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HMM Definition

� Set of states : S where |S|=N

� Output Alphabet : O where |O|=K

� Transition Probabilities : A = {aij}� Transition Probabilities : A = {aij}

� Emission Probabilities : B = {bj(ok)}

� Initial State Probabilities : π
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Markov Processes

� Properties

� Limited Horizon: Given previous t states, a 
state i, is independent of preceding 0 to t-state i, is independent of preceding 0 to t-
k+1 states.

� P(Xt=i|Xt-1, Xt-2 ,… X0) = P(Xt=i|Xt-1, Xt-2… Xt-k)

� Order k Markov process

� Time invariance: (shown for k=1) 

� P(Xt=i|Xt-1=j) = P(X1=i|X0=j) …= P(Xn=i|Xn-1=j) 



Three basic problems (contd.)

� Problem 1: Likelihood of a sequence

� Forward Procedure

� Backward Procedure� Backward Procedure

� Problem 2: Best state sequence

� Viterbi Algorithm

� Problem 3: Re-estimation

� Baum-Welch ( Forward-Backward 
Algorithm )



Probabilistic Inference

� O: Observation Sequence

� S: State Sequence

Given O find S* where called * arg max ( / )S p S O=� Given O find S* where called 
Probabilistic Inference

� Infer “Hidden” from “Observed”

� How is this inference different from logical inference 
based on propositional or predicate calculus?

* arg max ( / )
S

S p S O=



Essentials of Hidden 
Markov Model

1. Markov + Naive Bayes

2. Uses both transition and observation probability

3. Effectively makes Hidden Markov Model a Finite State 

Machine (FSM) with probability
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Probability of Observation 
Sequence
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� Without any restriction,

� Search space size= |S||O|
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Continuing with the Urn example

Urn 1 Urn 3Urn 2

Colored Ball choosing

Urn 1

# of Red = 30

# of Green = 50 

# of Blue = 20 

Urn 3

# of Red =60

# of Green =10  

# of Blue =  30

Urn 2

# of Red = 10

# of Green = 40 

# of Blue = 50



Example (contd.)

U1 U2 U3

U1 0.1 0.4 0.5

U2 0.6 0.2 0.2

U3 0.3 0.4 0.3

Given :

Observation : RRGGBRGR

and

R G B

U1 0.3 0.5 0.2

U2 0.1 0.4 0.5

U3 0.6 0.1 0.3

Transition Probability Observation/output Probability

Observation : RRGGBRGR

What is the corresponding state sequence ?



Diagrammatic representation (1/2)
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Diagrammatic representation (2/2)

U U
R,0.15
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R,0.15

G,0.25
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B,0.10



Observations and states

O1 O2 O3 O4 O5 O6 O7 O8

OBS: R R G  G B  R   G  R

State: S1 S2 S3 S4 S5 S6 S7 S8

Si = U1/U2/U3; A particular state

S: State sequence

O: Observation sequence

S* = “best” possible state (urn) sequence

Goal: Maximize P(S*|O) by choosing “best” S



Goal

� Maximize P(S|O) where S is the State 
Sequence and O is the Observation  
SequenceSequence

))|((maxarg* OSPS S=



Baye’s Theorem

)(/)|().()|( BPABPAPBAP =

P(A) -: PriorP(A) -: Prior
P(B|A) -: Likelihood
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State Transitions Probability
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Observation Sequence 
probability
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Assumption that ball drawn depends only 
on the Urn chosenon the Urn chosen
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Grouping terms

P(S).P(O|S)

= [P(O0|S0).P(S1|S0)].

[P(O1|S1). P(S2|S1)].

We introduce the states
S0 and S9 as initial 
and final states 

O0 O1 O2 O3 O4 O5 O6 O7 O8

Obs: ε R R G  G B  R   G  R

State: S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

[P(O1|S1). P(S2|S1)].

[P(O2|S2). P(S3|S2)]. 

[P(O3|S3).P(S4|S3)]. 

[P(O4|S4).P(S5|S4)]. 

[P(O5|S5).P(S6|S5)]. 

[P(O6|S6).P(S7|S6)]. 

[P(O7|S7).P(S8|S7)].

[P(O8|S8).P(S9|S8)].

and final states 
respectively.

After S8 the next state 
is S9 with probability 
1, i.e., P(S9|S8)=1

O0 is ε-transition



Introducing useful notation

S0 S1
S7S2

S3
S4 S5 S6

O0 O1 O2 O3 O4 O5 O6 O7 O8

Obs: ε R R G  G B  R   G  R

State: S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

ε RR
G G B R

S0 S1

S8

S9

S2

G

R

P(Ok|Sk).P(Sk+1|Sk)=P(Sk�Sk+1)
Ok



Viterbi Algorithm for the Urn 
problem (first two symbols)

S0

U U U

0.5

0.3

0.2ε

U1 U2 U3

U1 U2 U3

0.03

0.08

0.15

U1 U2 U3 U1 U2 U3

0.06

0.02

0.02

0.18

0.24

0.18

0.015 0.04 0.075* 0.018 0.006 0.006 0.048* 0.036

*: winner sequences

R



Markov process of order>1 (say 2)

Same theory works

P(S).P(O|S)

= P(O0|S0).P(S1|S0).

We introduce the states
S0 and S9 as initial 
and final states 

O0 O1 O2 O3 O4 O5 O6 O7 O8

Obs: ε R R G  G B  R   G  R

State: S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

= P(O0|S0).P(S1|S0).

[P(O1|S1). P(S2|S1S0)].

[P(O2|S2). P(S3|S2S1)]. 

[P(O3|S3).P(S4|S3S2)]. 

[P(O4|S4).P(S5|S4S3)]. 

[P(O5|S5).P(S6|S5S4)]. 

[P(O6|S6).P(S7|S6S5)]. 

[P(O7|S7).P(S8|S7S6)].

[P(O8|S8).P(S9|S8S7)].

and final states 
respectively.

After S8 the next state 
is S9 with probability 
1, i.e., P(S9|S8S7)=1

O0 is ε-transition



Adjustments

� Transition probability table will have tuples on 
rows and states on columns

� Output probability table will remain the same

� In the Viterbi tree, the Markov process will 
take effect from the 3rd input symbol (εRR)take effect from the 3 input symbol (εRR)

� There will be 27 leaves, out of which only 9 

will remain

� Sequences ending in same tuples will be 
compared

� Instead of U1, U2 and U3

� U1U1, U1U2, U1U3, U2U1, U2U2,U2U3, U3U1,U3U2,U3U3



Probabilistic FSM

(a
1
:0.3)

(a
2
:0.4)(a

1
:0.1) (a
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:0.3)

S
1

S
2

(a
1
:0.2)

(a
2
:0.3)

(a
2
:0.2) (a

2
:0.2)

The question here is:

“what is the most likely state sequence given the output sequence

seen”

S
1

S
2



Developing the tree

Start

S1 S2

S1 S2 S1 S2

1.0 0.0

0.1 0.3 0.2 0.3

1*0.1=0.1 0.3 0.0 0.0
�. �.

€

a1

S1 S2 S1 S2

S1 S2 S1 S2

1*0.1=0.1 0.3 0.0 0.0

0.1*0.2=0.02 0.1*0.4=0.04 0.3*0.3=0.09 0.3*0.2=0.06

�. �.

a2

Choose  the  winning 

sequence per state

per iteration

0.2 0.4 0.3 0.2



Tree structure contd…

S1 S2

S1 S2 S1 S2

0.1 0.3 0.2 0.3

0.027 0.012
�.�.

0.09 0.06

0.09*0.1=0.009 0.018

a1

S1

0.3

0.0081

S2

0.2

0.0054

S2

0.4

0.0048

S1

0.2

0.0024

�.

a2

The problem being addressed by this tree is )|(maxarg* ,2121 µaaaaSPS
s

−−−=

a1-a2-a1-a2 is the output sequence and µ the model or the machine 



Path found: 
(working backward)

S
1

S
2

S
1

S
2

S
1

a
2

a
1

a
1

a
2

Problem statement: Find the best possible sequence 

),|(maxarg* µOSPS
s

=

Machineor  Model Seq,Output  Seq, State, →→→ µOSwhere Machineor  Model Seq,Output  Seq, State, →→→ µOSwhere

},,,{Machineor  Model 0 TASS=

Start symbol State collection Alphabet 

set

Transitions

T is defined as kjij
k

i SaSP ,,      )( ∀→



Tabular representation of the 
tree

€ a1 a2 a1 a2

S 1.0 (1.0*0.1,0.0*0.2 (0.02, (0.009, 0.012) (0.0024, 

Ending state

Latest symbol 

observed

S1
1.0 (1.0*0.1,0.0*0.2

)=(0.1,0.0)

(0.02, 

0.09)

(0.009, 0.012) (0.0024, 

0.0081)

S2
0.0 (1.0*0.3,0.0*0.3

)=(0.3,0.0)

(0.04,0.0

6)

(0.027,0.018) (0.0048,0.005

4)

Note: Every cell records the winning probability ending in that state

Final winner
The bold faced values in each cell shows the 
sequence probability ending in that state. Going backward
from final winner sequence which ends in state S2 (indicated 
By the 2nd tuple), we recover the sequence.



Algorithm
(following James Alan, Natural Language Understanding 
(2nd edition), Benjamin Cummins (pub.), 1995

Given: 
1. The HMM, which means:

a. Start State: S1
b. Alphabet: A = {a1, a2, … ap}

Set of States: S = {S , S , … S }c. Set of States: S = {S1, S2, … Sn}

d. Transition probability

which is equal to 

2. The output string a1a2…aT

To find: 

The most likely sequence of states C1C2…CT which produces the 
given output sequence, i.e., C1C2…CT = 

kjij
k

i SaSP ,,      )( ∀ →

)|,( ikj SaSP

],,...,|([maxarg 21 µT
C

aaaCP



Algorithm contd…
Data Structure:

1. A N*T array called SEQSCORE to maintain the 
winner sequence always (N=#states, T=length of 
o/p sequence)

2. Another N*T array called BACKPTR to recover the 2. Another N*T array called BACKPTR to recover the 
path.

Three distinct steps in the Viterbi implementation
1. Initialization

2. Iteration

3. Sequence Identification



1. Initialization
SEQSCORE(1,1)=1.0

BACKPTR(1,1)=0

For(i=2 to N) do

SEQSCORE(i,1)=0.0

[expressing the fact that first state 
is S1]

2. Iteration
For(t=2 to T) do

For(i=1 to N) do

SEQSCORE(i,t) = Max(j=1,N)

BACKPTR(I,t) = index j that gives the MAX above

)](*))1(,([ SiaSjPtjSEQSCORE k →−



3. Seq. Identification

C(T) = i that maximizes SEQSCORE(i,T)

For i from (T-1) to 1 do

C(i) = BACKPTR[C(i+1),(i+1)]

Optimizations possible:Optimizations possible:

1. BACKPTR can be 1*T

2. SEQSCORE can be T*2

Homework:- Compare this with A*, Beam Search [Homework]

Reason for this comparison: 

Both of them work for finding and recovering sequence


