CS344: Introduction to Artificial Intelligence (associated lab: CS386)

> Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 6-7: Hidden Markov Model 18th and 20th Jan, 2011

Observations leading to why probability is needed

- Many intelligence tasks are sequence labeling tasks
- Tasks carried out in layers
- Within a layer, there are limited windows of information
- This naturally calls for strategies for dealing with uncertainty
- Probability and Markov process give a way

"I went with my friend to the bank to withdraw some money, but was disappointed to find it closed"

POS	Bank (N/V)	closed (V/ adj)	
Sense	Bank (financial institution)	withdraw (take away)	
Pronoun drop	But I/friend/money/bank	was disappointed	
SCOPE With my friend			
Co-referencing It -> bank			

HMM

A Motivating Example

Colored Ball choosing

Probability of transition to another Urn after picking a ball:

	U_1	U ₂	U ₃
U_1	0.1	0.4	0.5
U ₂	0.6	0.2	0.2
U ₃	0.3	0.4	0.3

Example (contd.)

Given :

	U_1	U_2	U_3
U_1	0.1	0.4	0.5
U ₂	0.6	0.2	0.2
U_3	0.3	0.4	0.3

		R	G	В
and	U_1	0.3	0.5	0.2
and	U_2	0.1	0.4	0.5
	U_3	0.6	0.1	0.3

Observation : RRGGBRGR

State Sequence : ??

Not so Easily Computable.

Diagrammatic representation (1/2)

Diagrammatic representation (2/2)

Example (contd.)

Here :		
■ S = {U1, U2, U3}	Α =	
• $V = \{ R, G, B \}$	<i>,</i> ,	U_1
For observation:		
• O ={o ₁ o _n }		U.
And State sequence		
• Q = { $q_1 q_n$ }	B=	
$\blacksquare \Pi i \mathbf{S}_{\pi_i} = P(q_1 = U_i)$		
		U_2
	1	U-

	$ U_1 $	U ₂	U ₃
U_1	0.1	0.4	0.5
U ₂	0.6	0.2	0.2
U ₃	0.3	0.4	0.3
	R	G	В
U ₁	0.3	0.5	0.2
U ₁ U ₂	0.3 0.1	0.5 0.4	0.2 0.5

Observations and states

- $S_i = U_1/U_2/U_3$; A particular state
- S: State sequence
- O: Observation sequence
- S* = "best" possible state (urn) sequence
- Goal: Maximize P(S*|O) by choosing "best" S

Goal

Maximize P(S|O) where S is the State Sequence and O is the Observation Sequence

$$S^* = \arg \max_{S} (P(S \mid O))$$

False Start

By Markov Assumption (a state depends only on the previous state) $P(S | O) = P(S_1 | O).P(S_2 | S_1, O).P(S_3 | S_2, O)...P(S_8 | S_7, O)$

Baye's Theorem P(A | B) = P(A).P(B | A) / P(B)

P(A) -: Prior P(B|A) -: Likelihood

 $\operatorname{argmax}_{S} P(S | O) = \operatorname{argmax}_{S} P(S) P(O | S)$

State Transitions Probability

 $P(S) = P(S_{1-8})$ $P(S) = P(S_1) P(S_2 | S_1) P(S_3 | S_{1-2}) P(S_4 | S_{1-3}) ... P(S_8 | S_{1-7})$

By Markov Assumption (k=1)

 $P(S) = P(S_1) P(S_2 | S_1) P(S_3 | S_2) P(S_4 | S_3) ... P(S_8 | S_7)$

Observation Sequence probability

 $P(O|S) = P(O_1|S_{1-8}) P(O_2|O_1, S_{1-8}) P(O_3|O_{1-2}, S_{1-8}) \dots P(O_8|O_{1-7}, S_{1-8})$

Assumption that ball drawn depends only on the Urn chosen

 $P(O | S) = P(O_1 | S_1) \cdot P(O_2 | S_2) \cdot P(O_3 | S_3) \cdot \cdot \cdot P(O_8 | S_8)$

 $P(S \mid O) = P(S).P(O \mid S)$

 $P(S | O) = P(S_1).P(S_2 | S_1).P(S_3 | S_2).P(S_4 | S_3)...P(S_8 | S_7).$

 $P(O_1 | S_1).P(O_2 | S_2).P(O_3 | S_3)...P(O_8 | S_8)$

Grouping terms

P(S).P(O|S)

 $= [P(O_0|S_0).P(S_1|S_0)].$ $[P(O_1|S_1). P(S_2|S_1)].$ $[P(O_2|S_2). P(S_3|S_2)].$ $[P(O_3|S_3).P(S_4|S_3)].$ $[P(O_4|S_4).P(S_5|S_4)].$ $[P(O_5|S_5).P(S_6|S_5)].$ $[P(O_6|S_6).P(S_7|S_6)].$ $[P(O_7|S_7).P(S_8|S_7)].$ $[P(O_8|S_8).P(S_9|S_8)].$

O_5	O_6	O_7	O_8	
В	R	G	R	
S_5	S_6	S ₇	S ₈	S ₉

We introduce the states S₀ and S₉ as initial and final states respectively.

After S_8 the next state is S_9 with probability 1, i.e., $P(S_9|S_8)=1$

 O_0 is ϵ -transition

Introducing useful notation

The question here is:

"what is the most likely state sequence given the output sequence seen"

Developing the tree

Tree structure contd...

The problem being addressed by this tree is $S^* = \arg \max_{s} P(S \mid a_1 - a_2 - a_1 - a_2, \mu)$

a1-a2-a1-a2 is the output sequence and μ the model or the machine

Problem statement: Find the best possible sequence $S^* = \arg \max_{s} P(S \mid O, \mu)$ where, $S \rightarrow \text{State Seq}, O \rightarrow \text{Output Seq}, \mu \rightarrow \text{Model or Machine}$

T is defined as $P(S_i \xrightarrow{a_k} S_j) \quad \forall_{i, j, k}$