CS344: Introduction to Artificial

Intelligence
 (associated lab: CS386)

Pushpak Bhattacharyya CSE Dept.,
 IIT Bombay

Lecture 4: A* and its properties cntd; monotonicity
$11^{\text {th }}$ Jan, 2011

Examples

Problem 1:8-puzzle

4	3	6
2	1	8
7		5

S

G

Tile movement represented as the movement of the blank space.
Operators:
L: Blank moves left
R : Blank moves right
U : Blank moves up
D : Blank moves down

$$
C(L)=C(R)=C(U)=C(D)=1
$$

Problem 2: Missionaries and Cannibals

Constraints

- The boat can carry at most 2 people
- On no bank should the cannibals outnumber the missionaries

Steps of GGS
 (principles of AI, Nilsson,)

- 1. Create a search graph G, consisting solely of the start node S; put S on a list called $O P E N$.
- 2. Create a list called CLOSED that is initially empty.
- 3. Loop: if OPEN is empty, exit with failure.
- 4. Select the first node on OPEN, remove from OPEN and put on CLOSED, call this node n.
- 5 . if n is the goal node, exit with the solution obtained by tracing a path along the pointers from n to s in G. (ointers are established in step 7).
- 6 . Expand node n, generating the set M of its successors that are not ancestors of n. Install these memes of M as successors of n in G.

GGS steps (contd.)

- 7. Establish a pointer to n from those members of M that were not already in G (i.e., not already on either OPEN or CLOSED). Add these members of M to OPEN. For each member of M that was already on OPEN or CLOSED, decide whether or not to redirect its pointer to n. For each member of M already on CLOSED, decide for each of its descendents in G whether or not to redirect its pointer.
- 8. Reorder the list OPEN using some strategy.
- 9. Go LOOP.

Algorithm A*

- One of the most important advances in AI
- $g(n)=$ least cost path to n from S found so far
- $h(n)<=h^{*}(n)$ where $h^{*}(n)$ is the actual cost of optimal path to G (node to be found) from n "Optimism leads to optimality"

A* Algorithm - Definition and Properties

- $f(n)=g(n)+h(n)$
- The node with the least value of f is chosen from the OL.
- $\quad \begin{aligned} & f^{*}(n)=g^{*}(n)+h^{*}(n), \\ & \text { where, }\end{aligned}$ $g^{*}(n)=$ actual cost of the optimal path (s, n)
$h^{*}(n)=$ actual cost of optimal path (n, g)
- $g(n) \geq g^{*}(n)$
- By definition, $h(n) \leq h^{*}(n)$

8-puzzle: heuristics

Example: 8 puzzle

2	1	4
7	8	3
5	6	

S

1	6	7
4	3	2
5		8

n

1	2	3	
4	5	6	
7	8		
9			

$h^{*}(n)=$ actual no. of moves to transform n to g

1. $h_{1}(n)=$ no. of tiles displaced from their destined position.
2. $h_{2}(n)=$ sum of Manhattan distances of tiles from their destined position.
$h_{1}(n) \leq h^{*}(n)$ and $h_{1}(n) \leq h^{*}(n)$

Comparison

A* Algorithm- Properties

- Admissibility: An algorithm is called admissible if it always terminates and terminates in optimal path
- Theorem: A* is admissible.
- Lemma: Any time before A^{*} terminates there exists on $O L$ a node n such that $f(n)<=f^{*}(s)$
- Observation: For optimal path $s \rightarrow n_{1} \rightarrow n_{2} \rightarrow \ldots \rightarrow$ g,

1. $h^{*}(g)=0, g^{*}(s)=0$ and
2. $f^{*}(s)=f^{*}\left(n_{1}\right)=f^{*}\left(n_{2}\right)=f^{*}\left(n_{3}\right) \ldots=f^{*}(g)$

A* Properties (contd.)

$f^{*}\left(n_{i}\right)=f^{*}(s), \quad n_{i} \neq s$ and $n_{i} \neq g$
Following set of equations show the above equality:

$$
\begin{aligned}
& f^{*}\left(n_{i}\right)=g^{*}\left(n_{i}\right)+h^{*}\left(n_{j}\right) \\
& f^{*}\left(n_{i+1}\right)=g^{*}\left(n_{i+1}\right)+h^{*}\left(n_{i+1}\right) \\
& g^{*}\left(n_{i+1}\right)=g^{*}\left(n_{i}\right)+c\left(n_{i}, n_{i+1}\right) \\
& h^{*}\left(n_{i+1}\right)=h^{*}\left(n_{i}\right)-c\left(n_{i}, n_{i+1}\right)
\end{aligned}
$$

Above equations hold since the path is optimal.

Admissibility of A*

A* always terminates finding an optimal path to the goal if such a path exists.

Intuition

(1) In the open list there always exists a node n such that $f(n)<=f^{*}(S)$.
(2) If A* does not terminate, the f value of the nodes expanded become unbounded.

1) and 2) are together inconsistent

Hence A* must terminate

Lemma

Any time before A^{*} terminates there exists in the open list a node n^{\prime} such that $f\left(n^{\prime}\right)<=f^{*}(S)$

For any node n_{i} on optimal path,
$f\left(n_{i}\right)=g\left(n_{i}\right)+h\left(n_{i}\right)$
$<=g^{*}\left(n_{i}\right)+h^{*}\left(n_{i}\right)$
Also $f^{*}\left(n_{i}\right)=f^{*}(S)$
Let n ' be the first node in the optimal path that is in OL. Since all parents of n^{\prime} have gone to CL,

$$
\begin{aligned}
& g\left(n^{\prime}\right)=g^{*}\left(n^{\prime}\right) \text { and } h\left(n^{\prime}\right)<=h^{*}\left(n^{\prime}\right) \\
& =>f\left(n^{\prime}\right)<=f^{*}(S)
\end{aligned}
$$

If A* does not terminate

Let e be the least cost of all arcs in the search graph.
Then $g(n)>=e . l(n)$ where $l(n)=\#$ of arcs in the path from S to n found so far. If A* does not terminate, $g(n)$ and hence $f(n)=g(n)+h(n)[h(n)>=0]$ will become unbounded.

This is not consistent with the lemma. So A* has to terminate.

$2^{\text {nd }}$ part of admissibility of A^{*}

The path formed by A* is optimal when it has terminated

Proof

Suppose the path formed is not optimal
Let G be expanded in a non-optimal path.
At the point of expansion of G,

$$
\begin{aligned}
& f(G)=g(G)+h(G) \\
& =g(G)+0 \\
& >g^{*}(G)=g^{*}(S)+h^{*}(S) \\
& \quad=f^{*}(S)\left[f^{*}(S)=\text { cost of optimal path }\right]
\end{aligned}
$$

This is a contradiction
So path should be optimal

Summary on Admissibility

- 1. A* algorithm halts
- 2. A* algorithm finds optimal path
- 3. If $f(n)<f^{*}(S)$ then node n has to be expanded before termination
- 4. If A* does not expand a node n before termination then $f(n)>=f^{*}(S)$

Better Heuristic Performs
 Better

Theorem

A version $\mathrm{A}_{2} *$ of A* that has a "better" heuristic than another version A_{1}^{*} of A* performs at least "as well as" A_{1} *

Meaning of "better"
$h_{2}(n)>h_{l}(n)$ for all n

Meaning of "as well as"
$\mathrm{A}_{1}{ }^{*}$ expands at least all the nodes of $\mathrm{A}_{2}{ }^{*}$

Proof by induction on the search tree of $\mathrm{A}_{2}{ }^{*}$.
A* on termination carves out a tree out of G

Induction

on the depth k of the search tree of $\mathrm{A}_{2}{ }^{*} . \mathrm{A}_{1} *$ before termination expands all the nodes of depth k in the search tree of $\mathrm{A}_{2}{ }^{*}$.
$k=0$. True since start node S is expanded by both
Suppose $\mathrm{A}_{1} *$ terminates without expanding a node n at depth $(k+1)$ of $\mathrm{A}_{2}{ }^{*}$ search tree.

Since $\mathrm{A}_{1}{ }^{*}$ has seen all the parents of n seen by $\mathrm{A}_{2}{ }^{*}$ $g_{1}(n)<=g_{2}(n)$

Since A_{1} * has terminated without expanding n,
$f_{l}(n)>=f^{*}(S)$
Any node whose f value is strictly less than $f^{*}(S)$ has to be expanded.
Since A_{2} * has expanded n
$f_{2}(n)<=f^{*}(S)$

From (1), (2), and (3)
$h_{l}(n)>=h_{2}(n)$ which is a contradiction. Therefore, $\mathrm{A}_{1}{ }^{*}$ has to expand all nodes that $\mathrm{A}_{2} *$ has expanded.
Exercise

If better means $h_{2}(n)>h_{l}(n)$ for some n and $h_{2}(n)=h_{l}(n)$ for others, then Can you prove the result?

Lab assignment

- Implement A* algorithm for the following problems:
- 8 puzzle
- Missionaries and Cannibals
- Specifications:
- Try different heuristics and compare with baseline case, i.e., the breadth first search ($h=0$).
- Violate the condition $h \leq h^{*}$. See if the optimal path is still found. Observe the speedup.
- Have as general a program as possible; when a problem is change only a few things should change (say few classes).
- Present the results in an understandable way, say through graphs and tables.
- Have enough comments in the code; your marks will be affected by not having enough of this.

Monotonicity

Definition

- A heuristic $h(p)$ is said to satisfy the monotone restriction, if for all ' p ', $h(p)<=h\left(p_{c}\right)+\operatorname{cost}\left(p, p_{c}\right)$, where ' p_{c} 'is the child of ' p '.

Theorem

- If monotone restriction (also called triangular inequality) is satisfied, then for nodes in the closed list, redirection of parent pointer is not necessary. In other words, if any node ' n 'is chosen for expansion from the open list, then $g(n)=g\left(n^{*}\right)$, where $g(n)$ is the cost of the path from the start node ' s 'to ' n 'at that point of the search when ' n 'is chosen, and $g\left(n^{*}\right)$ is the cost of the optimal path from ' s 'to ' n '

Grounding the Monotone Restriction

7	3	
1	2	4
8	5	6

1	2	3
4	5	6
7	8	

n
$\frac{g_{l}}{h(n)-: \text { number of displaced tiles }}$
Is $h(n)$ monotone ?
$h(n)=8$
$h\left(n^{\prime}\right)=8$
$C\left(n, n^{\prime}\right)=1$
Hence monotone

Monotonicity of \# of Displaced

 Tile Heuristic- $h(n)<=h\left(n^{\prime}\right)+c\left(n, n^{\prime}\right)$
- Any move reduces $\mathrm{h}(\mathrm{n})$ by at most 1
- $c=1$
- Hence, h (parent) < = h(child) +1
- If the empty cell is also included in the cost, then h need not be monotone (try!)

Monotonicity of Manhattan Distance Heuristic (1/2)

- Manhattan distance $=X$-dist $+Y$-dist from the target position
- Refer to the diagram in the first slide:
- $\operatorname{hmn}(n)=1+1+1+2+1+1+2+1=$ 10
- $h m n\left(n^{\prime}\right)=1+1+1+3+1+1+2+1$ $=11$
- Cost $=1$
- Again, $h(n)<=h\left(n^{\prime}\right)+c\left(n, n^{\prime}\right)$

Monotonicity of Manhattan
 Distance Heuristic (2/2)

- Any move can either increase the h value or decrease it by at most 1.
- Cost again is 1 .
- Hence, this heuristic also satisfies Monotone Restriction
- If empty cell is also included in the cost then manhattan distance does not satisfy monotone restriction (try!)
- Apply this heuristic for Missionaries and Cannibals problem

Relationship between Monotonicity and Admissibility

- Observation:

Monotone Restriction \rightarrow Admissibility but not vice-versa

- Statement: If $h\left(n_{i}\right)<=h\left(n_{j}\right)+c\left(n_{j} n_{j}\right)$ for all i, j
then $h\left(n_{i}\right)<=h^{*}\left(n_{i}\right)$ for all i

Proof of Monotonicity \rightarrow admissibility

Let us consider the following as the optimal path starting with a node $n=n_{1}-n_{2}-n_{3} \ldots n_{i}-\ldots n m=g_{1}$
Observe that

$$
h^{*}(n)=c\left(n_{1}, n_{2}\right)+c\left(n_{2}, n_{3}\right)+\ldots+c\left(n_{m-1}, g_{i}\right)
$$

Since the path given above is the optimal path from n to g_{1}
Now,

$$
\begin{aligned}
& h\left(n_{1}\right)<=h\left(n_{2}\right)+c\left(n_{1}, n_{2}\right)-\cdots-- \text { Eq } 1 \\
& h\left(n_{2}\right)<=h\left(n_{3}\right)+c\left(n_{2}, n_{3}\right)-----E q 2 \\
& \text { : : : : : } \\
& h(n m-1)=h(g i)+c(n m-1, g i)-----E q(m-1)
\end{aligned}
$$

Adding Eq 1 to Eq (m-1) we get

$$
h(n)<=h\left(g_{1}\right)+h^{*}(n)=h^{*}(n)
$$

Hence proved that MR $\rightarrow\left(\mathrm{h}<=h^{*}\right)$

Proof (continued...)

Counter example for vice-versa

$$
\begin{array}{ll}
h^{*}\left(n_{1}\right)=3 & h\left(n_{1}\right)=2.5 \\
h^{*}\left(n_{2}\right)=2 & h\left(n_{2}\right)=1.2 \\
h^{*}\left(n_{3}\right)=1 & h\left(n_{3}\right)=0.5 \\
\vdots & : \\
h^{*}\left(g_{1}\right)=0 & h\left(g_{1}\right)=0
\end{array}
$$

$h<h^{*}$ everywhere but MR is not satisfied

Proof of MR leading to optimal path for every expanded node (1/2)

Let $S-N_{1}-N_{2}-N_{3}-N_{4} \ldots N_{m} \ldots N_{k}$ be an optimal path from S to N_{k} (all of which might or might not have been explored). Let N_{m} be the last node on this path which is on the open list, i.e., al/ the ancestors from S up to N_{m-1} are in the closed list.

For every node N_{p} on the optimal path,
$g^{*}\left(N_{p}\right)+h\left(N_{p}\right)<=g^{*}\left(N_{p}\right)+C\left(N_{p} N_{p+1}\right)+h\left(N_{p+1}\right)$, by monotone restriction
$g^{*}\left(N_{p}\right)+h\left(N_{p}\right)<=g^{*}\left(N_{p+1}\right)+h\left(N_{p+1}\right)$ on the optimal path
$g^{*}\left(N_{m}\right)+h\left(N_{m}\right)<=g^{*}\left(N_{k}\right)+h\left(N_{k}\right)$ by transitivity
Since all ancestors of N_{m} in the optimal path are in the closed list,
$g\left(N_{m}\right)=g^{*}\left(N_{m}\right)$.
$=>f\left(N_{m}\right)=g\left(N_{m}\right)+h\left(N_{m}\right)=g^{*}\left(N_{m}\right)+h\left(N_{m}\right)<=g^{*}\left(N_{k}\right)+h\left(N_{k}\right)$

Proof of MR leading to optimal path for every expanded node (2/2)

Now if N_{k} is chosen in preference to N_{m}

$$
f\left(N_{k}\right)<=f\left(N_{m}\right)
$$

$g\left(N_{k}\right)+h\left(N_{k}\right)<=g\left(N_{m}\right)+h\left(N_{m}\right)$ $=g^{*}\left(N_{m}\right)+h\left(N_{m}\right)$ $<=g^{*}\left(\left(N_{k}\right)+h\left(N_{k}\right)\right.$
$g\left(N_{k}\right)<=g^{*}\left(N_{k}\right)$
But $\quad g\left(N_{k}\right)>=g^{*}\left(N_{k}\right)$, by definition
Hence $g\left(N_{k}\right)=g^{*}\left(N_{k}\right)$
This means that if N_{k} is chosen for expansion, the optimal path to this from S has already been found

TRY proving by induction on the length of optimal path

Monotonicity of $f()$ values

Statement:
f values of nodes expanded by A* increase monotonically, if h is monotone.
Proof:
Suppose n_{i} and n_{j} are expanded with temporal sequentiality, i.e., n_{j} is expanded after n_{i}

Droof $(1 / 3)$.

Possible cases for rigorous proof

n_{j}^{\prime} s parent pointer changes to n_{i} and expanded
ni_{i} expanded before n_{j}

n_{j} comes to open list as a result of expanding n_{i} and is expanded immediately

Proof (2/3)...

- All the previous cases are forms of the following two cases (think!)
- CASE 1:
n_{j} was on open list when n_{i} was expanded Hence, $f\left(n_{i}\right)<=f\left(n_{j}\right)$ by property of A* *
- CASE 2:
n_{j} comes to open list due to expansion of n_{1}

Droof $(3 / 3)=$.

Case 2:

$$
\begin{aligned}
& \left.f\left(n_{i}\right)=g\left(n_{i}\right)+h\left(n_{i}\right) \quad \text { (Defn of } f\right) \\
& \left.f\left(n_{j}\right)=g\left(n_{j}\right)+h\left(n_{j}\right) \quad \text { (Defn of } f\right) \\
& f(n i)=g(n i)+h(n i)=g^{*}(n i)+h(n i) \quad--E q 1 \quad \text { (since } 1 \text { is } \\
& \text { picked for } \\
& \mathrm{ni}_{\mathrm{i}} \text { is on } \\
& \text { path) } \\
& \text { path) }
\end{aligned}
$$

With the similar argument for n_{j} we can write the following:

$$
f\left(n_{j}\right)=g\left(n_{j}\right)+h\left(n_{j}\right)=g^{*}\left(n_{j}\right)+h\left(n_{j}\right) \quad---E q 2
$$

Also,

$$
h\left(n_{i}\right)<=h\left(n_{j}\right)+c\left(n_{i}, n_{j}\right) \quad---E q 3 \text { (Parent- child }
$$

relation)

$$
g^{*}\left(n_{j}\right)=g^{*}\left(n_{i}\right)+\mathrm{c}\left(n_{i}, n_{j}\right) \quad---\mathrm{Eq} 4 \begin{aligned}
& \text { (both nodes on } \\
& \text { optimal path) }
\end{aligned}
$$

From Eq 1, 2, 3 and 4

$$
f\left(n_{i}\right)<=f\left(n_{j}\right)
$$

Hence proved.

Better way to understand monotonicity of $f()$

- Let $f\left(n_{1}\right), f\left(n_{2}\right), f\left(n_{3}\right), f\left(n_{4}\right) \ldots f\left(n_{k-1}\right), f\left(n_{k}\right)$ be the f values of k expanded nodes.
- The relationship between two consecutive expansions $f\left(n_{i}\right)$ and $f\left(n_{i+1}\right)$ nodes always remains the same, i.e., $f\left(n_{i}\right)<=f\left(n_{i+1}\right)$
- This because
- $f\left(n_{i}\right)=g\left(n_{i}\right)+h\left(n_{i}\right)$ and
- $g\left(n_{j}\right)=g^{*}\left(n_{i}\right)$ since n_{i} is an expanded node (proved theorem) and this value cannot change
- $h\left(n_{j}\right)$ value also cannot change Hence nothing after n_{i+1} 's expansion can change the above relationship.

A list of AI Search Algorithms

- A^{*}
- AO*
- IDA* (Iterative Deepening)
- Minimax Search on Game Trees
- Viterbi Search on Probabilistic FSA
- Hill Climbing
- Simulated Annealing
- Gradient Descent
- Stack Based Search
- Genetic Algorithms
- Memetic Algorithms

