CS344: Introduction to Artificial Intelligence (associated lab: CS386)

Pushpak Bhattacharyya CSE Dept., IIT Bombay

Lecture 36, 37: Hardness of training feed forward neural nets 11th and 12th April, 2011

Backpropagation for hidden layers Output layer Κ (m o/p

neurons) **Hidden layers**

Input layer (n i/p neurons)

 $\delta_i = (t_i - o_i) o_i (1 - o_i)$ for outermost layer

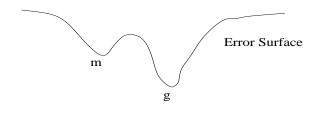
$$= \sum_{k} (w_{kj} \delta_k) o_j (1 - o_j) o_i$$

 $\Delta w_{ii} = \eta \delta j o_i$

 $k \in next layer$

Local Minima

Due to the Greedy nature of BP, it can get stuck in local minimum *m* and will never be able to reach the global minimum g as the error can only decrease by weight change.



m- local minima, g- global minima

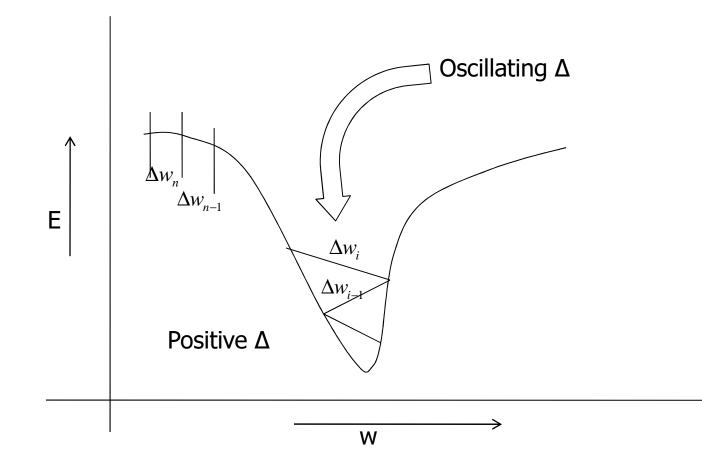
Figure- Getting Stuck in local minimum

Momentum factor

1. Introduce momentum factor.

 (Δw_{ji}) nth – iteration = $\eta \delta_j O_i + \beta (\Delta w_{ji})(n-1)$ th – iteration

- Accelerates the movement out of the trough.
- Dampens oscillation inside the trough.
- > Choosing β : If β is large, we may jump over the minimum.



Momentum factor

• If the momentum factor is very large

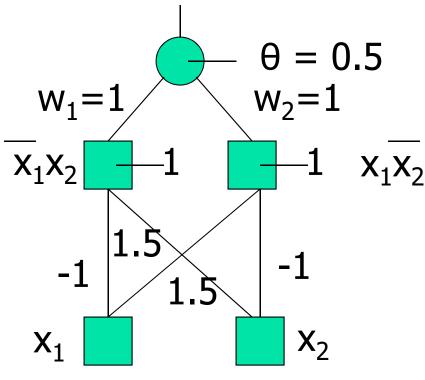
 $\Delta w = (1 + \beta + \beta^2 + \beta^3 + \cdots)$ (GP series of β)

- β is *learning rate* (lies between 0 and 1)
- η is momentum factor (lies between 0 and 1)

• Generally,
$$\beta = \frac{1}{10} \times \eta$$

Symmetry breaking

 If mapping demands different weights, but we start with the same weights everywhere, then BP will never converge.

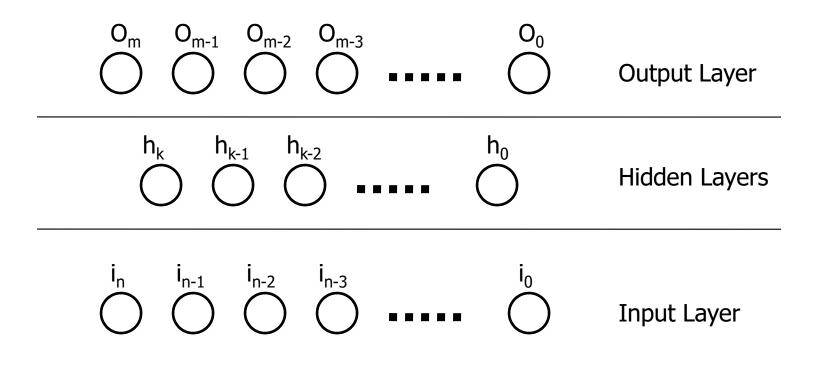


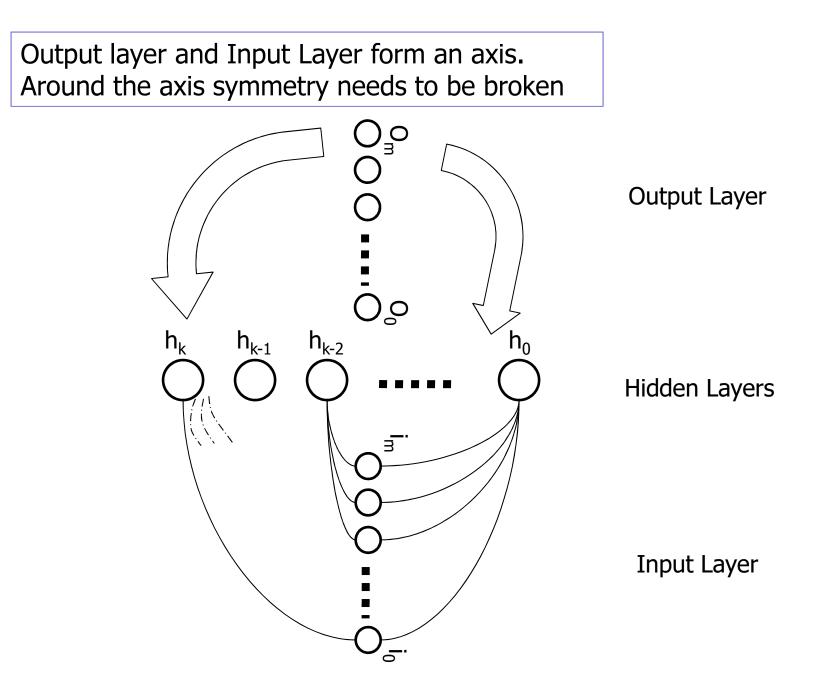
XOR n/w: if we started with identical weight everywhere, BP will not converge

Symmetry breaking: simplest case

If all the weights are same initially they will remain same over iterations

Symmetry Breaking: general case





Training of FF NN takes time!

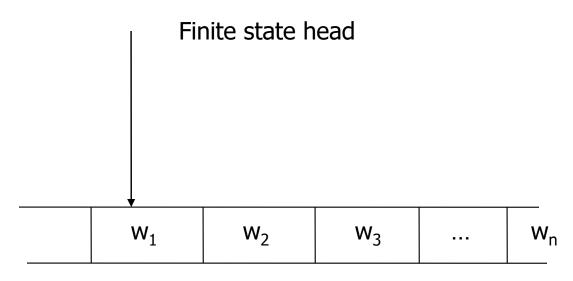
- BP + FFNN combination applied for many problems from diverse disciplines
- Consistent observation: the training takes time as the problem size increases
- Is there a hardness hidden soemwhere?

Hardness of Training Feedforward NN

- NP-completeness result:
 - Avrim Blum, Ronald L. Rivest: Training a 3node neural network is NP-complete. Neural Networks 5(1): 117-127 (1992)Showed that the loading problem is hard
- As the number of training example increases, so does the training time EXPONENTIALLY

A primer on NP-completeness theory

Turing Machine



Infinite Tape

Formal Definition (vide: Hopcroft and Ullmann, 1978)

• A Turing machine is a 7-tuple

- <**Q, Γ, b, Σ, δ, q₀, F>**, where
 - *Q* is a finite set of *states*
 - **Γ** is a finite set of the *tape alphabet/symbols*
 - b is the blank symbol (the only symbol allowed to occur on the tape infinitely often at any step during the computation)
 - Σ, a subset of Γ not including b is the set of input symbols
 - δ: QXΓ → QXΓX {L, R} is a partial function called the *transition function*, where L is left shift, R is right shift.
 - *q₀ € Q* is the *initial state*
 - *F* is the set of *final* or *accepting states*

Non-deterministic and Deterministic Turing Machines

If δ is to a number of possibilities

$\delta: QX\Gamma \to \{QX\Gamma X\{L, R\}\}$

Then the TM is an NDTM; else it is a DTM

Decision problems

- Problems whose answer is yes/no
- For example,
 - Hamilton Circuit: Does an undirected graph have a path that visits every node and comes back to the starting node?
 - Subset sum: Given a finite set of integers, is there a subset of them that sums to 0?

The sets NP and P

- Suppose for a decision problem, an
 NDTM is found that takes time polynomial in the *length* of the input, then we say that the said problem is *in NP*
- If, however, a DTM is found that takes time polynomial in the *length* of the input, then we say that the said problem is *in P*

Relation between *P* and *NP*

- Clearly,
 - P is a subset of NP
- Is P a proper subset of NP?
- That is the P = NP question

The concept of NP-completeness (informal definition)

- A problem is said to be *NP-complete*, if
 - It is in NP, and
 - A known NP-complete problem is reducible TO it.
- The 'first' NP-complete problem is
 - satisfiability: Given a Boolean Formula in Conjunctive Normal Form (CNF), does is have a satisfying assignment, *i.e.*, a set of 0-1 values for the constituting literals that makes the formula evaluate to 1? (even the restricted version of this problem- *3sat-* is NP-complete)

Example of 3-sat

- $(x_1 + x_2 + x'_3)(x'_1 + x_3)$ is satisfiable: $x_2 = 1$ and $x_3 = 1$
- $x_1(x_2 + x_3)x'_1$ is not satisfiable.

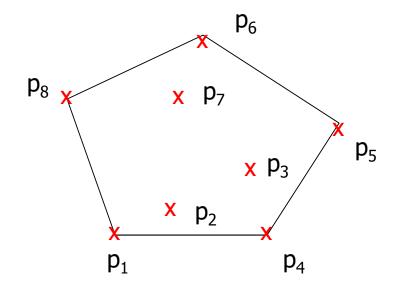
{ x'_{I} means complement of x_{i} }

Numerous problems have been proven to be NP-complete

- The procedure is always the same:
- Take an instance of a known NP-complete problem; let this be p.
- Show a *polynomial time Reduction* of *p* TO an instance *q* of the problem whose status is being investigated.
- Show that the answer to q is yes, if and only if the answer to p is yes.

Clarifying the notion of *Reduction*

- Convex Hull problem:
 - Given a set of points on the two dimensional plane, find the *convex hull* of the points



 P_1 , p_4 , p_5 , p_6 and p_8 are on the convex hull

Complexity of convex hull finding problem

- We will show that this is *O(nlogn)*.
- Method used is *Reduction*.
- The most important first step: choose the right problem.
- We take *sorting* whose complexity is known to be *O(nlogn)*

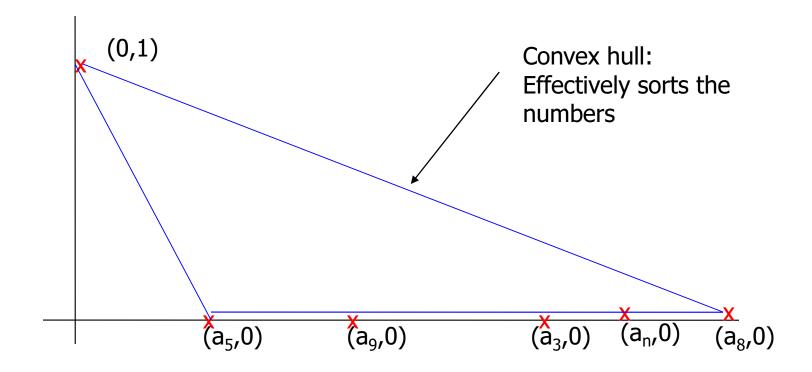
Reduce Sorting to Convex hull (caution: NOT THE OTHER WAY)

- Take *n* numbers *a₁, a₂, a₃, ..., a_n* which are to be sorted.
- This is an instance of a sorting problem.
- From this obtain an instance of a convex hull problem.
- Find the convex hull of the set of points

• <0,1>, <a₁,0>, <a₂,0>, <a₃,0>, ..., <a_n,0>

This transformation takes *linear time* in the length of the input

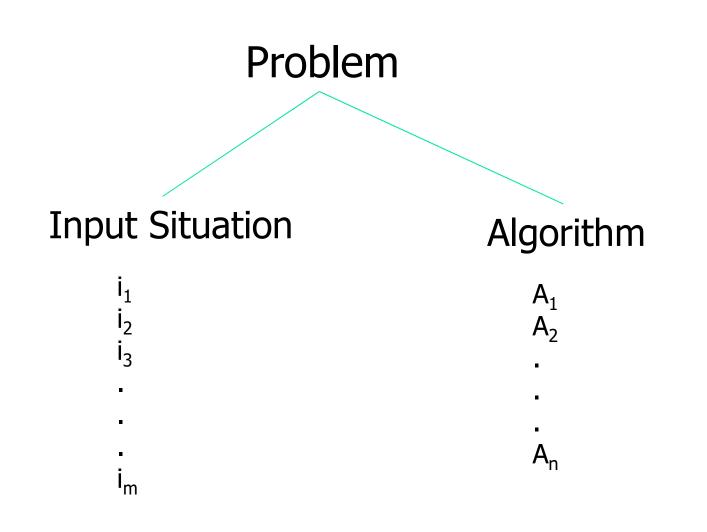
Pictorially...



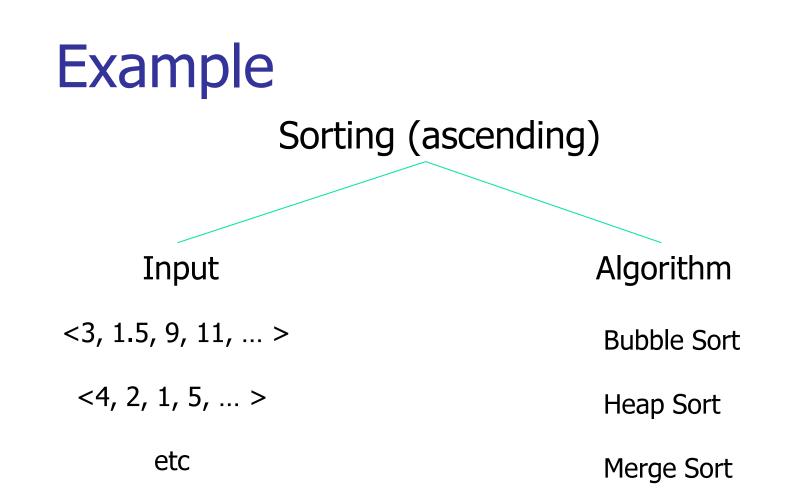
Convex hull finding is *O(nlogn)*

- If the complexity is lower, sorting too has lower complexity
- Because by the linear time procedure shown, ANY instance of the sorting problem can be converted to an instance of the CH problem and solved.
- This is not possible.
- Hence CH is O(nlogn)

Important remarks on reduction

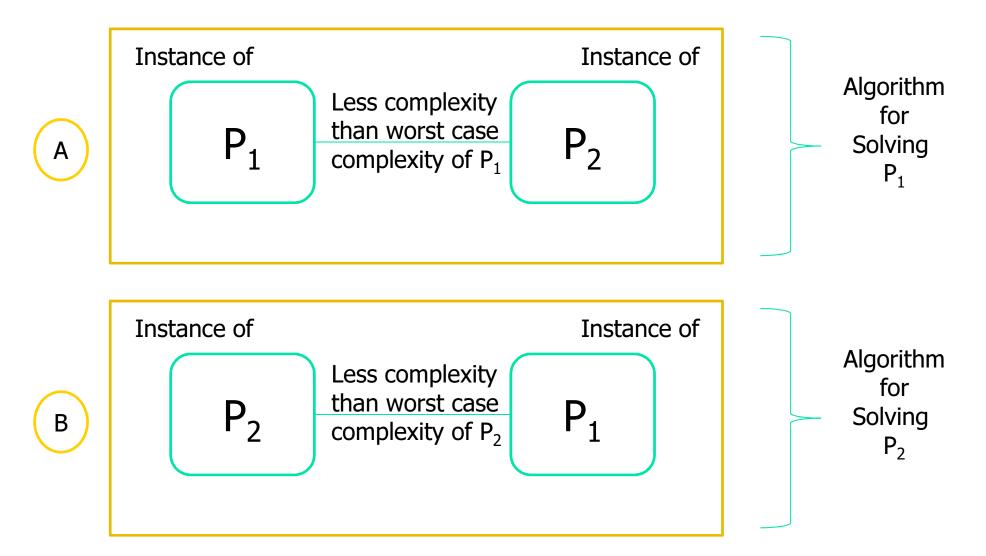


Case Scenario : $<A_p$, $i_q>$ Algorithm A_p on input Worst Case of best algorithm Case Scenario : <A_p, i_q> Algorithm A_p on input i_p
 Worst Case of best algorithm <A[↑], i_↓>
 Time complexity O(|i_↓|) |i_↓| length of i_↓



Best Algorithm : Quicksort Worst Case: Already sorted sequence

Transformations

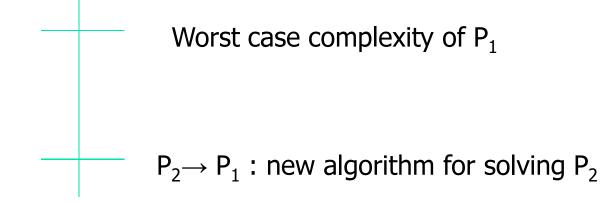


P₁

- 1. Sorting
- 2. Set Splitting

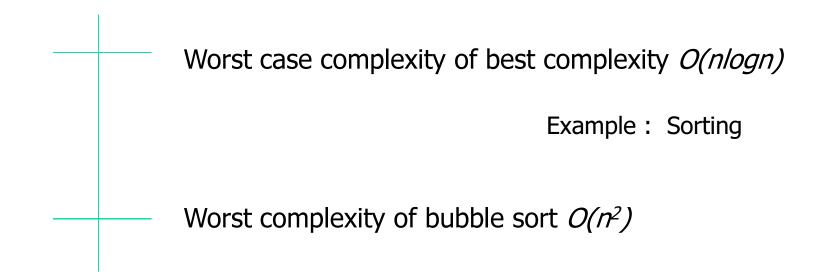
P₂ 1. Convex Hull 2. Linear Confinement

We know the worst case complexity of P_1



For any problem

- **Situation A** when an algorithm is discovered, and its worst case complexity calculated, the effort will continuously be to find a better algorithm. That is to improve upon the worst case complexity.
- **Situation B** Find a problem P_1 whose worst case complexity is known and transform it to the unknown problem with less complexity. That puts a seal on how much improvement can be done on the worst case complexity.



```
<P, A, I>:
<Problem, Algorithm, Input>:
the trinity of complexity theory
```

Training of 1 hidden layer 2 neuron feed forward NN is NPcomplete Numerous problems have been proven to be NP-complete

- The procedure is always the same:
- Take an instance of a known NP-complete problem; let this be p.
- Show a *polynomial time Reduction* of *p* TO an instance *q* of the problem whose status is being investigated.
- Show that the answer to q is yes, if and only if the answer to p is yes.

Training of NN

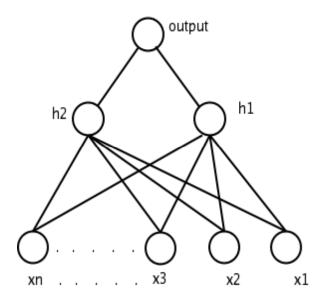
- Training of Neural Network is NP-hard
- This can be proved by the NPcompleteness theory

Question

Can a set of examples be loaded onto a Feed Forward Neural Network efficiently?

Architecture

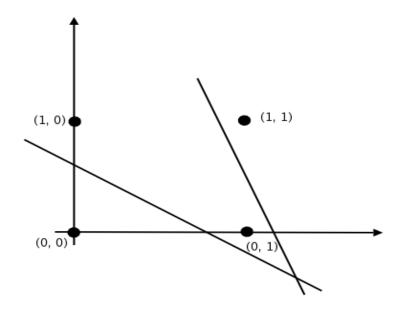
- We study a special architecture.
- Train the neural network called 3-node neural network of feed forward type.
- ALL the neurons are 0-1 threshold neurons



Architecture

h₁ and h₂ are hidden neurons

 They set up hyperplanes in the (n+1) dimensions space.



Confinement Problem

- Can two hyperplanes be set which confine <u>ALL and only</u> the positive points?
- Positive Linear Confinement problem is <u>NP-</u> <u>Complete.</u>
- Training of positive and negative points needs solving the CONFINEMENT PROBLEM.

Solving with Set Splitting Problem

- Set Splitting Problem
- Statement:
 - Given a set S of n elements e₁, e₂, ..., e_n and a set of subsets of S called as concepts denoted by c₁, c₂, ..., c_m, does there exist a splitting of S
 - i.e. are there two sets S₁ (subset of S) and S₂ (subset of S) and none of C₁, C₂, ..., C_m is subset of S₁ or S₂

Set Splitting Problem: example

Example

$$S = \{ s_{1'}, s_{2'}, s_{3} \}$$

$$c_{1} = \{ s_{1'}, s_{2} \}, c_{2} = \{ s_{2'}, s_{3} \}$$

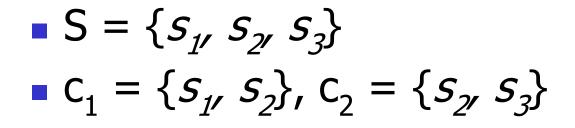
Splitting exists

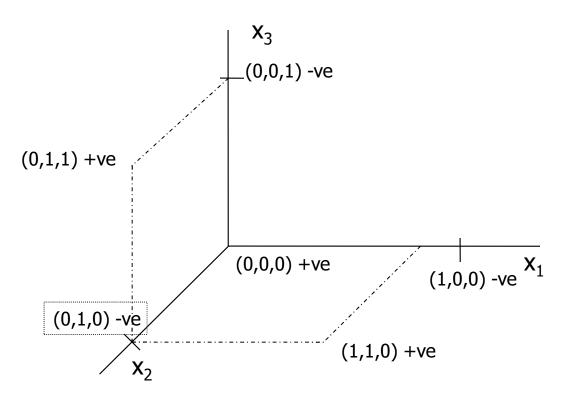
$$S_1 = \{ s_1, s_3 \}, S_2 = \{ s_2 \}$$

Transformation

- For *n* elements in S, set up an *n*-dimensional space.
- Corresponding to each element mark a negative point at unit distance in the axes.
- Mark the origin as positive
- For each concept mark a point as positive.

Transformation





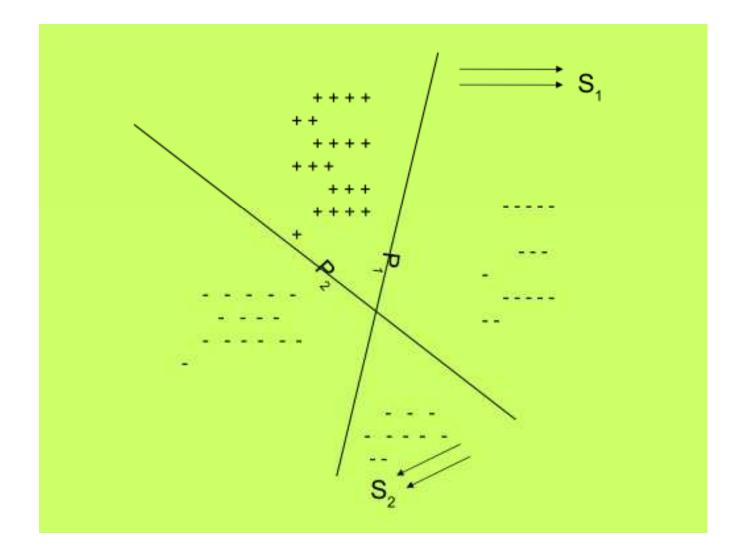
Proving the transformation

- Statement
 - Set-splitting problem has a solution if and only if positive linear confinement problem has a solution.
- Proof in two parts: if part and only if part
- If part
 - *Given* Set-splitting problem has a solution.
 - *To show* that the constructed Positive Linear Confinement (PLC) problem has a solution
 - *i.e.* to show that since S_1 and S_2 exist, P_1 and P_2 exist which confine the positive points

Proof – If part

- P_1 and P_2 are as follows:
 - $P_1: a_1x_1 + a_2x_2 + \dots + a_nx_n = -1/2$ -- Eqn A - $P_2: b_1x_1 + b_2x_2 + \dots + b_nx_n = -1/2$ -- Eqn B $a_i = -1, \quad \text{if } s_i \in S_1$ $= n, \quad \text{otherwise}$ $b_i = -1, \quad \text{if } s_i \in S_2$ $= n, \quad \text{otherwise}$

Representative Diagram



Proof (If part) – Positive points

- For origin (a +ve point), plugging in $x_1 = 0 = x_2 = ... = x_n$ into P₁ we get, 0 > -1/2
- For other points
 - +ve points correspond to c_i 's
 - Suppose c_i contains elements $\{s_1^i, s_2^i, ..., s_n^i\}$, then at least one of the s_j^i cannot be in S_1
 - : co-efficient of $x_j^i = n$,
 - \therefore LHS > -1/2
- Thus +ve points for each c_i belong to the same side of P_1 as the origin.
- Similarly for P_2 .

Proof (If part) – Negative points

- -ve points are the unit distance points on the axes
 - They have only one bit as 1.
 - Elements in S_1 give rise to m_1 -ve points.
 - Elements in S_2 give rise to m_2 -ve points.
- -ve points corresponding to S_1
 - If $q_i \varepsilon S_1$ then x_i in P_1 must have co-efficient -1 $\therefore LHS = -1 < -1/2$

What has been proved

- Origin (+ve point) is on one side of P_1
- +ve points corresponding to c_i 's are on the same side as the origin.
- -ve points corresponding to S_1 are on the opposite side of P_1

Illustrative Example

• Example

-
$$S = \{s_1, s_2, s_3\}$$

- $c_1 = \{s_1, s_2\}, c_2 = \{s_2, s_3\}$
- Splitting : $S_1 = \{s_1, s_3\}, S_2 = \{s_2\}$

- +ve points:
 - (<0, 0, 0>,+), (<1, 1, 0>,+), (<0, 1, 1>,+)
- -ve points:

- (<1, 0, 0>,-), (<0, 1, 0>,-), (<0, 0, 1>,-)

Example (contd.)

• The constructed planes are:

•
$$P_1$$
:
• $a_1x_1 + a_2x_2 + a_3x_3 = -1/2$
• $-x_1 + 3x_2 - x_3 = -1/2$
• P_2 :
• $b_1x_1 + b_2x_2 + b_3x_3 = -1/2$
• $3x_1 - x_2 + 3x_3 = -1/2$

Example (contd.)

•
$$P_1: -x_1 + 3x_2 - x_3 = -1/2$$

- <0, 0, 0>: LHS = 0 > -1/2,
 - ∴ <0, 0, 0> is +ve pt (similarly, <1,1,0> and
 <0,1,1> are classified as +ve)
- <1, 0, 0>: LHS = -1 < -1/2,

- :: <1, 0, 0 > is -ve pt

- <0, 0, 1>: LHS = -1 < -1/2,
 - :: <0, 0, 1 >is -ve pt

But <0,1,0> is classified as +ve, i.e., cannot classify the point of S_2 . Example (contd.)

•
$$P_2: 3x_1 - x_2 + 3x_3 = -1/2$$

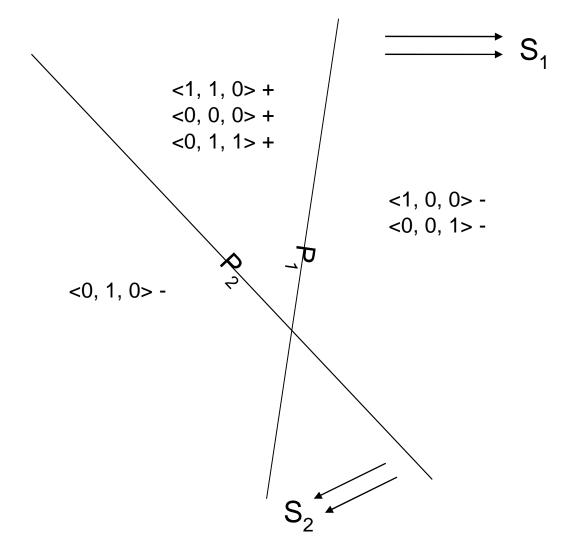
• <0, 0, 0> : LHS = 0 > -1/2

- $\therefore <0, 0, 0 >$ is +ve pt

- <1, 1, 0> : LHS = 2 > -1/2
 - $\therefore <1, 1, 0 >$ is +ve pt
- <0, 1, 1> : LHS = 2 > -1/2
 - ∴ <0, 1, 1> is +ve pt
- <0, 1, 0>: -1 < -1/2

- ∴ <0, 1, 0> is -ve pt

Graphic for Example



Proof – Only if part

- Given +ve and -ve points constructed from the set-splitting problem, two hyperplanes P_1 and P_2 have been found which do positive linear confinement
- To show that S can be split into S_1 and S_2

Proof - Only if part (contd.)

- Let the two planes be:
 - $P_1: a_1x_1 + a_2x_2 + \dots + a_nx_n = \theta_1$
 - $P_2: b_1 x_1 + b_2 x_2 + \dots + b_n x_n = \theta_2$
- Then,
 - $S_1 = \{\text{elements corresponding to -ve points} \text{ separated by } P_1 \}$
 - $S_2 = \{\text{elements corresponding to -ve points separated by } P_2 \}$

Proof - Only if part (contd.)

- Since P_1 and P_2 <u>take care of</u> **all** -ve points, their union is equal to S ... (proof obvious)
- To show: No c_i is a subset of S_1 and S_2
- *i.e.*, there is in c_i at least one element $\notin S_1$ -- Statement (A)

Proof - Only if part (contd.)

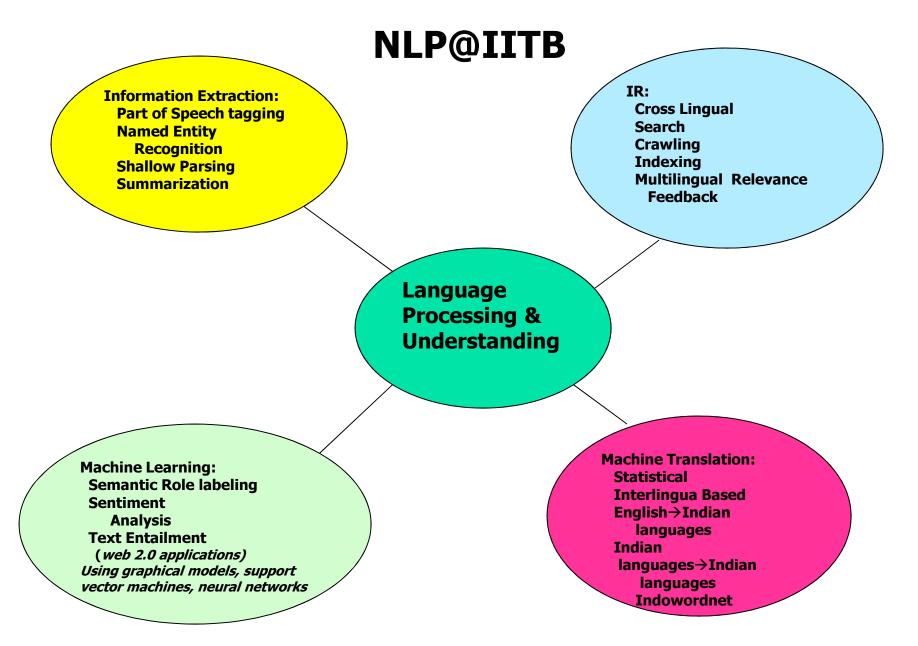
- Suppose $c_i \subset S_i$, then every element in c_i is contained in S_i
- Let e₁ⁱ, e₂ⁱ, ..., e_{mi}ⁱ be the elements of c_i corresponding to each element
- Evaluating for each co-efficient, we get,
 - $a_{1} < \theta_{1}, \quad a_{2} < \theta_{1}, \dots, \quad a_{mi} < \theta_{1} (1)$ $But a_{1} + a_{2} + \dots + a_{m} > \theta_{1} \quad --(2)$ $and \ 0 > \theta_{1} \quad --(3)$
- CONTRADICTION

What has been shown

- Positive Linear Confinement is NP-complete.
- Confinement on any set of points of one kind is NPcomplete (easy to show)
- The architecture is special- only one hidden layer with two nodes
- The neurons are special, 0-1 threshold neurons, NOT sigmoid
- Hence, can we generalize and say that FF NN training is NP-complete?
- Not rigorously, perhaps; but strongly indicated

Summing up

- Some milestones covered
 - A* Search
 - Predicate Calculus, Resolution, Prolog
 - HMM, Inferencing, Training
 - Perceptron, Back propagation, NP-completeness of NN Training
- Lab: to reinforce understanding of lectures
- Important topics left out: Planning, IR (advanced course next sem)
- Seminars: breadth and exposure
- Lectures: Foundation and depth



Resources: <u>http://www.cfilt.iitb.ac.in</u> Publications: <u>http://www.cse.iitb.ac.in/~pb</u> *Linguistics is the eye and computation the body*