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Backpropagation for hidden 
layers
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Local Minima

Due to the Greedy 
nature of BP, it can 
get stuck in local 
minimum m and will 
never be able to 

Error Surface

never be able to 
reach the global 
minimum g as the 
error can only 
decrease by weight 
change.

m

g

m- local minima, g- global minima

Figure- Getting Stuck in local minimum



Momentum factor
1. Introduce momentum factor.

Accelerates the movement out of the trough.
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� Accelerates the movement out of the trough.

� Dampens oscillation inside the trough.

� Choosing  β : If β is large, we may jump over 
the minimum.
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Momentum factor

� If the momentum factor is very large 

(GP series of β)

β is learning rate (lies between 0 and 1)

2 3(1 )w β β β∆ = + + + +L

� β is learning rate (lies between 0 and 1)

� η is momentum factor (lies between 0 
and 1)

� Generally, 
1

10
β η= ×



Symmetry breaking

� If mapping demands different weights, but we start 
with the same weights everywhere, then BP will  
never converge.
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Symmetry breaking: simplest 
case

� If all the weights are same initially they 
will remain same over iterations



Symmetry Breaking: general 
case
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Training of FF NN takes time!

� BP + FFNN combination applied for 
many problems from diverse disciplines

� Consistent observation: the training � Consistent observation: the training 
takes time as the problem size 
increases

� Is there a hardness hidden soemwhere?



Hardness of Training Feedforward 
NN

� NP-completeness result: 

� Avrim Blum, Ronald L. Rivest: Training a 3-
node neural network is NP-complete. Neural 
Networks 5(1): 117-127 (1992)Showed that Networks 5(1): 117-127 (1992)Showed that 
the loading problem is hard

� As the number of training example 
increases, so does the training time 
EXPONENTIALLY



A primer on NP-completeness 
theorytheory



Turing Machine

Finite state head

Infinite Tape
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Formal Definition (vide: Hopcroft and 
Ullmann, 1978)

� A Turing machine is a 7-tuple 
<Q, Γ, b, Σ, δ, q0, F>, where
� Q is a finite set of states
� Γ is a finite set of the tape alphabet/symbols
� b is the blank symbol (the only symbol allowed to 
occur on the tape infinitely often at any step 
b is the blank symbol (the only symbol allowed to 
occur on the tape infinitely often at any step 
during the computation) 
� Σ, a subset of Γ not including b is the set of input 

symbols
� δ : Q X Γ � Q X Γ X {L, R} is a partial function 
called the transition function, where L is left shift, 
R is right shift. 

� q0 Є Q is the initial state
� F is the set of final or accepting states



Non-deterministic and Deterministic 
Turing Machines

If δ is to a number of possibilities

δ : Q X Γ � {Q X Γ X {L, R}}

Then the TM is an NDTM; else it is a DTMThen the TM is an NDTM; else it is a DTM



Decision problems

� Problems whose answer is yes/no

� For example, 

� Hamilton Circuit: Does an undirected graph 
have a path that visits every node and comes have a path that visits every node and comes 
back to the starting node?

� Subset sum: Given a finite set of integers, is 
there a subset of them that sums to 0?



The sets NP and P

� Suppose for a decision problem, an 

NDTM is found that takes time 
polynomial in the length of the input, then 
we say that the said problem is in NPwe say that the said problem is in NP

� If, however, a DTM is found that takes 
time polynomial in the length of the input, 
then we say that the said problem is in P



Relation between P and NP

� Clearly, 

� P is a subset of NP

� Is P a proper subset of NP?

That is the P = NP question� That is the P = NP question



The concept of NP-completeness 
(informal definition)

� A problem is said  to be NP-complete, if 

� It is in NP, and

� A known NP-complete problem is reducible TO 
it.

The ‘first’ NP-complete problem is � The ‘first’ NP-complete problem is 

� satisfiability: Given a Boolean Formula in Conjunctive 
Normal Form (CNF), does is have a satisfying 
assignment, i.e., a set of 0-1 values for the 
constituting literals that makes the formula evaluate 
to 1? (even the restricted version of this problem- 3-
sat- is NP-complete)



Example of 3-sat 

� (x1 + x2 + x’3)(x’1 + x3) is satisfiable: x2= 1 
and x3= 1

� x1(x2 + x3)x’1 is not satisfiable.

{x’I means complement of xi}



Numerous problems have been 
proven to be NP-complete

� The procedure is always the same:

� Take an instance of a known NP-complete
problem; let this be p.

Show a polynomial time Reduction of p TO� Show a polynomial time Reduction of p TO
an instance q of the problem whose status
is being investigated.

� Show that the answer to q is yes, if and
only if the answer to p is yes.



Clarifying the notion of Reduction

� Convex Hull problem:

� Given a set of points on the two dimensional 
plane, find the convex hull of the points
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Complexity of convex hull finding 
problem

� We will show that this is O(nlogn).

� Method used is Reduction.

� The most important first step: choose the 
right problem.right problem.

� We take sorting whose complexity is 
known to be O(nlogn)



Reduce Sorting to Convex hull 
(caution: NOT THE OTHER WAY)

� Take n numbers a1, a2, a3, …, an which are 
to be sorted.

� This is an instance of a sorting problem.

� From this obtain an instance of a convex � From this obtain an instance of a convex 
hull problem.

� Find the convex hull of the set of points
� <0,1>, <a1,0>, <a2,0>, <a3,0>, …, <an,0>

� This transformation takes linear time in 
the length of the input



Pictorially…

x
(0,1) Convex hull:

Effectively sorts the 
numbers
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Convex hull finding is O(nlogn)

� If the complexity is lower, sorting too has 
lower complexity

� Because by the linear time procedure 
shown, ANY instance of the sorting shown, ANY instance of the sorting 
problem can be converted to an instance 
of the CH problem and solved.

� This is not possible.

� Hence CH is O(nlogn)



Important remarks on 
reduction
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� Case Scenario : <Ap, iq>  

Algorithm Ap on input ip
� Worst Case of best algorithm

<A↑, i↓>

� Time complexity  O(|i↓|)� Time complexity  O(|i↓|)

|i↓| length of i↓



Example
Sorting (ascending)

Input Algorithm

<3, 1.5, 9, 11, … >

<4, 2, 1, 5, … > 

etc 

Bubble Sort

Heap Sort

Merge Sort

Best Algorithm : Quicksort
Worst Case:  Already sorted sequence
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P1

1. Sorting

2. Set Splitting

P2

1. Convex Hull

2. Linear Confinement

We know the worst case complexity of PWe know the worst case complexity of P1

Worst case complexity of P1

P2→ P1 : new algorithm for solving P2



� For any problem

Situation A when an algorithm is discovered, 
and its worst case complexity calculated, the 
effort will continuously be to find a better 
algorithm. That is to improve upon the worst 
case complexity.case complexity.

Situation B Find a problem P1 whose worst 
case complexity is known and transform it to 
the unknown problem with less complexity. 
That puts a seal on how much improvement 
can be done on the worst case complexity.



Worst case complexity of best complexity O(nlogn)

Worst complexity of bubble sort O(n2)

Example :  Sorting

<P, A, I>:
<Problem, Algorithm, Input>: 
the trinity of complexity theory



Training of 1 hidden layer 2 
neuron feed forward NN is NP-
complete



Numerous problems have been 
proven to be NP-complete

� The procedure is always the same:

� Take an instance of a known NP-complete
problem; let this be p.

Show a polynomial time Reduction of p TO� Show a polynomial time Reduction of p TO
an instance q of the problem whose status
is being investigated.

� Show that the answer to q is yes, if and
only if the answer to p is yes.



Training of NN

� Training of Neural Network is NP-hard

� This can be proved by the NP-
completeness theory

� Question
� Can a set of examples be loaded onto a Feed 
Forward Neural Network efficiently?



Architecture

� We study a special 
architecture.

� Train the neural network 
called 3-node neural called 3-node neural 
network of feed forward 
type.

� ALL the neurons are 0-1 
threshold neurons



Architecture

� h
1
and h

2
are hidden neurons

� They set up hyperplanes in the (n+1) 
dimensions space.



Confinement Problem

� Can two hyperplanes be set which confine 
ALL and only the positive points?

� Positive Linear Confinement problem is NP-
Complete.Complete.

� Training of positive and negative points 
needs solving the CONFINEMENT 
PROBLEM.



Solving with Set Splitting 
Problem
� Set Splitting Problem

� Statement:

� Given a set S of n elements e
1
, e

2
, ...., e

n
and 

a set of subsets of S called as concepts a set of subsets of S called as concepts 
denoted by c

1
, c

2
, ..., c

m
, does there exist a 

splitting of S

� i.e. are there two sets S
1
(subset of S) and S

2

(subset of S) and none of c
1
, c

2
, ..., c

m
is 

subset of S
1
or S

2



Set Splitting Problem: example
� Example

S = {s
1
, s

2
, s

3
}

c
1
= {s

1
, s

2
}, c

2
= {s

2
, s

3
}

Splitting exists

S
1
= {s

1
, s

3
}, S

2
= {s

2
}



Transformation

� For n elements in S, set up an n-
dimensional space.

� Corresponding to each element mark a 
negative point at unit distance in the axes.negative point at unit distance in the axes.

� Mark the origin as positive

� For each concept mark a point as positive.



Transformation

� S = {s
1
, s

2
, s

3
}

� c
1
= {s

1
, s

2
}, c

2
= {s

2
, s

3
}

x3

(0,0,1) -ve

x1

x2

(0,0,0) +ve

(0,0,1) -ve

(0,1,0) -ve

(1,0,0) -ve

(1,1,0) +ve

(0,1,1) +ve



Proving the transformation

• Statement
– Set-splitting problem has a solution if and only if 

positive linear confinement problem has a solution.

• Proof in two parts: if part and only if part• Proof in two parts: if part and only if part

• If part
– GivenSet-splitting problem has a solution.

– To showthat the constructed Positive Linear 
Confinement (PLC) problem has a solution

– i.e. to show that since S1 and S2 exist,  P1 and P2
exist which confine the positive points



Proof – If part
• P1 and P2 are as follows:

– P1 : a1x1 + a2x2+ ... + anxn = -1/2-- Eqn A

– P2 : b1x1 + b2x2 + ... + bnxn = -1/2 -- Eqn B

ai = -1, if si ε S1ai = -1, if si ε S1

= n, otherwise

bi = -1, if si ε S2

= n, otherwise



Representative Diagram



Proof (If part) – Positive points
• For origin (a +ve point), plugging in x1 = 0 = x2 = ... = 

xn into P1 we get, 0 > -1/2

• For other points
– +ve points correspond to ci’s

– Suppose ci contains elements {s1
i, s2

i, ..., sn
i}, then at least one 

of the s i cannot bein S

∴

i 1 2 n
of the sj

i cannot bein S1

∴ co-efficient of xj
i = n,  

∴ LHS > -1/2

• Thus +ve points for each ci belong to the same side of 
P1 as the origin. 

• Similarly for P2.



Proof (If part) – Negative points

• -ve points are the unit distance points on the 
axes
� They have only one bit as 1.

� Elements in S give rise to m -ve points.� Elements in S1 give rise to m1 -ve points.

� Elements in S2 give rise to m2 -ve points.

• -ve points corresponding to S1

– If qiε S1 then xi in P1 must have co-efficient -1
∴ LHS = -1 < -1/2



What has been proved

• Origin (+ve point) is on one side of P1

• +ve points corresponding to ci’s are on the 
same side as the origin.

-ve points corresponding to S are on the • -ve points corresponding to S1 are on the 
opposite side of P1



Illustrative Example

• Example
– S = {s1, s2, s3}
– c1 = {s1, s2}, c2 = {s2, s3}
– Splitting : S1 = {s1, s3}, S2 = {s2}– Splitting : S1 = {s1, s3}, S2 = {s2}

• +ve points:
– (<0, 0, 0>,+), (<1, 1, 0>,+), (<0, 1, 1>,+)

• -ve points:
– (<1, 0, 0>,-), (<0, 1, 0>,-), (<0, 0, 1>,-)



Example (contd.)
• The constructed planes are:

• P1 : 
� a1x1 + a2x2 + a3x3 = -1/2

-x + 3x – x = -1/2� -x1 + 3x2 – x3 = -1/2

• P2:
� b1x1 + b2x2 + b3x3 = -1/2

� 3x1 – x2 + 3x3 = -1/2



Example (contd.)
• P1: -x1 + 3x2 – x3 = -1/2

• <0, 0, 0>: LHS = 0 > -1/2,
– ∴ <0, 0, 0> is +ve pt (similarly, <1,1,0> and 

<0,1,1> are classified as +ve)
∴

<0,1,1> are classified as +ve)

• <1, 0, 0>: LHS = -1 < -1/2,
– ∴ <1, 0, 0> is -ve pt

• <0, 0, 1>: LHS = -1 < -1/2, 
– ∴ <0, 0, 1> is -ve pt

But <0,1,0> is classified as +ve, i.e., cannot classify 
the point of S2.



Example (contd.)
• P2 : 3x1 – x2 + 3x3 = -1/2

• <0, 0, 0> : LHS = 0 > -1/2
– ∴ <0, 0, 0> is +ve pt

<1, 1, 0> : LHS = 2 > -1/2
∴

∴

• <1, 1, 0> : LHS = 2 > -1/2
– ∴ <1, 1, 0> is +ve pt

• <0, 1, 1> : LHS = 2 > -1/2
– ∴ <0, 1, 1> is +ve pt

• <0, 1, 0> : -1 < -1/2
– ∴ <0, 1, 0> is -ve pt



Graphic for Example

<1, 1, 0> +
<0, 0, 0> +
<0, 1, 1> +

<1, 0, 0> -
<0, 0, 1> -

S1

<0, 0, 1> -

<0, 1, 0> -

S2



Proof – Only if part
• Given +ve and -ve points constructed from the 

set-splitting problem, two hyperplanes P1 and 
P2 have been found which do positive linear 
confinement

• To show that Scan be split into S1 and S2



Proof - Only if part (contd.)
• Let the two planes be:

– P1: a1x1 + a2x2+ ... + anxn = θ1

– P2 : b1x1 + b2x2 + ... + bnxn = θ2

• Then, 
– S1 = {elements corresponding to -ve points 

separated by P1}
– S2 = {elements corresponding to -ve points 

separated by P2}



Proof - Only if part (contd.)
• Since P1 and P2 take care ofall -ve points, their 

union is equal to S... (proof obvious)
• To show: No ci is a subset of S1 and S2

• i.e., there is in ci at least one element ∉ S1• i.e., there is in ci at least one element ∉ S1
-- Statement (A)



Proof  - Only if part (contd.)
• Suppose ci ⊂ S1, then every element in ci is 

contained in S1

• Let e1
i, e2

i, ..., emi
i be the elements of ci

corresponding to each elementcorresponding to each element
• Evaluating for each co-efficient, we get, 

– a1 < θ1, a2 < θ1, ..., ami < θ1   -- (1)
– But a1 + a2 + ... + am > θ1             -- (2)
– and 0 > θ1                                                  -- (3)

• CONTRADICTION



What has been shown
• Positive Linear Confinement is NP-complete.
• Confinement on any set of points of one kind is NP-

complete (easy to show)

• The architecture is special- only one hidden layer 
with two nodeswith two nodes

• The neurons are special, 0-1 threshold neurons, 
NOT sigmoid

• Hence, can we generalize and say that FF NN 
training is NP-complete?

• Not rigorously, perhaps; but strongly indicated



Summing up
� Some milestones covered

� A* Search

� Predicate Calculus, Resolution, Prolog

� HMM, Inferencing, Training

� Perceptron, Back propagation, NP-completeness of 
NN TrainingNN Training

� Lab: to reinforce understanding of lectures

� Important topics left out: Planning, IR 
(advanced course next sem)

� Seminars: breadth and exposure

� Lectures: Foundation and depth



Language
Processing & 
Understanding

Information Extraction:
Part of Speech tagging
Named Entity
Recognition

Shallow Parsing
Summarization

IR:
Cross Lingual     
Search
Crawling
Indexing
Multilingual Relevance 
Feedback

NLP@IITB

Machine Learning:
Semantic Role labeling
Sentiment 
Analysis

Text Entailment
(web 2.0 applications)

Using graphical models, support

vector machines, neural networks

Machine Translation:
Statistical
Interlingua Based
English�Indian
languages

Indian
languages�Indian
languages
Indowordnet

Resources: http://www.cfilt.iitb.ac.in
Publications: http://www.cse.iitb.ac.in/~pb

Linguistics is the eye and computation the
body 


