CS344: Introduction to Artificial Intelligence (associated lab: CS386)

> Pushpak Bhattacharyya CSE Dept., IIT Bombay

Lecture 30: Perceptron training convergence; Feedforward N/W 24th March, 2011

PTA on NAND

Preprocessing

NAND Augmented:				NAND-0 class Negated			
X 2	X 1	X 0	Y		X 2	X 1	X 0
0	0	-1	1	V0:	0	0	-1
0	1	-1	1	V1:	0	1	-1
1	0	-1	1	V2:	1	0	-1
1	1	-1	0	V 3:	-1	1	-1
					Vectors for which $W = \langle W \rangle W = has to$		

Vectors for which W=<W2 W1 W0> has to be found such that W. Vi > 0

PTA Algo steps

Algorithm:

1. Initialize and Keep adding the failed vectors until W. Vi > 0 is true.

Trying convergence

$$W5 = \langle -1, 0, -2 \rangle + \langle -1, -1, -1 \rangle \quad \{V3 \text{ Fails}\}$$

= $\langle -2, -1, -1 \rangle$
W6 = $\langle -2, -1, -1 \rangle + \langle 0, 1, -1 \rangle \quad \{V1 \text{ Fails}\}$
= $\langle -2, 0, -2 \rangle$
W7 = $\langle -2, 0, -2 \rangle + \langle 1, 0, -1 \rangle \quad \{V0 \text{ Fails}\}$
= $\langle -1, 0, -3 \rangle$
W8 = $\langle -1, 0, -3 \rangle + \langle -1, -1, -1 \rangle \quad \{V3 \text{ Fails}\}$
= $\langle -2, -1, -2 \rangle$
W9 = $\langle -2, -1, -2 \rangle + \langle 1, 0, -1 \rangle \quad \{V2 \text{ Fails}\}$
= $\langle -1, -1, -3 \rangle$

Trying convergence

$$W_{10} = \langle -1, -1, -3 \rangle + \langle -1, -1, -1 \rangle$$
 {V3 Fails}
$$= \langle -2, -2, -2 \rangle$$

$$W_{11} = \langle -2, -2, -2 \rangle + \langle 0, 1, -1 \rangle$$
 {V1 Fails}
$$= \langle -2, -1, -3 \rangle$$

$$W_{12} = \langle -2, -1, -3 \rangle + \langle -1, -1, -1 \rangle$$
 {V3 Fails}
$$= \langle -3, -2, -2 \rangle$$

$$W_{13} = \langle -3, -2, -2 \rangle + \langle 0, 1, -1 \rangle$$
 {V1 Fails}
$$= \langle -3, -1, -3 \rangle$$

$$W_{14} = \langle -3, -1, -3 \rangle + \langle 0, 1, -1 \rangle$$
 {V2 Fails}
$$= \langle -2, -1, -4 \rangle$$

Converged!

$$W_{15} = \langle -2, -1, -4 \rangle + \langle -1, -1, -1 \rangle \quad \{V_3 \text{ Fails}\}$$

= $\langle -3, -2, -3 \rangle$
W_{16} = $\langle -3, -2, -3 \rangle + \langle -1, 0, -1 \rangle \quad \{V_2 \text{ Fails}\}$
= $\langle -2, -2, -4 \rangle$
W_{17} = $\langle -2, -2, -4 \rangle + \langle -1, -1, -1 \rangle \quad \{V_3 \text{ Fails}\}$
= $\langle -3, -3, -3 \rangle$
W_{18} = $\langle -3, -3, -3 \rangle + \langle 0, 1, -1 \rangle \quad \{V_1 \text{ Fails}\}$
= $\langle -3, -2, -4 \rangle$

 $W_2 = -3$, $W_1 = -2$, $W_0 = \Theta = -4$

PTA convergence

Statement of Convergence of PTA

Statement:

Whatever be the initial choice of weights and whatever be the vector chosen for testing, PTA converges if the vectors are from a linearly separable function.

Proof of Convergence of PTA

- Suppose w_n is the weight vector at the nth step of the algorithm.
- At the beginning, the weight vector is w_0
- Go from w_i to w_{i+1} when a vector X_j fails the test w_iX_j > 0 and update w_i as w_{i+1} = w_i + X_j
- Since Xjs form a linearly separable function,

 $\exists w^* \text{ s.t. } w^*X_j > 0 \forall j$

Proof of Convergence of PTA (cntd.) Consider the expression $G(W_n) = W_n \cdot W^*$ W_n where $w_n =$ weight at nth iteration • $G(w_n) = |w_n| \cdot |w^*| \cdot \cos \theta$ W_n where θ = angle between w_n and w* • $G(w_n) = |w^*| \cdot \cos \theta$ • $G(w_n) \leq |w^*|$ (as $-1 \leq \cos \theta \leq 1$)

Behavior of Numerator of G

$$\begin{split} & w_{n} \cdot w^{*} = (w_{n-1} + X^{n-1}{}_{fail}) \cdot w^{*} \\ &= W_{n-1} \cdot W^{*} + X^{n-1}{}_{fail} \cdot W^{*} \\ &= (w_{n-2} + X^{n-2}{}_{fail}) \cdot W^{*} + X^{n-1}{}_{fail} \cdot W^{*} \dots \\ &= W_{0} \cdot W^{*} + (X^{0}{}_{fail} + X^{1}{}_{fail} + \dots + X^{n-1}{}_{fail}) \cdot W^{*} \\ & w^{*} \cdot X^{i}{}_{fail} \text{ is always positive: note carefully} \end{split}$$

- Suppose $|X_j| \ge \delta$, where δ is the minimum magnitude.
- Num of $G \ge |w_0 \cdot w^*| + n \delta \cdot |w^*|$
- So, numerator of G grows with n.

Behavior of Denominator of G

$$|W_{n}| = \sqrt{W_{n} \cdot W_{n}}$$

$$= \sqrt{(W_{n-1} + X^{n-1}_{fail})^{2}}$$

$$= \sqrt{(W_{n-1})^{2} + 2 \cdot W_{n-1} \cdot X^{n-1}_{fail} + (X^{n-1}_{fail})^{2}}$$

$$= \sqrt{(W_{n-1})^{2} + (X^{n-1}_{fail})^{2}}$$

$$= \sqrt{(W_{n})^{2} + (X^{0}_{fail})^{2} + (X^{1}_{fail})^{2} + \dots + (X^{n-1}_{fail})^{2}}$$

|X_j| ≤ ρ (max magnitude)
 So, Denom ≤ √ (w₀)² + nρ²

Some Observations

- Numerator of G grows as n
- Denominator of G grows as \sqrt{n}
 - => Numerator grows faster than denominator
- If PTA does not terminate, G(w_n) values will become unbounded.

Some Observations contd.

- But, as $|G(w_n)| \le |w^*|$ which is finite, this is impossible!
- Hence, PTA has to converge.
- Proof is due to Marvin Minsky.

Convergence of PTA proved

• Whatever be the initial choice of weights and whatever be the vector chosen for testing, PTA converges if the vectors are from a linearly separable function.

Feedforward Network

Limitations of perceptron

- Non-linear separability is all pervading
- Single perceptron does not have enough computing power
- Eg: XOR cannot be computed by perceptron

Solutions

- Tolerate error (Ex: *pocket algorithm* used by connectionist expert systems).
 - Try to get the best possible hyperplane using only perceptrons
- Use higher dimension surfaces
 - Ex: Degree 2 surfaces like parabola
- Use layered network

Pocket Algorithm

- Algorithm evolved in 1985 essentially uses PTA
- Basic Idea:
 - Always preserve the best weight obtained so far in the "pocket"
 - Change weights, if found better (i.e. changed weights result in reduced error).

XOR using 2 layers $x_1 \oplus x_2 = (x_1 \overline{x_2}) \lor (\overline{x_1} x_2)$ $= OR(AND(x_1, NOT(x_2)), AND(NOT(x_1), x_2)))$

• Non-LS function expressed as a linearly separable function of individual linearly separable functions.

Example - XOR $\theta = 0.5$ $w_2 = 1$ $w_1 = 1$ $\overline{\mathbf{x}}_1 \mathbf{x}_2$ -1 -1 $\mathbf{X}_1 \mathbf{X}_2$ 1.5 -1 -1 1.5 X_1 **X**₂

Some Terminology

- A multilayer feedforward neural network has
 - Input layer
 - Output layer
 - Hidden layer (assists computation)

Output units and hidden units are called computation units.

Training of the MLP

- Multilayer Perceptron (MLP)
- Question:- How to find weights for the hidden layers when no target output is available?
- Credit assignment problem to be solved by "Gradient Descent"