CS344: Introduction to Artificial
Intelligence

(associated lab: CS386)

Pushpak Bhattacharyya
CSE Dept.,
1T Bombay

Lecture 31: Feedforward N/W,; sigmoid
neuron

28t March, 2011

Feedforward Network

Limitations of perceptron

= Non-linear separability is all pervading

= Single perceptron does not have enough
computing power

= Eg: XOR cannot be computed by
perceptron

Solutions

= Tolerate error (Ex: pocket algorithm used
by connectionist expert systems).

= Try to get the best possible hyperplane using
only perceptrons

= Use higher dimension surfaces
Ex: Degree - 2 surfaces like parabola

= Use layered network

Pocket Algorithm

= Algorithm evolved in 1985 — essentially
uses PTA

= Basic Idea:

~ Always preserve the best weight obtained
so far in the “pocket”

» Change weights, if found better (i.e.
changed weights result in reduced error).

XOR using 2 layers

X X, = (Xlx_Z)v (sz)
= OR(AND(x,,NOT (x,)), AND(NOT (Xx,), X,)))

e Non-LS function expressed as a linearly separable
function of individual linearly separable functions.

Example - XOR

w;=1/ <

6 =0.5
w,=1 & Calculation of XOR

X1,

XX,

X{ | X, |X X
2

0 [0 |0

o (1 |1

1 {0 |0

1 (1 |0

Calculation of x,x,

6=1 0<0O
W=~ w,=1.5 w2>©

Wli<®
X1 X3 Wit w2 < ©

Example - XOR

Some Terminology

= A multilayer feedforward neural
network has

= Input layer
« Output layer
= Hidden layer (assists computation)

Output units and hidden units are called
computation units.

Training of the MLP

= Multilayer Perceptron (MLP)

= Question:- How to find weights for the
hidden layers when no target output is
available?

= Credit assignment problem — to be
solved by " Gradient Descent’

Can Linear Neurons Work?
y: m3X‘|‘C3

y:m2X‘|‘C2 y:m1X+C1

N, = ml(W1X1 +W- Xz) +C:

N, = ml(W1X1 + W- Xz) +C:

OUt — (W5h1‘|‘ Wehz) +Cs
:k1X1+k2X2-|‘ k3

Note: The whole structure shown in earlier slide is reducible
to a single neuron with given behavior

OUt — k1X1‘|‘ k2X2‘|‘ k3

Claim: A neuron with linear I-O behavior cant compute X-
OR.

Proof: Considering all possible cases:

[assuming 0.1 and 0.9 as the lower and upper thresholds]

m(w:.0+w..0-6)+c<0.1

For (0,0), Zero class: =C-mg<0.1

m(w..1+w..0-8)+c>0.9
For (0,1), One class: = Mw.—mg+c>0.9

For (1,0), One class: mw.—m.@+c>0.9

For (1,1), Zero class: mw.—m.@+c¢>0.9

These equations are inconsistent. Hence X-OR can't be computed.

Observations:
1. A linear neuron can’t compute X-OR.

2. A multilayer FFN with linear neurons is collapsible to a

single linear neuron, hence no a additional power
due to hidden layer.

3. Non-linearity is essential for power.

Multilayer Perceptron

Training of the MLP

= Multilayer Perceptron (MLP)

= Question:- How to find weights for the
hidden layers when no target output is
available?

= Credit assignment problem — to be
solved by " Gradient Descent’

Gradient Descent Technique

Let E be the error at the output layer

ZZ(t -0,):

=1 i=1

t. = target output; o, = observed output

| is the index going over n neurons in the
outermost layer

j is the index going over the p patterns (1 to p)
Ex: XOR:— p=4 and n=1

Weights in a FF NN

s W, IS the weight of the
connection from the nt" neuron
to the mth neuron

E vsw surface is a complex
surface in the space defined by
the weights w;

oE
-~ gives the direction in
which a movement of the
operating point in the w,, co-
ordinate space will result in

maximum decrease in error

oE
mn Sw

mn

Sigmoid neurons

= Gradient Descent needs a derivative computation

- not possible in perceptron due to the discontinuous
step function used!

- Sigmoid neurons with easy-to-compute derivatives used!

LiiLag

- -:1=11 s o

X N y > las X - oo
" "‘:‘h
» y > 0as x > —©
2A
A
S - 1

= Computing power comes from non-linearity of
sigmoid function.

Derivative of Sigmoid function

—X

ay 1 _X e

Y _ 2(€)= XN 2
dx (1+e™) (1+e™)

. (1 1 1Xj=y(1—y)
+ e

Training algorithm

= Initialize weights to random values.

s For input x = <x,,X,_q,...,Xg>, modify weights as
follows
Target output = t, Observed output = o

AW, oc—E
OW,

1
E==(t-0)’
2(0)

= [terate until E < 6 (threshold)

Calculation of Aw,

n-1
O _ OB | ONeL ihere :net = D wx,
ow. onet ow, =0

5EX 00 ><5net
o0 onet ow,
=—(t—0)o(l-0)x
oE

AW, = —77 5—(77 = learning constant, 0 < <1)
W.

AW, =n(t—-o0)o(1—-o0)x.

Observations

Does the training technique support our
intuition?
= The larger the x, larger is Aw.

= Error burden is borne by the weight values
corresponding to large input values

