Buffer Overflow Attacks



Buffer Overflow
<

e Buffers - data storage areas that hold a
predefined amount of finite data

e Buffer Overflow — happens when the data
exceeds the size of the buffer



DEMO

- for simple buffer overflow



Activation Records On Stack

void function(int a, int b, int ¢)

{ funct1on’a fEQI
char buffer1[5];
char buffer2[10];

}

. . bufferl
nt maing e G088
{

}




Stack Buffer Overflow
« ]

int 1,
void function (void)
{
char buffer[256]; //create a buffer

for (i=0;i<512;i++) //iterate 512 times
buffer[i]='A'; //copy the letter A



Stack Buffer Overflow . inueq)
c

buffer{256] 1. A function is using a buffer 256 bytes long. The

Old EBP=0x0012FFF0 program attempts o fill the buffer with 512 As,

Ret EIP =0x00401000

AAAAAAAAAAAAAAA 2. After 256 As, the buffer is full and any remaining As
Old EBP=0x0012FFF0 will begin to overflow into adjacent memory.

Ret EIP =0x00401000

AAAAAAAAAAAAAAA 3. The remaining As begin to overwrite the old EBP.

Old EBP=0x41414141
Ret EIP =0x00401000

AARAAAAAAAAAAAAA 4. And also overwrite the return EIP.

Old EBP=0x41414141
Ret EIP =0x41414141




Exploiting Stack Buffer Overflow
—

Buffer [256]

Old EBP=0x0012FFF0

Ret EIP=0x00401000

malicious coda here

Old EBP=0x0012FFF0

Ret EIP=0x00401000

malicious code here

Old EBP=0x41414141

Ret EIP=0x00401000

malicious code here

Old EBP=0x41414141

Ret EIP=0x0012FDF8

1. A function is using a buffer 256 bytes long. The
program attempts to fill the buffer with the attackers
code.

2. After 256 bytes, the buffer is full and any remaining
bytes will begin to overflow into adjacent memory.

3. First EBP is overwritten.

4. And then EIP is overwritten with the address pointing
back to the malicious code. Now, the program will begin
to execute the malicious code.



DEMO

- for simple stack manipulation



Causes of Stack Buffer Overflow
« ]

e Use of common functions that do not limit the
amount of data copied from one location to
another

e For example, strepy in C



Prevention
o

e Choice of programming language
e Use of safe libraries

e Stack-smashing protection

e Executable space protection



Thanks!
Questions?



