 1, 0, 1 {V2 Fails}

= <-1, -1, -3>

Trying convergenceTrying convergence
W10 = <-1, -1, -3> + <-1, -1, -1> {V3 Fails}

< 2 2 2>= <-2, -2, -2>
W11 = <-2, -2, -2> + <0, 1, -1> {V1 Fails}

= <-2, -1, -3> , ,
W12 = <-2, -1, -3> + <-1, -1, -1> {V3 Fails}

= <-3, -2, -2>
W 3 2 2 0 1 1 {V F il }W13 = <-3, -2, -2> + <0, 1, -1> {V1 Fails}

= <-3, -1, -3>
W14 = <-3, -1, -3> + <0, 1, -1> {V2 Fails}W14 < 3, 1, 3> + <0, 1, 1> {V2 Fails}

= <-2, -1, -4>

Converged!Converged!
W15 = <-2, -1, -4> + <-1, -1, -1> {V3 Fails}

= <-3, -2, -3> 3, 2, 3
W16 = <-3, -2, -3> + <1, 0, -1> {V2 Fails}

= <-2, -2, -4>
W17 = <-2, -2, -4> + <-1, -1, -1> {V3 Fails}W17 < 2, 2, 4> + < 1, 1, 1> {V3 Fails}

= <-3, -3, -3>
W18 = <-3, -3, -3> + <0, 1, -1> {V1 Fails}

= <-3 -2 -4>= < 3, 2, 4>

W2 = -3, W1 = -2, W0 = Θ = -4

PTA convergencePTA convergence

Statement of Convergence of
PTA

St t tStatement:
Whatever be the initial choice of weights and
whatever be the vector chosen for testing, PTA
converges if the vectors are from a linearly
separable function.

Proof of Convergence of PTA

Suppose w is the weight vector at the nthSuppose wn is the weight vector at the n
step of the algorithm.
At the beginning the weight vector is wAt the beginning, the weight vector is w0

Go from wi to wi+1 when a vector Xj fails
th t t X 0 d d tthe test wiXj > 0 and update wi as

wi+1 = wi + Xj

Since Xjs form a linearly separable
function,
∃ w* s.t. w*Xj > 0 ∀j

Proof of Convergence of PTA
(cntd.)

Consider the expression
G(wn) = wn . w*

| wn|
h i h h i iwhere wn = weight at nth iteration

G(wn) = |wn| . |w*| . cos θ
|wn|

where θ = angle between wn and w*
G() | *|G(wn) = |w*| . cos θ
G(wn) ≤ |w*| (as -1 ≤ cos θ ≤ 1)

Behavior of Numerator of G

wn . w* = (wn-1 + Xn-1
fail) . w*

= wn-1 . w* + Xn-1
fail . w*

= (wn-2 + Xn-2
fail) . w* + Xn-1

fail . w* …..(n-2 fail) fail

= w0 . w* + (X0
fail + X1

fail +.... + Xn-1
fail). w*

w* Xi
f il is always positive: notew .X fail is always positive: note

carefully
Suppose |Xj| ≥ δ where δ is theSuppose |Xj| ≥ δ , where δ is the
minimum magnitude.
Num of G ≥ |w0 w*| + n δ |w*|Num of G ≥ |w0 . w | + n δ . |w |
So, numerator of G grows with n.

Behavior of Denominator of G
|wn| = √ wn . wn

√ (w + Xn-1)2= √ (wn-1 + Xn 1
fail)2

= √ (wn-1)2 + 2. wn-1. Xn-1
fail + (Xn-1

fail)2

√≤ √ (wn-1)2 + (Xn-1
fail)2 (as wn-1. Xn-1

fail
≤ 0)

≤ √ (w0)2 + (X0
fail)2 + (X1

fail)2 +…. + (Xn-1
fail

)2)

|Xj| ≤ ρ (max magnitude)| j| ρ (g)
So, Denom ≤ √ (w0)2 + nρ2

Some Observations

Numerator of G grows as n
Denominator of G grows as √ nDenominator of G grows as √ n
=> Numerator grows faster than
denominatordenominator
If PTA does not terminate, G(wn) values

ll b b d dwill become unbounded.

Some Observations contd.

But, as |G(wn)| ≤ |w*| which is finite,
this is impossible!this is impossible!
Hence, PTA has to converge.
Proof is due to Marvin MinskyProof is due to Marvin Minsky.

Convergence of PTA provedg p

Wh b h i i i l h i f i h d • Whatever be the initial choice of weights and
whatever be the vector chosen for testing, PTA
converges if the vectors are from a linearly
separable function.p f

Feedforward NetworkFeedforward Network

Limitations of perceptron

Non-linear separability is all pervading
Single perceptron does not have enoughSingle perceptron does not have enough
computing power
Eg: XOR cannot be computed byEg: XOR cannot be computed by
perceptron

Solutions

Tolerate error (Ex: pocket algorithm used
by connectionist expert systems).

Try to get the best possible hyperplane using
only perceptrons

Use higher dimension surfaces g
Ex: Degree - 2 surfaces like parabola

Use layered networkUse layered network

Pocket Algorithm

Algorithm evolved in 1985 – essentially
uses PTAuses PTA
Basic Idea:

Always preserve the best weight obtainedAlways preserve the best weight obtained
so far in the “pocket”
Change weights if found better (i eChange weights, if found better (i.e.

changed weights result in reduced error).

XOR using 2 layers

() ()
))))(())(((

212121

xxNOTANDxNOTxANDOR
xxxxxx

=

∨=⊕

)))),(()),(,((2121 xxNOTANDxNOTxANDOR=

• Non-LS function expressed as a linearly separable• Non-LS function expressed as a linearly separable
function of individual linearly separable functions.

Example - XORExample XOR

Calculation of XORw =1w =1
θ = 0.5

Calculation of XORw2=1w1=1

x1x2 x1x2

x1 x2 x1x
2

Calculation of x1x22

0 0 0
0 1 1 w =1 5w = 1

θ = 1
Θ

Θ<
2

0
0 1 1

1 0 0
w2=1.5w1=-1

x1 x2 Θ<+
Θ<
Θ≥

21
1
2

ww
w
w

1 1 0

Example - XORExample XOR
θ = 0.5
w2=1w1=1

x1x2 x1x21 11 2 1 2

-1 -11.5
1 51

x1 x2

1.5

Some Terminology

A multilayer feedforward neural
network hasnetwork has

Input layer
Output layerOutput layer
Hidden layer (assists computation)

Output units and hidden units are called
computation unitscomputation units.

Training of the MLP

Multilayer Perceptron (MLP)

Question:- How to find weights for the
hidden layers when no target output ishidden layers when no target output is
available?

Credit assignment problem – to be
solved by “Gradient Descent”

