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PTA on NANDPTA on NAND
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PreprocessingPreprocessing
NAND Augmented:         NAND-0 class Negated

X2 X1 X0 Y                  X2 X1 X0

0     0     -1     1           V0:      0       0     -1
0     1     -1 1 V1: 0       1     -1 

1     0     -1     1           V2:      1       0     -1 
1 1 -1 0 V3: -1 1 -11     1     1     0           V3: 1       1     1 

Vectors for which 
W=<W2 W1 W0> has to 
be found such that 
W. Vi > 0



PTA Algo stepsPTA Algo steps
Algorithm:
1. Initialize and Keep adding the failed vectors1.  Initialize and Keep adding the failed vectors

until  W. Vi > 0 is true.

Step 0: W = <0, 0, 0>Step 0:  W      <0, 0, 0>
W1 =  <0, 0, 0> + <0, 0, -1>     {V0 Fails}

=  <0, 0, -1>
W2 = <0 0 -1> + <-1 -1 1> {V3 Fails}W2 =  <0, 0, 1> + < 1, 1, 1>  {V3 Fails}

=  <-1, -1, 0> 
W3 =  <-1, -1, 0> + <0, 0, -1>    {V0 Fails}

= <-1 -1 -1>=  <-1, -1, -1>
W4 =  <-1, -1, -1> + <0, 1, -1>  {V1 Fails}

=  <-1, 0, -2>



Trying convergenceTrying convergence
W5 =  <-1, 0, -2> + <-1, -1, -1>     {V3 Fails}

= < 2 1 1>=  <-2, -1, -1>
W6 =  <-2, -1, -1> + <0, 1, -1>       {V1 Fails}

=  <-2, 0, -2> , ,
W7 =  <-2, 0, -2> + <1, 0, -1>       {V0 Fails}

=  <-1, 0, -3>
W < 1 0 3> + < 1 1 1> {V F il }W8 =  <-1, 0, -3> + <-1, -1, -1>     {V3 Fails}

=  <-2, -1, -2>
W9 = <-2, -1, -2> + <1, 0, -1> {V2 Fails}W9   2, 1, 2   1, 0, 1       {V2 Fails}

=  <-1, -1, -3>



Trying convergenceTrying convergence
W10 =  <-1, -1, -3> + <-1, -1, -1>     {V3 Fails}

< 2 2 2>=  <-2, -2, -2>
W11 =  <-2, -2, -2> + <0, 1, -1>       {V1 Fails}

=  <-2, -1, -3> , ,
W12 =  <-2, -1, -3> + <-1, -1, -1>    {V3 Fails}

=  <-3, -2, -2>
W 3 2 2 0 1 1 {V F il }W13 =  <-3, -2, -2> + <0, 1, -1>       {V1 Fails}

=  <-3, -1, -3>
W14 = <-3, -1, -3> + <0, 1, -1> {V2 Fails}W14   < 3, 1, 3> + <0, 1, 1>      {V2 Fails}

=  <-2, -1, -4>



Converged!Converged!
W15 =  <-2, -1, -4> + <-1, -1, -1>     {V3 Fails}

= <-3, -2, -3>  3, 2, 3
W16 =  <-3, -2, -3> + <1, 0, -1>       {V2 Fails}

=  <-2, -2, -4> 
W17 = <-2, -2, -4> + <-1, -1, -1> {V3 Fails}W17   < 2, 2, 4> + < 1, 1, 1>    {V3 Fails}

=  <-3, -3, -3>
W18 =  <-3, -3, -3> + <0, 1, -1>       {V1 Fails}

= <-3 -2 -4>=  < 3, 2, 4>

W2 =  -3, W1 = -2, W0 = Θ = -4



PTA convergencePTA convergence



Statement of Convergence of 
PTA

St t tStatement:
Whatever be the initial choice of weights and 
whatever be the vector chosen for testing, PTA 
converges if the vectors are from a linearly 
separable function.



Proof of Convergence of PTA

Suppose w is the weight vector at the nthSuppose wn is the weight vector at the n
step of the algorithm. 
At the beginning the weight vector is wAt the beginning, the weight vector is w0

Go from wi to wi+1 when a vector Xj fails 
th t t X 0 d d tthe test wiXj > 0 and update wi as 

wi+1 = wi + Xj

Since Xjs form a linearly separable 
function, 
∃ w* s.t. w*Xj > 0 ∀j



Proof of Convergence of PTA 
(cntd.)

Consider the expression
G(wn) =  wn . w*

| wn|
h i h h i iwhere wn = weight at nth iteration

G(wn)  = |wn| . |w*| . cos θ
|wn|

where θ = angle between wn and w*
G( ) | *|G(wn)  = |w*| . cos θ
G(wn) ≤ |w*|  ( as -1 ≤ cos θ ≤ 1)



Behavior of Numerator of G

wn . w*  =  (wn-1 + Xn-1
fail ) . w*

= wn-1 . w* + Xn-1
fail . w* 

= (wn-2 + Xn-2
fail ) . w* + Xn-1

fail . w* …..( n-2 fail ) fail

= w0 . w* + ( X0
fail + X1

fail +.... + Xn-1
fail ). w* 

w* Xi
f il is always positive: notew .X fail is always positive: note 

carefully
Suppose |Xj| ≥ δ where δ is theSuppose |Xj| ≥ δ , where δ is the 
minimum magnitude. 
Num of G ≥ |w0 w*| + n δ |w*|Num of G ≥ |w0 . w | + n δ . |w | 
So, numerator of G grows with n.



Behavior of Denominator of G
|wn| = √ wn . wn

√ (w + Xn-1 )2= √ (wn-1 + Xn 1
fail )2

= √ (wn-1)2 + 2. wn-1. Xn-1
fail + (Xn-1

fail )2

√≤ √ (wn-1)2 + (Xn-1
fail )2  (as wn-1. Xn-1

fail 
≤ 0 )

≤ √ (w0)2 + (X0
fail )2 + (X1

fail )2 +…. + (Xn-1
fail 

)2 )

|Xj| ≤ ρ (max magnitude)| j| ρ ( g )
So, Denom ≤ √ (w0)2 + nρ2



Some Observations 

Numerator of G grows as n
Denominator of G grows as √ nDenominator of G grows as √ n
=> Numerator grows faster than 
denominatordenominator
If PTA does not terminate, G(wn) values 

ll b b d dwill become unbounded.



Some Observations contd. 

But, as |G(wn)| ≤ |w*|  which is finite, 
this is impossible!this is impossible!
Hence, PTA has to converge. 
Proof is due to Marvin MinskyProof is due to Marvin Minsky.



Convergence of PTA provedg p

Wh  b  h  i i i l h i  f i h  d • Whatever be the initial choice of weights and 
whatever be the vector chosen for testing, PTA 
converges if the vectors are from a linearly 
separable function.p f



Feedforward NetworkFeedforward Network



Limitations of perceptron

Non-linear separability is all pervading
Single perceptron does not have enoughSingle perceptron does not have enough 
computing power
Eg: XOR cannot be computed byEg: XOR cannot be computed by 
perceptron



Solutions

Tolerate error (Ex: pocket algorithm used 
by connectionist expert systems).

Try to get the best possible hyperplane using 
only perceptrons

Use higher dimension surfaces g
Ex: Degree - 2 surfaces like parabola

Use layered networkUse layered network



Pocket Algorithm

Algorithm evolved in 1985 – essentially 
uses PTAuses PTA
Basic Idea: 

Always preserve the best weight obtainedAlways preserve the best weight obtained 
so far in the “pocket” 
Change weights if found better (i eChange weights, if found better (i.e. 

changed weights result in reduced error).



XOR using 2 layers
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• Non-LS function expressed as a linearly separable• Non-LS function expressed as a linearly separable 
function of individual linearly separable functions.



Example - XORExample XOR

Calculation of XORw =1w =1
θ = 0.5

Calculation of XORw2=1w1=1
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Example - XORExample XOR 
θ = 0.5
w2=1w1=1

x1x2 x1x21 11 2 1 2

-1 -11.5
1 51

x1 x2

1.5



Some Terminology

A multilayer feedforward neural 
network hasnetwork has 

Input layer
Output layerOutput layer
Hidden layer (assists computation)

Output units and hidden units are called
computation unitscomputation units.



Training of the MLP

Multilayer Perceptron (MLP)

Question:- How to find weights for the 
hidden layers when no target output ishidden layers when no target output is 
available?

Credit assignment problem – to be 
solved by “Gradient Descent” 


