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The Perceptron Model
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Perceptron Training Algorithm

1. Start with a random value of w

ex: <0,0,0…>

2. Test for wx > 02. Test for wxi > 0

If the test succeeds for i=1,2,…n

then return w

3. Modify w, wnext = wprev + xfail



Feedforward Network



Example - XOR
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� Calculation of XORw2=1w1=1
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Example - XOR 
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Can Linear Neurons Work?
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Note: The whole structure shown in earlier slide is reducible 
to a single neuron with given behavior

Claim: A neuron with linear I-O behavior can’t compute X-
OR.

Proof: Considering all possible cases:
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Proof: Considering all possible cases:

[assuming 0.1 and 0.9 as the lower and upper thresholds]

For (0,0), Zero class:

For (0,1), One class:
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For (1,0), One class:

For (1,1), Zero class:

These equations are inconsistent. Hence X-OR can’t be computed.

Observations:

1. A linear neuron can’t compute X-OR.

9.0.. 1 >+− cmwm θ

9.0.. 1 >+− cmwm θ

1. A linear neuron can’t compute X-OR.

2. A multilayer FFN with linear neurons is collapsible to a 
single linear neuron, hence no a additional power 
due to hidden layer.

3. Non-linearity is essential for power.



Multilayer Perceptron



Gradient Descent Technique

� Let E be the error at the output layer
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� ti = target output; oi = observed output

� i is the index going over n neurons in the 
outermost layer

� j is the index going over the p patterns (1 to p)

� Ex: XOR:– p=4 and n=1



Weights in a FF NN

� wmn is the weight of the 
connection from the nth neuron 
to the mth neuron

� E vs surface is a complex 
surface in the space defined by 
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surface in the space defined by 
the weights wij

� gives the direction in 
which a movement of the 
operating point in the wmn co-
ordinate space will result in 
maximum decrease in error
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Sigmoid neurons

� Gradient Descent needs a derivative computation

- not possible in perceptron due to the discontinuous 
step  function used!

� Sigmoid neurons with easy-to-compute derivatives used!

� Computing power comes from non-linearity of 
sigmoid function.
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Derivative of Sigmoid function
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Training algorithm

� Initialize weights to random values.

� For input x = <xn,xn-1,…,x0>, modify weights as 
follows

Target output = t, Observed output = oTarget output = t, Observed output = o

� Iterate until E <  δ (threshold)
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Calculation of ∆w
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Observations

D oes the training technique support our 

intuition?

The larger the x , larger is ∆w� The larger the x
i
, larger is ∆w

i

� Error burden is borne by the weight values 
corresponding to large input values


