CS344: Introduction to Artificial
Intelligence
(associated |ab: CS386)

Pushpak Bhattacharyya
CSE Dept.,
I[I'T Bombay

L ecture 32: sigmoid neuron; Feedforward
N/W; Error Backpropagation

29 March, 2011

The Perceptron Model

y =1for Zw)x; >=0
= 0 otherwise

Output =y

Threshold = 6

Perceptron Training Algorithm

1. Start with a random value of w
ex: <0,0,0...>

2. Test for wx, > 0
If the test succeeds for i=1,2,...n
then return w

3. MOdify W; Whext = Wprev T Xfail

Feedforward Network

Example - XOR

w;=1/ ;

6=0.5
w,=1 & Calculation of XOR

X1X;

XXy

Xy | X5 XX
2

O [0 |0

O |1 |1

1 [0 |0

1 |1 |0

Calculation of x,x,

=1 0<0O
W,=- w>,=1.5 w2> 0
Wi<O

X1 X2 WL+W2<0

Example - XOR

Can Linear Neurons Work?

b= My(WaXe + W2 X2) +Co

b= My(WaXa+WeXz) +C:

Out = (Wsh.+wsh.) +C:
=k +K-X+Ks

Note: The whole structure shown in earlier slide is reducible
to a single neuron with given behavior

Out =k + kX + K

Claim: A neuron with linear I-O behavior can’t compute X-
OR.

Proof: Considering all possible cases:

[assuming 0.1 and 0.9 as the lower and upper thresholds]
m(wW..0+w..0-6)+c<0.1

For (0,0), Zero class: =Cc-mg<0.1

m(W2.1+ Wl.O_H) +C> 09
For (0,1), One class: = Mmw.—még+c>0.9

For (1,0), One class: mw.—mé&+c>0.9

For (1,1), Zero class: mw.—mé&+c>0.9

These equations are inconsistent. Hence X-OR can't be computed.

Observations:
1. A linear neuron can’t compute X-OR.

2. A multilayer FFN with linear neurons is collapsible to a

single linear neuron, hence no a additional power
due to hidden layer.

3. Non-linearity is essential for power.

Multilayer Perceptron

Gradient Descent Technique

Let E be the error at the output layer

ZZ(t -0)]

=1 i=1

t. = target output; o, = observed output

| is the index going over n neurons in the
outermost layer

j is the index going over the p patterns (1 to p)
Ex: XOR:— p=4 and n=1

Weights in a FF NN

= W, IS the weight of the
connection from the nth neuron
to the mth neuron

= E vsW surface is a complex
surface in the space defined by
the weights w;

= -<— gives the direction in
which a movement of the
operating point in the w,,, Co-
ordinate space will result in
maximum decrease in error

Aw_ L —

oE

mn

Sigmoid neurons

= Gradient Descent needs a derivative computation

- not possible in perceptron due to the discontinuous
step function used!

- Sigmoid neurons with easy-to-compute derivatives used!

0.8 f//"f-f..-- y — 1 alS X - o
Z-ti/ y — O S X » —00
) ---I/D_E

= Computing power comes from non-linearity of
sigmoid function.

Derivative of Sigmoid function

y= 1

1+e™”
d 1 Ly e
_y -7 —X\ 2 (_e) — -XY\ 2
ax (1+e ™) (1+e ™)

Training algorithm

= Initialize weights to random values.

s For input x = <x.,X..4,...,Xo>, modify weights as
follows
Target output = t, Observed output = o

d/\/i
E:%a—mz

s Iterate untilE < & (threshold)

Calculation of Aw,
E __E 5net (Where ‘net = fwixij
v anet . ow i

5E505net
505net5w

= —(t-0)o(1-0)x

Aw, = -1 %(/7 = learning constant, 0<7n <1)

Aw. =n(t-0)o(l-0)x

Observations

Does the training technique support our
intuition?
= The larger the x, larger is Aw.

= Error burden is borne by the weight values
corresponding to large input values

