
CS344: Introduction to Artificial
Intelligence

(associated lab: CS386)

Pushpak Bhattacharyya
CSE Dept.,
IIT Bombay

Lecture 5: Monotonicity

13th Jan, 2011

Steps of GGS
(principles of AI, Nilsson,)

� 1. Create a search graph G, consisting solely of the
start node S; put S on a list called OPEN.

� 2. Create a list called CLOSED that is initially empty.

� 3. Loop: if OPEN is empty, exit with failure.

� 4. Select the first node on OPEN, remove from OPEN� 4. Select the first node on OPEN, remove from OPEN
and put on CLOSED, call this node n.

� 5. if n is the goal node, exit with the solution
obtained by tracing a path along the pointers from n
to s in G. (ointers are established in step 7).

� 6. Expand node n, generating the set M of its
successors that are not ancestors of n. Install these
memes of M as successors of n in G.

GGS steps (contd.)

� 7. Establish a pointer to n from those members of M
that were not already in G (i.e., not already on either
OPEN or CLOSED). Add these members of M to
OPEN. For each member of M that was already on OPEN. For each member of M that was already on
OPEN or CLOSED, decide whether or not to redirect
its pointer to n. For each member of M already on
CLOSED, decide for each of its descendents in G
whether or not to redirect its pointer.

� 8. Reorder the list OPEN using some strategy.

� 9. Go LOOP.

Illustration for CL parent pointer
redirection recursively

S

1

Node in CL

2
3

54

6

Node in OL

Parent Pointer

Illustration for CL parent pointer
redirection recursively

S

1 Stage 1 :

2
3

54

6

Parent
Pointer
change from

2 - > 3 (Cost
= 4)

to
2 - > 1 (Cost
= 2)

Illustration for CL parent pointer
redirection recursively

S

1 Stage 2 :

2
3

54

6

Parent
Pointer
change from

4 - > 6 (Cost
= 4)

to
4 - > 2 (Cost
= 3)

Better Heuristic Performs
Better

Theorem

A version A2* of A* that has a “better” heuristic than another version
A1* of A* performs at least “as well as” A1*

Meaning of “better”
h2(n) > h1(n) for all n

Meaning of “as well as”
A1* expands at least all the nodes of A2*

h*(n)

h2*(n)

h1*(n) For all nodes n,
except the goal
node

Proof by induction on the search tree of A2*.

A* on termination carves out a tree out of G

Induction
on the depth k of the search tree of A2*. A1* before termination
expands all the nodes of depth k in the search tree of A2*.

k=0. True since start node S is expanded by bothk=0. True since start node S is expanded by both

Suppose A1* terminates without expanding a node n at depth (k+1) of
A2* search tree.

Since A1* has seen all the parents of n seen by A2*
g1(n) <= g2(n) (1)

k+1

S

G

Since A1* has terminated without
expanding n,
f1(n) >= f*(S) (2)

Any node whose f value is strictly less
than f*(S) has to be expanded.
Since A2* has expanded n
f2(n) <= f*(S) (3)

From (1), (2), and (3)
h1(n) >= h2(n) which is a contradiction. Therefore, A1* has to expand
all nodes that A2* has expanded.

Exercise

If better meansh2(n) > h1(n) for some n and h2(n) = h1(n) for others,
then Can you prove the result ?

Monotonicity

Definition

� A heuristic h(p) is said to satisfy the
monotone restriction, if for all ‘p’,
h(p)<=h(p

c
)+cost(p, p

c
), where ‘p

c
’ is h(p)<=h(p

c
)+cost(p, p

c
), where ‘p

c
’ is

the child of ‘p’.

Theorem

� If monotone restriction (also called triangular
inequality) is satisfied, then for nodes in the
closed list, redirection of parent pointer is not
necessary. In other words, if any node ‘n’ is necessary. In other words, if any node ‘n’ is
chosen for expansion from the open list, then
g(n)=g*(n), where g(n) is the cost of the
path from the start node ‘s’ to ‘n’ at that point
of the search when ‘n’ is chosen, and g*(n) is
the cost of the optimal path from ‘s’ to ‘n’

Grounding the Monotone Restriction
7 3

1 2 4

8 5 6

1 2 3

4 5 6

7 8

n gl

7 3 4

1 2

8 5 6

h(n) -: number of displaced tiles

Is h(n) monotone ?
h(n) = 8
h(n’) = 8
C(n,n’) = 1

Hence monotone

n’

Monotonicity of # of Displaced
Tile Heuristic

� h(n) < = h(n’) + c(n, n’)

� Any move reduces h(n) by at most 1

� c = 1� c = 1

� Hence, h(parent) < = h(child) + 1

� If the empty cell is also included in the
cost, then h need not be monotone
(try!)

Monotonicity of Manhattan
Distance Heuristic (1/2)

� Manhattan distance= X-dist+Y-dist from
the target position
� Refer to the diagram in the first slide:
hmn(n) = 1 + 1 + 1 + 2 + 1 + 1 + 2 + 1 = � hmn(n) = 1 + 1 + 1 + 2 + 1 + 1 + 2 + 1 =
10
� hmn(n’) = 1 + 1 + 1 + 3 + 1 + 1 + 2 + 1
= 11
� Cost = 1
� Again, h(n) < = h(n’) + c(n, n’)

Monotonicity of Manhattan
Distance Heuristic (2/2)

� Any move can either increase the h value
or decrease it by at most 1.

� Cost again is 1.
� Hence, this heuristic also satisfies � Hence, this heuristic also satisfies
Monotone Restriction
� If empty cell is also included in the cost
then manhattan distance does not satisfy
monotone restriction (try!)
� Apply this heuristic for Missionaries and
Cannibals problem

Relationship between
Monotonicity and Admissibility

� Observation:

Monotone Restriction → Admissibility

but not vice-versabut not vice-versa

� Statement: If h(ni) <= h(nj) + c(ni, nj)
for all i, j

then h(ni) < = h*(ni) for all i

Proof of
Monotonicity�admissibility

Let us consider the following as the optimal path starting with a
node n = n1 – n2 – n3 … ni - … nm = gl

Observe that
h*(n) = c(n1, n2) + c(n2,n3) + … + c(nm-1, gl)

Since the path given above is the optimal path from n to glSince the path given above is the optimal path from n to gl

Now,
h(n1) <= h(n2) + c(n1, n2) ------ Eq 1
h(n2) <= h(n3) + c(n2, n3) ------ Eq 2
: : : : : :
h(nm-1) = h(gi) + c(nm-1, gi)------ Eq (m-1)

Adding Eq 1 to Eq (m-1) we get
h(n) <= h(gl) + h*(n) = h*(n)

Hence proved that MR → (h <= h*)

Proof (continued…)
Counter example for vice-versa

h*(n1) = 3 h(n1) = 2.5

h*(n2) = 2 h(n2) = 1.2

h*(n) = 1 h(n) = 0.5

n1

n2 h*(n3) = 1 h(n3) = 0.5

: : : :

h*(gl) = 0 h(gl) = 0

h < h* everywhere but MR is not
satisfied

n2

n3

gl

:

Let S-N1- N2- N3- N4... Nm …Nk be an optimal path from S to Nk (all of
which might or might not have been explored). Let Nm be the last
node on this path which is on the open list, i.e., all the ancestors from S
up to Nm-1 are in the closed list.

For every node Np on the optimal path,

Proof of MR leading to optimal path
for every expanded node (1/2)

g*(Np)+h(Np)<= g*(Np)+C(Np,Np+1)+h(Np+1), by monotone restriction
g*(Np)+h(Np)<= g*(Np+1)+h(Np+1) on the optimal path
g*(Nm)+ h(Nm)<= g*(Nk)+ h(Nk) by transitivity

Since all ancestors of Nm in the optimal path are in the closed list,

g (Nm)= g*(Nm).
=> f(Nm)= g(Nm)+ h(Nm)= g*(Nm)+ h(Nm)<= g*(Nk)+ h(Nk)

Now if Nk is chosen in preference to Nm,
f(Nk) <= f(Nm)

g(Nk)+ h(Nk) <= g(Nm)+ h(Nm)
= g*(Nm)+ h(Nm)
<= g*((Nk)+ h(Nk)

g(Nk)<=g*(Nk)

Proof of MR leading to optimal path
for every expanded node (2/2)

But g(Nk)>=g*(Nk), by definition

Hence g(Nk)=g*(Nk)

This means that if Nk is chosen for expansion, the optimal path to this
from S has already been found

TRY proving by induction on the length of optimal path

Monotonicity of f() values

Statement:

f values of nodes expanded by A*
increase monotonically, if h is
monotone. monotone.

Proof:

Suppose ni and nj are expanded with
temporal sequentiality, i.e., nj is
expanded after ni

Proof (1/3)…

ni expanded before nj

ni and nj co-existing nj comes to open list as a
result of expanding n and is result of expanding ni and is
expanded immediately

nj’s parent pointer
changes to ni and
expanded

nj expanded
after ni

Proof (2/3)…

� All the previous cases are forms of the
following two cases (think!)

� CASE 1:� CASE 1:

nj was on open list when ni was expanded

Hence, f(ni) <= f(nj) by property of A*

� CASE 2:

nj comes to open list due to expansion
of n

i

Proof (3/3)…

ni

Case 2:
f(ni) = g(ni) + h(ni) (Defn of f)
f(nj) = g(nj) + h(nj) (Defn of f)

f(ni) = g(ni) + h(ni) = g*(ni) + h(ni) ---Eq 1

(since ni is picked for expansion ni is on optimal path)

nj With the similar argument for nj we can write the following:
f(nj) = g(nj) + h(nj) = g*(nj) + h(nj) ---Eq 2

Also,
h(ni) < = h(nj) + c(ni, nj) ---Eq 3 (Parent- child

relation)
g*(nj) = g*(ni) + c(ni, nj) ---Eq 4 (both nodes on

optimal path)
From Eq 1, 2, 3 and 4

f(ni) <= f(nj)
Hence proved.

Better way to understand
monotonicity of f()

� Let f(n1), f(n2), f(n3), f(n4)… f(nk-1), f(nk) be the f
values of k expanded nodes.

� The relationship between two consecutive expansions
f(ni) and f(ni+1) nodes always remains the same, i.e.,
f(ni) <= f(ni+1) f(ni) <= f(ni+1)

� This is because

� f(ni)= g(ni) +h(ni) and

� g(ni)=g*(ni) since ni is an expanded node (proved theorem)
and this value cannot change

� h(ni) value also cannot change Hence nothing after ni+1’s
expansion can change the above relationship.

Monotonicity of f()

f(n1), f(n2), f(n3), …… ,f(ni), f(ni+1), … ,f(nk)
Sequence of expansion of n1, n2, n3 … ni … nk

f values increase monotonically
f(n) = g(n) + h(n) f(n) = g(n) + h(n)

Consider two successive expansions - > ni, ni+1

Case 1:
ni & ni+1 Co-existing in OL
ni precedes ni+1

By definition of A*
f(ni) <= f(ni+1)

Monotonicity of f()

Case 2:
ni+1 came to OL because of expanding ni and ni+1

is expanded

f(ni) = g(ni) + h(ni) f(ni) = g(ni) + h(ni)
<= g(ni) + c(ni, hi+1)+ h(ni+1)
= g(ni) + h(ni+1)
= f(ni+1)

Case 3:
ni+1 becomes child of ni after expanding ni and

ni+1 is expanded. Same as case 2.

A list of AI Search Algorithms

� A*
� AO*
� IDA* (Iterative Deepening)

� Minimax Search on Game Trees
� Viterbi Search on Probabilistic FSA
Hill Climbing� Hill Climbing

� Simulated Annealing
� Gradient Descent
� Stack Based Search
� Genetic Algorithms
� Memetic Algorithms

