## CS344: Introduction to Artificial

## Intelligence <br> (associated lab: CS386)

Pushpak Bhattacharyya CSE Dept.,<br>IIT Bombay<br>Lecture 8: HMM; Viterbi<br>$24^{\text {th }}$ Jan, 2011

## HMM Definition

- Set of states : S where $|\mathrm{S}|=\mathrm{N}$
- Output Alphabet : O where |O|=K
- Transition Probabilities : $\mathrm{A}=\left\{\mathrm{a}_{\mathrm{ij}}\right\}$
- Emission Probabilities: $B=\left\{b_{j}\left(o_{k}\right)\right\}$
- Initial State Probabilities : п

$$
\lambda=(A, B, \pi)
$$

## Markov Processes

- Properties
- Limited Horizon: Given previous $t$ states, a state $i$, is independent of preceding $O$ to $t$ $k+1$ states.
- $P\left(X_{t}=i / X_{t-1}, X_{t-2}, \ldots X_{0}\right)=P\left(X_{t}=i / X_{t-1,}, X_{t-2} \ldots X_{t-k}\right)$
- Order $k$ Markov process
- Time invariance: (shown for $k=1$ )
- $P\left(X_{t}=i / X_{t-1}=j\right)=P\left(X_{1}=i / X_{0}=j\right) \ldots=P\left(X_{n}=i / X_{n-1}=j\right)$


## Three basic problems (contd.)

- Problem 1: Likelihood of a sequence
- Forward Procedure
- Backward Procedure
- Problem 2: Best state sequence
- Viterbi Algorithm
- Problem 3: Re-estimation
- Baum-Welch ( Forward-Backward Algorithm )


## Probabilistic Inference

- O: Observation Sequence
- S: State Sequence
- Given O find $\mathrm{S}^{*}$ where $S^{*}=\arg \max p(S / O)$ called Probabilistic Inference
- Infer "Hidden" from "Observed"
- How is this inference different from logical inference based on propositional or predicate calculus?


## Essentials of Hidden Markov Model

1. Markov + Naive Bayes
2. Uses both transition and observation probability

$$
p\left(S_{k} \rightarrow^{O_{k}} S_{k+1}\right)=p\left(O_{k} / S_{k}\right) p\left(S_{k+1} / S_{k}\right)
$$

3. Effectively makes Hidden Markov Model a Finite State Machine (FSM) with probability

## Probability of Observation Sequence

$$
\begin{aligned}
p(O) & =\sum_{S} p(O, S) \\
& =\sum_{S} p(S) p(O / S)
\end{aligned}
$$

- Without any restriction,
- Search space size= $|\mathrm{S}|^{|0|}$


## Continuing with the Urn example

Colored Ball choosing


## Example (contd.)

Transition Probability
Observation/output Probability

|  | $U_{1}$ | $\mathrm{U}_{2}$ | $\mathrm{U}_{3}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{U}_{1}$ | 0.1 | 0.4 | 0.5 |
| $\mathrm{U}_{2}$ | 0.6 | 0.2 | 0.2 |
| $\mathrm{U}_{3}$ | 0.3 | 0.4 | 0.3 |

and | and | $R$ | $G$ | $B$ |
| :--- | :--- | :--- | :--- |
|  | 0.3 | 0.5 | 0.2 |
|  | 0.1 | 0.4 | 0.5 |
|  | 0.6 | 0.1 | 0.3 |

Observation : RRGGBRGR

What is the corresponding state sequence ?

## Diagrammatic representation (1/2)



## Diagrammatic representation (2/2)



## Observations and states

| $\mathrm{O}_{1}$ | $\mathrm{O}_{2}$ | $\mathrm{O}_{3}$ | $\mathrm{O}_{4}$ | $\mathrm{O}_{5}$ | $\mathrm{O}_{6}$ | $\mathrm{O}_{7}$ | $\mathrm{O}_{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R | R | G | G | B | R | G | R |

$\begin{array}{llllllll}\text { OBS: } & R & R & G & G & B & R & G \\ R \\ \text { State: } & S_{1} & S_{2} & S_{3} & S_{4} & S_{5} & S_{6} & S_{7} \\ S_{8}\end{array}$
$S_{i}=U_{1} / U_{2} / U_{3}$; A particular state
S : State sequence
O: Observation sequence
S* = "best" possible state (urn) sequence
Goal: Maximize $\mathrm{P}\left(\mathrm{S}^{*} \mid 0\right)$ by choosing "best" S

## Goal

- Maximize $P(S \mid O)$ where $S$ is the State Sequence and $O$ is the Observation Sequence

$$
S^{*}=\arg \max _{S}(P(S \mid O))
$$

## Baye's Theorem <br> $P(A \mid B)=P(A) \cdot P(B \mid A) / P(B)$

$\mathrm{P}(\mathrm{A})$-: Prior
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})$-: Likelihood
$\operatorname{argmax}_{f} P(S \mid O)=\operatorname{argmax}_{S} P(S) \cdot P(O \mid S)$

## State Transitions Probability

$$
\begin{aligned}
& P(S)=P\left(S_{1-8}\right) \\
& P(S)=P\left(S_{1}\right) P\left(S_{2} \mid S_{1}\right) P\left(S_{3} \mid S_{1-2}\right) P\left(S_{4} \mid S_{1-3}\right) . . P\left(S_{8} \mid S_{1-7}\right)
\end{aligned}
$$

By Markov Assumption (k=1)

$$
P(S)=P\left(S_{1}\right) P\left(S_{2} \mid S_{1}\right) P\left(S_{3} \mid S_{2}\right) P\left(S_{4} \mid S_{3}\right) . . P\left(S_{8} \mid S_{7}\right)
$$

## Observation Sequence probability

$$
P(O \mid S)=P\left(O_{1} \mid S_{1-8}\right) \cdot P\left(O_{2} \mid O_{1}, S_{1-8}\right) P\left(O_{3} \mid O_{1-2}, S_{1-8}\right) . . P\left(O_{8} \mid O_{1-7}, S_{1-8}\right)
$$

Assumption that ball drawn depends only on the Urn chosen
$P(O \mid S)=P\left(O_{1} \mid S_{1}\right) \cdot P\left(O_{2} \mid S_{2}\right) \cdot P\left(O_{3} \mid S_{3}\right) \ldots P\left(O_{8} \mid S_{8}\right)$
$P(S \mid O)=P(S) \cdot P(O \mid S)$
$P(S \mid O)=P\left(S_{1}\right) \cdot P\left(S_{2} \mid S_{1}\right) \cdot P\left(S_{3} \mid S_{2}\right) \cdot P\left(S_{4} \mid S_{3}\right) \ldots P\left(S_{8} \mid S_{7}\right)$.
$P\left(O_{1} \mid S_{1}\right) \cdot P\left(O_{2} \mid S_{2}\right) \cdot P\left(O_{3} \mid S_{3}\right) \ldots P\left(O_{8} \mid S_{8}\right)$

## Grouping terms

|  | $\mathrm{O}_{0}$ | $\mathrm{O}_{1}$ | $\mathrm{O}_{2}$ | $\mathrm{O}_{3}$ | $\mathrm{O}_{4}$ | $\mathrm{O}_{5}$ | $\mathrm{O}_{6}$ | $\mathrm{O}_{7}$ | $\mathrm{O}_{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |
| Obs: $\varepsilon$ | R | R | G | G | B | R | G | R |  |
| State: $\mathrm{S}_{0}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{4}$ | $\mathrm{~S}_{5}$ | $\mathrm{~S}_{6}$ | $\mathrm{~S}_{7}$ | $\mathrm{~S}_{8}$ | $\mathrm{~S}_{9}$ |

P(S).P(O|S)
$=\left[P\left(\mathrm{O}_{0} \mid \mathrm{S}_{0}\right) \cdot \mathrm{P}\left(\mathrm{S}_{1} \mid \mathrm{S}_{0}\right)\right]$. $\left[P\left(\mathrm{O}_{1} \mid \mathrm{S}_{1}\right) . \quad \mathrm{P}\left(\mathrm{S}_{2} \mid \mathrm{S}_{1}\right)\right]$. $\left[P\left(\mathrm{O}_{2} \mid \mathrm{S}_{2}\right) . \quad \mathrm{P}\left(\mathrm{S}_{3} \mid \mathrm{S}_{2}\right)\right]$. $\left[P\left(\mathrm{O}_{3} \mid \mathrm{S}_{3}\right) \cdot \mathrm{P}\left(\mathrm{S}_{4} \mid \mathrm{S}_{3}\right)\right]$. $\left[P\left(\mathrm{O}_{4} \mid \mathrm{S}_{4}\right) \cdot \mathrm{P}\left(\mathrm{S}_{5} \mid \mathrm{S}_{4}\right)\right]$. $\left[P\left(O_{5} \mid S_{5}\right) \cdot P\left(S_{6} \mid S_{5}\right)\right]$. $\left[P\left(\mathrm{O}_{6} \mid \mathrm{S}_{6}\right) \cdot \mathrm{P}\left(\mathrm{S}_{7} \mid \mathrm{S}_{6}\right)\right]$. $\left[\mathrm{P}\left(\mathrm{O}_{7} \mid \mathrm{S}_{7}\right) \cdot \mathrm{P}\left(\mathrm{S}_{8} \mid \mathrm{S}_{7}\right)\right]$. $\left[P\left(\mathrm{O}_{8} \mid \mathrm{S}_{8}\right) \cdot \mathrm{P}\left(\mathrm{S}_{9} \mid \mathrm{S}_{8}\right)\right]$.

We introduce the states $\mathrm{S}_{0}$ and $\mathrm{S}_{9}$ as initial and final states respectively.
After $\mathrm{S}_{8}$ the next state is $\mathrm{S}_{9}$ with probability 1, i.e., $P\left(S_{9} \mid S_{8}\right)=1$
$\mathrm{O}_{0}$ is $\varepsilon$-transition

## Introducing useful notation

|  | $\mathrm{O}_{0}$ | $\mathrm{O}_{1}$ | $\mathrm{O}_{2}$ | $\mathrm{O}_{3}$ | $\mathrm{O}_{4}$ | $\mathrm{O}_{5}$ | $\mathrm{O}_{6}$ | $\mathrm{O}_{7}$ | $\mathrm{O}_{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |
| Obs: $\varepsilon$ | R | R | G | G | B | R | G | R |  |
| State: $\mathrm{S}_{0}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{4}$ | $\mathrm{~S}_{5}$ | $\mathrm{~S}_{6}$ | $\mathrm{~S}_{7}$ | $\mathrm{~S}_{8}$ | $\mathrm{~S}_{9}$ |



## Viterbi Algorithm for the Urn problem (first two symbols)



## Markov process of order>1 (say 2)

|  | $\mathrm{O}_{0}$ | $\mathrm{O}_{1}$ | $\mathrm{O}_{2}$ | $\mathrm{O}_{3}$ | $\mathrm{O}_{4}$ | $\mathrm{O}_{5}$ | $\mathrm{O}_{6}$ | $\mathrm{O}_{7}$ | $\mathrm{O}_{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |
| Obs: | $\varepsilon$ | R | R | G | G | B | R | G | R |
|  |  |  |  |  |  |  |  |  |  |
| State: $\mathrm{S}_{0}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{4}$ | $\mathrm{~S}_{5}$ | $\mathrm{~S}_{6}$ | $\mathrm{~S}_{7}$ | $\mathrm{~S}_{8}$ | $\mathrm{~S}_{9}$ |

Same theory works
P(S).P(O|S)
$=P\left(\mathrm{O}_{0} \mid \mathrm{S}_{0}\right) \cdot \mathrm{P}\left(\mathrm{S}_{1} \mid \mathrm{S}_{0}\right)$.
$\left[P\left(\mathrm{O}_{1} \mid \mathrm{S}_{1}\right) . \quad \mathrm{P}\left(\mathrm{S}_{2} \mid \mathrm{S}_{1} \mathrm{~S}_{0}\right)\right]$.
$\left[P\left(\mathrm{O}_{2} \mid \mathrm{S}_{2}\right) . \quad \mathrm{P}\left(\mathrm{S}_{3} \mid \mathrm{S}_{2} \mathrm{~S}_{1}\right)\right]$.
$\left[P\left(\mathrm{O}_{3} \mid \mathrm{S}_{3}\right) \cdot \mathrm{P}\left(\mathrm{S}_{4} \mid \mathrm{S}_{3} \mathrm{~S}_{2}\right)\right]$.
$\left[P\left(\mathrm{O}_{4} \mid \mathrm{S}_{4}\right) \cdot \mathrm{P}\left(\mathrm{S}_{5} \mid \mathrm{S}_{4} \mathrm{~S}_{3}\right)\right]$.
$\left[P\left(\mathrm{O}_{5} \mid \mathrm{S}_{5}\right) \cdot \mathrm{P}\left(\mathrm{S}_{6} \mid \mathrm{S}_{5} \mathrm{~S}_{4}\right)\right]$.
$\left[P\left(\mathrm{O}_{6} \mid \mathrm{S}_{6}\right) \cdot \mathrm{P}\left(\mathrm{S}_{7} \mid \mathrm{S}_{6} \mathrm{~S}_{5}\right)\right]$.
$\left[P\left(\mathrm{O}_{7} \mid \mathrm{S}_{7}\right) \cdot \mathrm{P}\left(\mathrm{S}_{8} \mid \mathrm{S}_{7} \mathrm{~S}_{6}\right)\right]$.
$\left[P\left(\mathrm{O}_{8} \mid \mathrm{S}_{8}\right) \cdot \mathrm{P}\left(\mathrm{S}_{9} \mid \mathrm{S}_{8} \mathrm{~S}_{7}\right)\right]$.

We introduce the states $\mathrm{S}_{0}$ and $\mathrm{S}_{9}$ as initial and final states respectively.
After $\mathrm{S}_{8}$ the next state is $\mathrm{S}_{9}$ with probability 1, i.e., $P\left(S_{9} \mid S_{8} S_{7}\right)=1$
$\mathrm{O}_{0}$ is $\varepsilon$-transition

## Adjustments

- Transition probability table will have tuples on rows and states on columns
- Output probability table will remain the same
- In the Viterbi tree, the Markov process will take effect from the $3^{\text {rd }}$ input symbol ( $\varepsilon R R$ )
- There will be 27 leaves, out of which only 9 will remain
- Sequences ending in same tuples will be compared
- Instead of U1, U2 and U3
- $\mathrm{U}_{1} \mathrm{U}_{1}, \mathrm{U}_{1} \mathrm{U}_{2}, \mathrm{U}_{1} \mathrm{U}_{3}, \mathrm{U}_{2} \mathrm{U}_{1}, \mathrm{U}_{2} \mathrm{U}_{2}, \mathrm{U}_{2} \mathrm{U}_{3}, \mathrm{U}_{3} \mathrm{U}_{1}, \mathrm{U}_{3} \mathrm{U}_{2}, \mathrm{U}_{3} \mathrm{U}_{3}$


## Probabilistic FSM



The question here is:
"what is the most likely state sequence given the output sequence seen"

## Developing the tree



## Tree structure contd...



The problem being addressed by this tree is $S^{*}=\arg \max P\left(S \mid a_{1}-a_{2}-a_{1}-a_{2, \mu}\right)$ $\mathrm{a} 1-\mathrm{a} 2-\mathrm{a} 1-\mathrm{a} 2$ is the output sequence and $\mu$ the model or the machine

Path found:
(working backward)


Problem statement: Find the best possible sequence

$$
S^{*}=\arg \max P(S \mid O, \mu)
$$

$s$
where, $S \rightarrow$ State Seq, $O \rightarrow$ Output Seq, $\mu \rightarrow$ Model or Machine


T is defined as $P\left(S_{i} \xrightarrow{a_{k}} S_{j}\right) \quad \forall i, j, k$

## Tabular representation of the tree

| Latest symbol <br> observed <br> Ending state | $€$ | $\mathrm{a}_{1}$ | $\mathrm{a}_{2}$ | $\mathrm{a}_{1}$ | $\mathrm{a}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~S}_{1}$ | 1.0 | $(1.0 * 0.1,0.0 * 0.2$ <br> $)=(\mathbf{0 . 1}, 0.0)$ | $(0.02$, <br> $\mathbf{0 . 0 9}$ | $(0.009, \mathbf{0 . 0 1 2 )}$ | $(0.0024$, <br> $\mathbf{0 . 0 0 0 8 1}$ |
| $\mathrm{S}_{2}$ | 0.0 | $(1.0 * 0.3,0.0 * 0.3$ <br> $)=(\mathbf{0 . 3 , 0 . 0})$ | $(0.04, \mathbf{0 . 0}$ <br> $\mathbf{6})$ | $(\mathbf{0 . 0 2 7 , 0 . 0 1 8 )}$ | $(0.0048,0.005$ <br> $4)$ |

Note: Every cell records the winning probability ending in that state
Final winner
The bold faced values in each cell shows the sequence probability ending in that state. Going backward from final winner sequence which ends in state S2 (indicated By the $2^{\text {nd }}$ tuple), we recover the sequence.

## Algorithm

(following James Alan, Natural Language Understanding (2nd edition), Benjamin Cummins (pub.), 1995

## Given:

1. The HMM, which means:
a. Start State: $\mathrm{S}_{1}$
b. Alphabet: $\mathrm{A}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \mathrm{a}_{\mathrm{p}}\right\}$
c. Set of States: $S=\left\{S_{1}, S_{2}, \ldots S_{n}\right\}$
d. Transition probability $P\left(S_{i} \xrightarrow{\underline{a_{k}}} S_{j}\right) \quad \forall i, j, k$
which is equal to $P\left(S_{j}, a_{k} \mid S_{i}\right)$
2. The output string $a_{1} a_{2} \ldots a_{\mathrm{T}}$

To find:
The most likely sequence of states $\mathrm{C}_{1} \mathrm{C}_{2} \ldots \mathrm{C}_{\mathrm{T}}$ which produces the given output sequence, i.e., $\mathrm{C}_{1} \mathrm{C}_{2} \ldots \mathrm{C}_{\mathrm{T}}=\underset{c}{\arg \max }\left[P\left(C \mid a_{1}, a_{2}, \ldots a_{\mathrm{T}}, \mu\right]\right.$

## Algorithm contd...

Data Structure:

1. A N*T array called SEQSCORE to maintain the winner sequence always ( $\mathrm{N}=$ =\#states, $\mathrm{T}=$ length of o/p sequence)
2. Another $\mathrm{N}^{*} \mathrm{~T}$ array called BACKPTR to recover the path.

Three distinct steps in the Viterbi implementation

1. Initialization
2. Iteration
3. Sequence Identification

## 1. Initialization

$\operatorname{SEQSCORE}(1,1)=1.0$
$\operatorname{BACKPTR}(1,1)=0$
For $(\mathrm{i}=2$ to N$)$ do
SEQSCORE( $\mathrm{i}, 1$ )=0.0
[expressing the fact that first state is $S_{1}$ ]

## 2. Iteration

$\operatorname{For}(\mathrm{t}=2 \mathrm{to} \mathrm{T})$ do
For(i=1 to $N$ ) do
$\operatorname{SEQSCORE}(\mathrm{i}, \mathrm{t})=\operatorname{Max}_{(\mathrm{j}=1, \mathrm{~N})}$
[SEQSCORE $\left.\quad(j,(t-1)) * P\left(S j-\underline{a_{k}} \rightarrow S i\right)\right]$
$\operatorname{BACKPTR}(1, \mathrm{t})=$ index $j$ that gives the MAX above

## 3. Seq. Identification

$C(T)=i$ that maximizes SEQSCORE( $\mathrm{i}, \mathrm{T})$
For i from ( $\mathrm{T}-1$ ) to 1 do

$$
C(i)=\operatorname{BACKPTR}[C(i+1),(i+1)]
$$

Optimizations possible:

1. BACKPTR can be $1 * T$
2. SEQSCORE can be T*2

Homework:- Compare this with A*, Beam Search [Homework]
Reason for this comparison:
Both of them work for finding and recovering sequence

