CS344: Introduction to Artificial Intelligence(associated lab: CS386)

Pushpak BhattacharyyaCSE Dept., IIT Bombay

Lecture 36, 37: Hardness of training feed forward neural nets $11th$ and $12th$ April, 2011

Backpropagation for hidden layersHidden layers Output layer (m_0/p) j neurons)i….….….k

Input layer (n i/p neurons)

 $(t_j - o_j) o_j(1 - o_j)$ *ojojoj* $\delta_i=(t_i-o_i)o_i(1-\$ $(-\overline{o}_j) o_j(1-\overline{o}_j)$ for outermost layer

$$
= \sum_{i} (w_{kj} \delta_k) o_j (1 - o_j) o_i
$$

jii

….

 $\Delta w_{\stackrel{.}{ii}}=\eta\delta\!\!\!\!j\sigma$

k∈next layer

Local Minima

Due to the Greedy nature of BP, it can get stuck in local minimum m and will never be able to reach the global minimum g as the error can only decrease by weight change.

m- local minima, g- global minima

Figure- Getting Stuck in local minimum

Momentum factor

1.Introduce momentum factor.

 (Δw_{ji}) nth – iteration $=\eta \delta_{j}O_{i}+\beta(\Delta w_{ji})$ (n – 1)th – iteration

- Accelerates the movement out of the trough. \blacktriangleright
- \blacktriangleright Dampens oscillation inside the trough.
- \blacktriangleright \triangleright Choosing β : If β is large, we may jump over the minimum.

Momentum factor

- \mathbb{R}^3 **If the momentum factor is very large** (GP series of β) $\Delta w = (1 + \beta + \beta^2 + \beta^3 + \cdots)$ \cdots
- β is learning rate (lies between 0 and 1) \mathbb{R}^3
- *η* is *momentum factor* (lies between 0 and 1) \overline{a}

1.66 Generally,
$$
\beta = \frac{1}{10} \times \eta
$$

Symmetry breaking

F. If mapping demands different weights, but we start with the same weights everywhere, then BP will never converge.

XOR n/w: if we started with identicalweight everywhere, BPwill not converge

Symmetry breaking: simplest case

 \mathbb{R}^3 **If all the weights are same initially they** will remain same over iterations

Symmetry Breaking: general case

Training of FF NN takes time!

- \mathbb{R}^3 \blacksquare BP + FFNN combination applied for many problems from diverse disciplines
- \mathbb{R}^3 **Consistent observation: the training** takes time as the problem size increases
- \mathbb{R}^3 ■ Is there a hardness hidden soemwhere?

Hardness of Training Feedforward NN

- \mathbb{R}^3 **NP-completeness result:**
	- \blacksquare *Avrim Blum, Ronald L. Rivest: Training a 3 node neural network is NP-complete. Neural Networks 5(1): 117-127 (1992)*Showed that the *loading problem* is hard
- \mathbb{R}^n **As the number of training example** increases, so does the training time EXPONENTIALLY

A primer on NP-completeness theory

Turing Machine

Infinite Tape

Formal Definition (vide: Hopcroft and Ullmann, 1978)

F. **A Turing machine is a 7-tuple**

- $\langle Q, \Gamma, b, \Sigma, \delta, q_{\alpha} F \rangle$, where
	- \bullet Q is a finite set of *states*
 \bullet Fig. a finite set of the tax
	- **Γ** is a finite set of the *tape alphabet/symbols*
	- **b** is the *blank symbol* (the only symbol allowed to occur on the tape infinitely often at any step during the computation)
	- **Σ**, a subset of **Γ** not including **b** is the set of *input* cumbols symbols
	- × $\boldsymbol{\delta}$ **:** $\boldsymbol{Q} \boldsymbol{X} \boldsymbol{\Gamma} \rightarrow \boldsymbol{Q} \boldsymbol{X} \boldsymbol{\Gamma} \boldsymbol{X} \boldsymbol{\{L}, R}$ is a partial function called the *transition function*, where **L** is left sh \boldsymbol{L} is left shift, \boldsymbol{R} is right shift.
	- **q**₀ $\boldsymbol{\epsilon}$ **Q** is the *initial state*
	- Fis the set of *final* or *accepting states*

Non-deterministic and Deterministic Turing Machines

If δ is to a number of possibilities

δ : Q X Γ \rightarrow {Q X Γ X {L, R}}

Then the TM is an NDTM; else it is a DTM

Decision problems

- \mathbb{R}^3 **Problems whose answer is yes/not**
- \mathbb{R}^3 **For example,**
	- \blacksquare *Hamilton Circuit:* Does an undirected graph have a path that visits every node and comes back to the starting node?
	- *Subset sum*: Given a finite set of integers, is there a subset of them that sums to 0?

The sets NP and P

- \mathbb{R}^3 **Suppose for a decision problem, an** NDTM is found that takes time polynomial in the *length* of the input, then we say that the said problem is $in NP$
- \mathbb{R}^3 If, however, a DTM is found that takes time polynomial in the *length* of the input, then we say that the said problem is $\mathbf{in} \mathbf{P}$

Relation between P and NP

- \mathbb{R}^3 ■ Clearly,
	- \blacksquare *^P*is a *subset of NP*
- \mathbb{R}^n **IF** Is Pa proper subset of NP?
- \mathbb{R}^n **That is the** $P = NP$ **question**

The concept of NP-completeness (informal definition)

- T A problem is said to be *NP-complete,* if
	- It is in NP, and
	- П A known NP-complete problem is reducible TO it.
- ■ The 'first' NP-complete problem is
	- × **Satisfiability:** Given a Boolean Formula in Conjunctive Normal Form (CNF), does is have a satisfying assignment, *i.e.*, a set of 0-1 values for the constituting literals that makes the formula evaluate to 1? (even the restricted version of this problem- 3 *sat-* is NP-complete)

Example of 3-sat

- \mathbb{R}^3 $(x_1 + x_2 + x_3)(x_1' + x_3)$ is satisfiable: $x_2 = 1$ and $x_3 = 1$
- \mathbb{R}^n \blacksquare $X_1(X_2 + X_3)X'_1$ is not satisfiable.

 $\{x'_{I}$ means complement of x_{i}

Numerous problems have been proven to be NP-complete

- \mathbb{R}^3 **The procedure is always the same:**
- \mathbb{R}^3 **Take** an instance of a known NP-complete problem; let this be ρ .
- \mathbb{R}^3 ■ Show a *polynomial time Reduction* of p TO an instance q of the problem whose status
is boing investigated is being investigated.
- \mathbb{R}^3 **Show that the answer to q is yes, if and spall if the anglicial point is used.** only if the answer to ρ is *yes.*

Clarifying the notion of Reduction

- \mathbb{R}^3 ■ Convex Hull problem:
	- \blacksquare **Given a set of points on the two dimensional** plane, find the *convex hull* of the points

 P_1 , p_4 , p_5 , p_6 and p_8 are on the convex hull

Complexity of convex hull finding problem

- \mathbb{R}^3 **Net will show that this is** *O(nlogn)*.
- \mathbb{R}^3 **Nethod used is Reduction.**
- \mathbb{R}^3 **The most important first step:** *choose the* right problem.
- \mathbb{R}^3 **Netake** *sorting* whose complexity is known to be O(nlogn)

Reduce Sorting to Convex hull (caution: NOT THE OTHER WAY)

- \mathbb{R}^3 **Take** *n* numbers a_1 , a_2 , a_3 , ..., a_n which are to be sorted.
- \mathbb{R}^3 **This is an instance of a sorting problem.**
- \mathbb{R}^n **From** this obtain an instance of a convex
hull problem hull problem.
- \mathbb{R}^3 **Find the convex hull of the set of points**

 \blacksquare <0,1>, <*^a*1*,0>, <a*²*,0>, <a*³*,0>, …, <a*n*,0>*

 \mathbb{R}^n **This transformation takes** *linear time* in the length of the input

Pictorially…

Convex hull finding is O(nlogn)

- \mathbb{R}^3 If the complexity is lower, *sorting too has* lower complexity
- \mathbb{R}^n **Because by the linear time procedure** shown, ANY instance of the sorting problem can be converted to an instance of the CH problem and solved.
- \mathbb{R}^n **This is not possible.**
- \mathbb{R}^n **Hence CH** is *O(nlogn)*

Important remarks on reduction

Case Scenario : $\langle A_p, i_q \rangle$ Algorithm A_p on input i
Worst Case of best algorithm Worst Case of best algorith

 \mathbb{R}^3 ■ Case Scenario : <A_p, i_q> Algorithm A_p on input i_p \mathbb{R}^n **Norst Case of best algorithm** $\langle A^{\uparrow}, i_{\uparrow} \rangle$ \mathbb{R}^3 ■ Time complexity O(|i_↓|) $|i_|$ length of i_+

Best Algorithm : QuicksortWorst Case: Already sorted sequence

Transformations

P_1

- 1.Sorting
- 2. Set Splitting

$P₂$ 1. Convex Hull 2. Linear Confinement

We know the worst case complexity of P_1

Worst case complexity of P_1 $\mathsf{P}_2\!\!\rightarrow\mathsf{P}_1$: new algorithm for solving P_2

\mathbb{R}^3 **For any problem**

- Situation A when an algorithm is discovered, and its worst case complexity calculated, the effort will continuously be to find a better algorithm. That is to improve upon the worst case complexity.
- **Situation B** Find a problem P_1 whose worst case complexity is known and transform it to the unknown problem with less complexity. That puts a seal on how much improvement can be done on the worst case complexity.


```
<P, A, I>:
<Problem, Algorithm, Input>: 
the trinity of complexity theory
```
Training of 1 hidden layer 2 neuron feed forward NN is NPcomplete

Numerous problems have been proven to be NP-complete

- \mathbb{R}^3 **The procedure is always the same:**
- \mathbb{R}^3 **Take** an instance of a known NP-complete problem; let this be ρ .
- \mathbb{R}^3 ■ Show a *polynomial time Reduction* of p TO an instance q of the problem whose status
is boing investigated is being investigated.
- \mathbb{R}^3 **Show that the answer to q is yes, if and spall if the anglicial point is used.** only if the answer to ρ is *yes.*

Training of NN

- **Service Service Training of Neural Network is NP-hard**
- **This can be proved by the NP** completeness theory

Service Service Question

 \blacksquare **Can a set of examples be loaded onto a Feed** Forward Neural Network efficiently?

Architecture

- **Service Service Ne study a special** architecture.
- **Train the neural network** called 3-node neural network of feed forward type.
- **Service Service ALL the neurons are 0-1** threshold neurons

Architecture

- **Service Service** \blacksquare h₁ and h₂ are hidden neurons
- \blacksquare They set up hyperplanes in the $(n+1)$ dimensions space.

Confinement Problem

- **Service Service Can two hyperplanes be set which confine** <u>ALL and only</u> the positive points?
- **Positive Linear Confinement problem is NP** -Complete.
- **Training of positive and negative points** needs solving the CONFINEMENT PROBLEM.

Solving with Set Splitting Problem

- II JEL JU ■ Set Splitting Problem
- ■ Statement:
	- \blacksquare **E** Given a set S of *n* elements e_{1} , e_{2} , ..., e_{n} and a set of subsets of Coalled as seppents a set of subsets of *S* called as concepts denoted by c_{1} , c_{2} , ..., c_{m} , does there exist a splitting of *S*
	- \blacksquare **n** i.e. are there two sets S_1 (subset of S) and S_2
(subset of Ω and nene of σ is a is (subset of *S*) and none of c_1 , c_2 , ..., c_m is cubset of *S* or *S* subset of $S^{}_{\!\!1}$ or $S^{}_{\!\!2}$

Set Splitting Problem: example

Service Service Example

$$
S = \{s_{1}, s_{2}, s_{3}\}c_{1} = \{s_{1}, s_{2}\}, c_{2} = \{s_{2}, s_{3}\}
$$

Splitting exists

$$
S_1 = \{s_{1}, s_{3}\}, S_2 = \{s_{2}\}\
$$

Transformation

- **Service Service For** *n* **elements in S, set up an** n dimensional space.
- **Corresponding to each element mark a** negative point at unit distance in the axes.
- **• Mark the origin as positive**
- ■ For each concept mark a point as positive.

Transformation

Proving the transformation

- • Statement
	- *Set-splitting problem has a solution if and only ifpositive linear confinement problem has a solution.*
- •Proof in two parts: **if part** and **only if** par^t
- • If part
	- *Given* Set-splitting problem has a solution.
	- To show that the constructed Positive Linear Confinement (PLC) problem has a solution
	- *i.e.* to show that since *S* exist which confine the positive points*1* I and S *2* $\sum_{i=1}^{n}$ exist, *P 1* $_l$ and P *2*

Proof – If part

- •• $P₁$ and $P₂$ are as follows:
	- – $P_1: a_1x_1 + a_2x_2 + \dots + a_nx_n = -1/2$ -- Eqn A – P_2 : $b_1x_1 + b_2x_2 + ... + b_nx_n = -1/2$ -- Eqn B $a_i = -1$, if $s_i \in S_1$ $=n$, otherwise b_i = -1, if s_i \in S_2 $= n$, otherwise

Representative Diagram

Proof (If part) – Positive points

- •For origin (a +ve point), plugging in x *1* $a_1 = 0 = x$ $2^{\frac{1}{2}}$... = *xn*into P1 $_1$ we get, $0 > -1/2$
- • For other points
	- $-$ +ve points correspond to c_i 's
	- Suppose *ci* contains elements { *s1* i *,* s_{2} $\{f, \ldots, s_n^i\}$, then at least one of the *si* cannot be in *S* j ^{*j*} cannot be in D_l
		- ∴ co-efficient of $x_j^i = n$,
		- ∴ LHS > $-1/2$
- •• Thus +ve points for each c_i belong to the same side of *P1* $_l$ as the origin.</sub>
- • Similarly for *P2*.

Proof (If part) – Negative points

- • -ve points are the unit distance points on the axes
	- \mathbb{Z} They have only one bit as 1.
	- \blacksquare Elements in S_l give rise to m_l -ve points.
	- \blacksquare Elements in *S2* ^give rise to *m2* $_2$ -ve points.
- • -ve points corresponding to *S1*
	- If *qi*ε *S1* \int_I *then* x_i *in* P *1 must have co-efficient -1* ∴ *LHS = -1 < -1/2*

What has been proved

- • Origin (+ve point) is on one side of *P1*
- • \cdot +ve points corresponding to c_i 's are on the same side as the origin.
- •-ve points corresponding to S_l are on the opposite side of *P1*

Illustrative Example

•Example

-
$$
S = \{s_1, s_2, s_3\}
$$

\n- $c_1 = \{s_1, s_2\}, c_2 = \{s_2, s_3\}$
\n- Splitting : $S_1 = \{s_1, s_3\}, S_2 = \{s_2\}$

- • \cdot +ve points:
	- $(<0, 0, 0>, +), (<1, 1, 0>,), (<0, 1, 1, +)$
- •-ve points:

(<1, 0, 0>,-), (<0, 1, 0>,-), (<0, 0, 1>,-)

Example (contd.)

•The constructed planes are:

•
$$
P_1
$$
:
\n $\rightarrow a_1x_1 + a_2x_2 + a_3x_3 = -1/2$
\n $\rightarrow -x_1 + 3x_2 - x_3 = -1/2$
\n• P_2 :
\n $\rightarrow b_1x_1 + b_2x_2 + b_3x_3 = -1/2$
\n $\rightarrow 3x_1 - x_2 + 3x_3 = -1/2$

Example (contd.)

•
$$
P_1
$$
: $-x_1 + 3x_2 - x_3 = -1/2$

- • $\,\cdot\,$ <0, 0, 0>: LHS = 0 > -1/2,
	- ∴ <0, 0, 0> is +ve pt (similarly, <1,1,0> and $\langle 0,1,1 \rangle$ are classified as +ve)
- • $\,\cdot\,$ <1, 0, 0>: LHS = -1 < -1/2,

 $-$ ∴ <1, 0, 0> is -ve pt

- • \cdot <0, 0, 1>: LHS = -1 < -1/2,
	- $-$ ∴ <0, 0, 1> is -ve pt

But <0,1,0> is classified as +ve, i.e., cannot classify the point of S2.

Example (contd.)

•
$$
P_2
$$
: $3x_1 - x_2 + 3x_3 = -1/2$

• $\,\bm{\cdot}\,$ <0, 0, 0> : LHS = 0 > -1/2

 $-$ ∴ <0, 0, 0> is +ve pt

- \cdot <1, 1, 0> : LHS = 2 > -1/2
	- ∴– \therefore <1, 1, 0> is +ve pt
- • \cdot <0, 1, 1> : LHS = 2 > -1/2
	- $-$ ∴ <0, 1, 1> is +ve pt
- • $\cdot \hspace{0.1cm} <\hspace{-0.1cm} 0,\, 1,\, 0\hspace{-0.05cm} >\hspace{-0.1cm} : -1 < -1/2$

 $-$ ∴ <0, 1, 0> is -ve pt

Graphic for Example

Proof – Only if part

- • Given +ve and -ve points constructed from the set-splitting problem, two hyperplanes *P*P, have been found which do positive l *1* I and confinement*2* $\frac{1}{2}$ have been found which do positive linear
- • To show that *S* can be split into *S1* and *S2*

Proof - Only if part (contd.)

•Let the two planes be:

$$
- P_1: a_1 x_1 + a_2 x_2 + \dots + a_n x_n = \theta_1
$$

- P 2 $\frac{1}{2}$: $\frac{1}{2}$ *1x1* $\frac{1}{4} + b$ *2x2* $\frac{1}{2} + ... + b$ *nxn* $=\theta$ 2
- • Then,
	- –*S* separated by *P1* $I_1 = \{$ elements corresponding to -ve points *1*}
	- –*S* separated by *P2* ϵ_2 = {elements corresponding to -ve points *2*}

Proof - Only if part (contd.)

- • Since *P* union is equal to *S* ... (proof obvious) *1* $\frac{1}{p}$ and $\frac{p}{p}$ *2*2 take care of **all** -ve points, their
- • **To show:** No *ci* is a subset of *S1* and *S2*
- • *i.e.,* there is in *c* \vec{r} at least one element $\notin S$ *1-- Statement (A)*

Proof - Only if part (contd.)

- •• Suppose *c* contained in *Si* $\subset S$ ^{*1*}, then every element in c \int *i* is *1*
- • *Let e1 corresponding to each elementi*, $e_{2}^{}$ *i, ..., emii be the elements of ci*
- • *Evaluating for each co-efficient, we get,*
	- –*a1* $a_1 < \theta_1$, a_2 $a_2 < \theta_1$, ..., $a_{mi} < \theta_1$ --*(1) But a1* $\frac{1}{a} + a$ *2 + ... + a m* $> \theta$ ₁ -- (2) *and 0 >* ^θ*1 -- (3)*
- •*CONTRADICTION*

What has been shown

- •Positive Linear Confinement is NP-complete.
- • Confinement on any set of points of one kind is NPcomplete (easy to show)
- • The architecture is special- only one hidden layer with two nodes
- • The neurons are special, 0-1 threshold neurons, NOT sigmoid
- • Hence, can we generalize and say that FF NN training is NP-complete?
- •Not rigorously, perhaps; but strongly indicated

Summing up

- T **Some milestones covered**
	- A^{*} Search
	- **Predicate Calculus, Resolution, Prolog**
	- **B** HMM, Inferencing, Training
	- **Perceptron, Back propagation, NP-completeness of** NN Training
- T **Lab: to reinforce understanding of lectures**
- **Important topics left out: Planning, IR** (advanced course next sem)
- **Seminars: breadth and exposure**
- T **Lectures: Foundation and depth**

Resources: http://www.cfilt.iitb.ac.inPublications: http://www.cse.iitb.ac.in/~pb Linguistics is the eye and computation thebody