
Symbian Malware: An analysis of the Causes, Trends and Future.

11-July-2007

Abstract

Over the past few years, computer scientists
have been witnessing the evolution of a vicious
species a.k.a. Mobile malware!! Mobile devices
like Smart phones, PDAs and palmtops have
become an essential part of everyday life.
You take control over a person‘s cell phone
and you have control over the person‘s entire
life (his/her family details, bank accounts,
salary details and what not?). Now, how‘s
that for power!! No wonder there are so
many misdirected people out there trying to
infect the mobile environment with viruses
which would give them unlimited access to a
victim‘s personal, professional and financial
life. Among mobile devices, the worst affected
are Symbian smart phones. Symbian is an
extremely popular OS used in a variety of
smart phones. The popularity of Symbian and
the consequent large pool of Symbian phone
users have aroused the interest of hackers and
virus writers alike. More than 90% of the
current mobile malware targets Symbian OS
phones. In this paper we look at some of the
existing Symbian worms, viruses and Trojans
and trace the vulnerabilities exploited by
these malicious programs. We also point out
the subtle similarities and differences between
these malicious programs and then look at the
future of mobile malware.

Keywords: Symbian malware, Mobile
worms, Mobile viruses, Mobile Trojans,

Mobile spyware.

1 Introduction

The word is out. Mobile viruses are a real-
ity. The long standing debate about whether
mobile viruses really pose any threat is over.
Virus writers have shown that they mean busi-
ness. And going by the current trend it is
clear that they have ambitious plans of expan-
sion. Antivirus companies now have hundreds
of Trojans and worms for mobile phones in
their collections. What started in 2004 as a
drizzle of malicious programs has now slowly
turned into a downpour and by the looks of it
we can expect a thunderstorm in the near fu-
ture. Every week about ten mobile phone Tro-
jans are added to antivirus databases. Sym-
bian phones have been among the worst af-
fected. The popularity of Symbian and the
consequent large pool of Symbian phone users
have aroused the interest of hackers and virus
writers. More than 90% of the current mobile
malware targets Symbian OS phones.

Perhaps the most disturbing threat is that of
the user′s privacy. A mobile phone is like your
trusted friend who knows everything about
you. It acts as a single source of informa-
tion for all your personal data like phone num-
bers, messages, agenda and much more. Imag-
ine what would happen if someone corners this
trusted friend of yours and starts extracting
all information about you. Sensitive data can
be deleted, modified or stolen. Chaos every-

1



where!! Definitely we wouldnt́ like to be at the
receiving end of such a vicious attack.

Another disturbing fact is that malware
writers seem to be competing with Symbian
OS developers. They are continuously look-
ing for new ways to hack into mobile phones.
The more the sophisticated features intro-
duced by Symbian the better are the ingenious
ways used by malware writers to attack these
phones. Gone are the days when mobile phones
were simple communication devices. Present
generation mobile phones are full-fledged mul-
timedia devices with little to differentiate them
from palmtops. Considering these facts, it
wouldnt́ be incorrect to say that the kind of
security problems of mobile users would be dis-
turbingly similar to those already faced by PC
users.

Another interesting fact worth mentioning
is that while the growth rate of mobile mal-
ware has far outpaced the growth rate of its
Desktop counterpart, the rate at which the
awareness about mobile malware is spreading
is much slower. Ask an average user to install
an antivirus for his mobile phone and he will
probably laugh at you. Thereś a long way to
go before users know as much about mobile
viruses as they do about computer viruses.

The remaining part of this paper is orga-
nized as follows: In section 2 we give an intro-
duction to Symbian OS and point out some of
its vulnerabilities which are exploited by mal-
ware writers. In section 3 we look at the three
major families of Symbian malware. In section
4 we look at some other malware families and
point out how they borrow their traits from
their predecessors. In section 5 we look at the
steps taken by Symbian in response to this mal-
ware threat. In section 6 we look at the future
of mobile malware. Finally we end with our
concluding remarks in section 7.

2 Symbian OS

Having a good knowledge of the basic structure
of Symbian would be useful in the analysis of
Symbian malware. However, it would be im-
possible to discuss the entire architecture and
all the features provided by Symbian OS in a
single paper (even an entire book would not
be sufficient for this). Here our aim is just to
introduce the reader to the basic structure of
Symbian OS and some of the features provided
by it. We will look at each of the following top-
ics in some detail:

1. Symbian file system.

2. The APIs provided by Symbian for writing
applications.

3. SIS file format.

As we go along we will also point out some
vulnerabilities/features that are exploited by
malware.

2.1 Symbian file system

Just like desktop PCs Symbian file system is
based on drive letters and directories. A typi-
cal smartphine has the following directories:

1. C-drive: A non-volatile, writable storage
area (phone memory). (This is the place
where the viruses get installed)

2. D-drive: A volatile temporary storage
area reserved from RAM

3. E-drive: A non-volatile removable,
writable (usually) memory card (which
come in different types). (Can be used
for spreading viruses from one device to
another)

4. Z-drive: A non-volatile, non-
writable storage area (where the
firmware/operating system resides)

2



Vulnerabilty 1:

Overwriting ROM Applications

If an application on C: has the same name and
path as one in Z: then it will get executed in-
stead of the original application in the Z: drive.

E.g. C:\ system\ apps\ phonebook.app will
override Z:\ system\ apps\ phonebook.app

As we will see later, this vulnerabilty is ex-
ploited by a number of Trojans to disable sys-
tem applications and/or override them with
malicious applications

But, why did Symbian provide such a dan-
gerous feature. Was it a bug? Well, we
wouldnt́ say that it was a bug. This feature
was deliberately included to allow patching of
a binary in ROM without needing to re-flash
the device. Alas!! The virus writers were smart
enough to exploit this feature as a source of
personal entertainment!!

2.2 Symbian APIs

Symbian provides a wide range of C++ APIs
for application development. An exhaustive
set of APIs is available for:

1. GUI development.

2. SMS, MMS application development.

3. Bluetooth application development.

4. File system access.

5. Accessing phonebook and other items in
phone memory.

This complete set of APIs would be any
application developerś paradise. Imagine
having full access to phone memory and other
features like SMS, MMS and Bluetooth.

Vulnerabilty/Feature 2:

Extensive Set of APIs

Note: It́s sad that we have to call this a weak-
ness instead of calling it a feature.

This extensive API set is one of the main
reasons for Symbianś popularity. It is also the
reason for the exponential growth of malware
for Symbian OS as it opens up a lot of possibil-
ities for writing malicious code. This is what
goes on in a virus writerś mind:

1. I could use the Bluetooth APIs to scan
for devices in my neighborhood (within a
range of 10 m) and then send some ma-
licious file using an obex client. Symbian
provides classes like RSocketServ, TProto-
colDesc, RHostResolver and CObexClient
which can be used for this. In fact, the
Symbian site also has tutorials on how to
use these APIs.

2. I could access the phonebook, read all
contact information and send SMS to all
the contacts and cause financial loss to
the victim. Symbian provides classes like
CContactDatabase(for accessing phone-
book) and CsmsClientMtm (for SMS)
which can be used for this.

3. I could access the phonebook, read all
contact information and send a malicious
file as an attachment using MMS. CMm-
sClientMtm can be used for this.

The point to be noted is that much of the work
of a virus writer is simplified by these APIs. He
does not have to worry about using hacking
techniques to get access to MMS, phonebook
etc. The APIs provide him/her these facili-
ties which makes it somewhat easy to develop
viruses for this OS.

2.3 SIS file format

Software Installation System (SIS) files are
the only currently known method for a
normal user to import executable code to a
Symbian device. Any malware that wants

3



to run on the device has to get installed as
a SIS file. Thus all known malware uses
SIS files. In the earlier versions of Symbian
OS (upto v8.1) no security features were
included to prevent the tampering of SIS
files which made them vulnerable. To add to
this, the format of these SIS files was openly
known and available on the internet. These
facts make way for the following vulnerabilties:

Vulnerabilty 3:

Easy replication of SIS files

Malware writers can write malware that
could replicate by constructing its own SIS
file programmatically i.e. embed code in the
malware to construct its own SIS file. This
requires a deep understanding of the structure
of the SIS file and the offset of various fields
in it. But as we said earlier these details
are easily available on the internet and any
malware writer worth his salt should be able
to do this easily. (Readers familiar with
constructing TCP/IP or MPEG-2 packets
would know that this is not a difficult task and
simply involves bit/byte/word manipulations.)

Vulnerabilty 4:

Tampering existing SIS files

Malware writers can write malware that
searches for existing trusted SIS files on the
target device and then embed the SIS file of the
malware into these trusted SIS files so that the
malware can propagate along with the trusted
SIS file. This is possible because Symbian al-
lows a SIS file to have embedded SIS files. Fur-
thermore, it also provides an option wherein
the embedded SIS file gets installed automati-
cally along with the original SIS file. Again the
above procedure requires a deep understanding
of the structure of the SIS file and the offset of
various fields in it.

2.4 Symbian Executables/Resource
Files and Font files

The following files are typically available on a
Symbian smartphone:

1. Foo.app: These are the applications
which are visible to end users and are ac-
cessible from application menu.

2. Foo.exe: These cannot be accessed by
the end user. These are services or utilities
that are used by GUI applications

3. Foo.mdl: They have the ability to start
automatically at boot or when a memory
card is inserted. These files must be lo-
cated in the System\Recogs directory of
one of the drives.

4. Foo.rsc: These are resource files for the
application

5. Foo.gdr: These are Symbian OS font
files.

Vulnerabilty 5:

Autostart Capability

Note: Again a good feature which was used ma-
liciously by malware writers.

Once a malware is installed on a victim
device it would be desirable that it gets
executed automatically without any user
intervention. This feature is provided by
Symbian in the form of .mdl files which can
be configured and programmed to start any
application (including a .exe or a .app file).
This feature was exploited by virus writers by
packaging .mdl files along with their malicious
.app/.exe files. The purpose of these .mdl files
was to start the malicious code whenever the
system reboots (without requiring any user
intervention).

Vulnerabilty 6:

4



Malformed files

It has been observed that some of the older
versions of Symbian OS (upto v8.1) had a de-
sign/implementation flaw which caused the de-
vice to hang/reboot whenever it encountered a
malformed .rsc/.dgr/.exe file. Malware writ-
ers were quick to discover this and exploited
this vulnerability by packaging malformed files
along with their applications. Most malware
writers exploit these vulnerability in combina-
tion with the Autostart Capability feature by
including a .mdl file in the SIS file. The pur-
pose of this .mdl file is to try to execute these
malformed files when the system boots or to
execute some dummy application which uses
these malformed files. Since these files are mal-
formed and do not adhere to their standard for-
mat the system fails to execute/process them
and freezes.

3 The Most Wanted

Having seen the vulnerabilities present in Sym-
bian OS we will now start tracing the evolution
cycle of Symbian malware. Itś a known fact
that most of the new worms and viruses bor-
row heavily from their predecessors. As and
when the source codes/technical details of ex-
isting worms become available, more and more
script kiddies capitalize on the work of other
malware writers and come up with new vari-
ants of these worms. It is therefore necessary
to first look at the pioneers (for the want of a
better word) in the field of worms and viruses
and then draw comparisons of newer worms
with these path breakers (or should we say se-
curity breakers). Hence we begin with a brief
description of the 3 most path breaking ma-
licious programs and then move on to discuss
about other malware which borrow their mali-
cious intentions and techniques from these ma-
licious programs.

3.1 Cabir

Cabir was written by a group of virus writ-
ers called 29A. Their intention was to write
a proof-of-concept malware for mobile phones
and other devices running non-standard oper-
ating systems and applications. The authors
definitely succeeded in their aim because this
was the first time that virus researchers en-
countered a worm which:

1. was written for a non-standard operating
system (Symbian)

2. was meant to run on a different proces-
sor (i.e. ARM till the time when Cabir
was released researchers were familiar only
with worms for the x86 processor which is
commonly used in Desktop PCs.)

3. used a different medium for propagation.
(Bluetooth - as opposed to e-mail/ inter-
net)

Cabir exploits the rich set fo APIs provided
by Symbian for achieving its malicious ends.
The writers used Symbianś Bluetooth APIs
for discovering vulnerable devices and infect-
ing them. They also did a deep study of the
SIS file format and were successful in writing
code which had the ability to replicate itself
(i.e. code which could construct its own SIS file
programatically). The SIS file also included a
.mdl file which launches the worm automati-
cally on system reboot.

3.2 CommWarrior

CommWarrior takes the credit for being the
first known mobile phone virus capable of
spreading via MMS messages and thereby
causing financial losses to the user. There
are many similarities between Cabir and
CommWarrior as listed below:

5



1. Both the worms run in the background
and continuously search for and spread to
potential victims.

2. Both the worms are capable of spread-
ing via Bluetooth (In addition CommWar-
rior is also capable of spreading via MMS
which makes it much more lethal as com-
pared to Cabir as MMS has no boundaries
and can be instantly sent even to handsets
in other countries.). Thus both exploit the
rich set of APIs provided by Symbian.

3. Both the worms use the same strategy for
replication (i.e. programmatically create
their own SIS files).

3.3 Skuller

Until the arrival of this Trojan, virus writing
was an art (evil as it maybe, an art is an art
is an art) which required a bit of ingenuity on
the part of the virus writers. But Skuller broke
the myth that virus writing was a work of nerds
who had a deep understanding of the Symbian
system. This Trojan showed that any person
who can use a utility for creating sis files will
be able to create a Trojan of this kind. The
rest of the work is done by the vulnerabilities
(vulnerability 1 and 6 to be precise) present
in Symbian. It is possible to overwrite any
files, including system files, and the system be-
comes very unstable when it comes across un-
expected files. Moreover, being a Trojan, it
does not require any ingenious ways of propa-
gation/replication. It relies on the curiosity of
over eager users to download anything and ev-
erything with a catchy caption like Extended
Theme for your Symbian Phone and the users
oblige!! The earliest evidences of this Trojan
date back to November 2004. It overwrites
all the default applications that are installed
on any Symbian OS phone (refer vulnerabil-
ity 1 above). The application files created by
Skuller are standard application files for the

Symbian platform and do not contain any ma-
licious code (it is simply dummy code which
doesnt́ do anything). This Trojan also replaces
the icons of all the applications with images of
skulls.

4 The Followers

If you did it, so can I!! Better (Deadlier)
than thy!!

An insatiable hunger to prove their superior-
ity attracts most of the virus writers to this
evil field. Each time a malware writer comes
up with a new malicious program, there are a
100 others eagerly burning the midnight oil to
out perform him/her. This is perhaps the rea-
son that since the Pandoraś box was opened by
Cabir there has never been a shortage in the
production of malicious programs. One impor-
tant observation worth mentioning is that as
time passes the process of malware writing be-
comes somewhat similar to the process used by
a chef to come up with newer tastier dishes:

Take a few existing recipes and
add or modify a few ingredients and
there you are!! You have a new dish!!
More delicious than ever before!!

(Is it a coincidence that delicious and malicious
rhyme??)

Keeping this phenomenon in mind, we now
look at some of the malware that followed in
the footsteps of the famous three. Of course,
some of these worms have their own identity
and dont́ directly borrow from their predeces-
sors. But, as we shall see, the basic idea still
remains the same:

1. Use the connectivity (Bluetooth, MMS,
SMS) APIs provided by Symbian for per-
forming malicious activities.

2. Replace system binaries (Overwriting
ROM applications).

6



3. Replace system configuration files with
corrupted/malformed files.

The table in Appendix A explains the vul-
nerabilities that these malicious programs ex-
ploit and also compares them to their prede-
cessors.

5 Symbian rises to the chal-
lenge

Nero fiddled while Rome burned. Or did he??

Well, one might be tempted to ask that While
Symbian phones were being attacked at all
fronts, what were the OS developers doing??
Were they sleeping or secretly enjoying the
rampage?. Well definitely not. Symbian OS
developers pulled up their socks and some seri-
ous decisions were taken to enhance Symbianś
security model. And indeed, Symbianś secu-
rity model has evolved over time and reached
a stage where it can put up a strong defense
against mobile malware. Below, we summa-
rize the evolution process of Symbianś security
model.

1. Symbian OS v7 and earlier: No secu-
rity checks present. User decides to install
based on dialog prompts.

2. Symbian OS v8: Anti-virus support was
introduced.

3. Symbian Signed: Developer needs to
take a digital certificate from Symbian.

4. Symbian OS v9: Runtime security
checks were performed and the concept of
capabilities was introduced. Data caging
and UID caging were introduced to mali-
cious or unintentional overwriting of one
applicationś data by another.

Now we briefly look at the key security features
introduced in Symbian OS v9.0 which make

it resistant to most of the worms, viruses and
Trojans that we discussed in the earlier sec-
tions.

5.1 Runtime security check and ca-
pabilities

In Symbian OS v9 there is a more fine-grained
security model which allows privileged access
to be granted based on capabilities. These ca-
pabilities are based on clearly defined group-
ings of what each API is designed to do. The
unit of trust is at the process level so a process
is only able to access resources for which it has
the relevant privilege. The process cannot use
APIs or resources that require more capabili-
ties than have been authorized. This security
check for each process is policed at runtime.

Example: If an API is associated with
network services (Bluetooth, SMS and MMS)
it will require the capability NetworkServices.
This implies that if a malicious program uses
the above mentioned network APIs for prop-
agation or simply for causing financial dam-
ages to the victimś device then the writer of
such malicious programs needs to get the cor-
responding permission from Symbian in the
form of a digital certificate (which implies
that he/she can be easily traced). So good-
bye to Cabir, CommWarrior and sim-
ilar viruses, worms and Trojans which
use network services (or any other APIs
which require some capabilities) for per-
forming malicious activities!!

Note: There is a small twist to this happy
tale. If a program tries to use an API for which
it does not have the necessary privileges then
the user will be alerted about this. The user
then has an option to bypass the security check
and allow the access. Uh-oh, sounds like trou-
ble!! We have already seen how over enthusi-
astic users will be more than happy to ignore
such security warnings. An inherent flaw here
is that the system partly depends on the user

7



to ensure security.

5.2 UID usage and data caging

To prevent malicious or unintentional overwrit-
ing of one applicationś data by another, Sym-
bian OS v9 introduces a change in the way
UIDs are managed that allows for data caging.
This ensures that most applications can only
access areas of the system designed as public
or private to that particular application i.e.
neither read nor overwrite the data belonging
to other applications in order that data associ-
ated with each particular application remains
secure. So goodbye to Skullers and simi-
lar Trojans which overwrite the data of
system and third party applications!!

Note: Again, there is a small twist to this
happy tale. If a program tries to overwrite the
files of some other application then the user
will be alerted about it. The user then has an
option to bypass the security check and allow
the access. Uh-oh, sounds like trouble!! We
have already seen how over enthusiastic users
will be more than happy to ignore such secu-
rity warnings. An inherent flaw here is that
the system partly depends on the user to en-
sure security.

6 The future of mobile mal-
ware

In this section we talk about some possibili-
ties which might become realities in the not-
so-distant future.

6.1 The next big (dirty) thing: Mo-
bile spyware

We have not really looked at mobile spyware in
detail and have only made passing references to
it. Mobile spyware would be a logical extension
of mobile malware. We have mentioned some
Trojans (PbStealer) which behave as spyware

and steal sensitive data from the users mobile.
But what if this Spywar (not a spelling mis-
take) is taken to the next level? Would it be
possible to create spyware which uses the Cam-
era APIs of your phones to click pictures and
send them to the attacker using MMS!! (My!!
My!! Now that would be complete breach of
privacy!!) As far as our knowledge goes it
should be possible to this. We would like to
explore this possibility and alert the Symbian
authorities in time (before anyone else releases
such a spyware in the wild).

6.2 Polymorphic Mobile Worms

Again, this is a possibility which has never
been explored before. There are hordes of
polymorphic worms available for Desktop PCs.
In fact there are several polymorphic engines
which are openly available for download. We
wouldnt́ be wrong in saying that sooner or later
this would happen in the mobile arena also.
Itś only the question of when an overly gifted
and overly enthusiastic virus writer develops a
polymorphic engine (for the ARM processor)
and makes it available to the brotherhood of
virus writers.

6.3 Cryptovirolgy

Cryptovirology refers to the use of well estab-
lished cryptographic algorithms for performing
malicious deeds. Cryptovirology is already a
menace in the Desktop arena. Its only a matter
of time before it reaches the mobile arena. As
an example consider this. Suppose a malicious
user installs a Trojan which encrypts all the
data on your phone using the malicious user‘s
public key. Now the malicious user can hold
you at ransom and demand some money in ex-
change for releasing his private key (so that
you can decrypt your data). This has never
been tried before but seems possible.

8



7 Conclusion

And they lived happily ever after!! Or did
they??

We wish we could end our report on a happy
note saying that Alls well! Go Home!! Re-
lax!! Your privacy is guaranteed!! But unfor-
tunately, you know, as much as we do, that this
is not true. We have only looked at the tip of
the iceberg and from what we have seen it is
pretty clear that things dont́ look very safe.
What makes matters worst is the Chef Recipe
Theory that we mentioned in our report. A
little bit of salt, a little bit of pepper and you
have a new dish. This theory definitely ex-
plains the steady flow of mobile malware and
gives us every reason to believe that this steady
current will only increase in the future till it
becomes strong enough to wipe out the en-
tire community of mobile users. Now, hold on,
thatś definitely an exaggeration and is based
on the assumption that Nero will continue fid-
dling while Rome burns!! Fortunately that is
not the case here. Symbian has definitely risen
to the challenge and done its best to get a hold
over the situation. The Symbian Signed initia-
tive seems to be a step in the right direction
but even this system is not foolproof because of
its partial dependence on sensible behavior by
the users. Another important point to under-
stand is that Symbian Signed works only with
Symbian OS v9.x (and we hope it would work
with the later versions as and when they are in-
troduced by Symbian). But there are already a
large number of users using Symbian v7.x and
v8.x phones which are susceptible to many ma-
licious programs (and the number of such pro-
grams will only increase in the future). These
users are living under a constant threat of be-
ing attacked by mobile malware. There is no
immediate remedy to protect these users. Itś
true that several anti-virus companies have de-
veloped and distributed free anti-virus for mo-

bile phones but then a question which remains
to be answered is that Is an average mobile
user (security) conscious enough to realize the
importance of installing and maintaining such
anti-virus programs on his device?. No, defi-
nitely not!! What anti-virus companies provide
is cure and what we are looking for is precau-
tion.

The only possible way of completely elim-
inating the threat posed by mobile malware
is to ensure that no malicious program ever
reaches the phone of an unsuspecting user.
Once it reaches the victimś device there is
nothing we can do as in all probability the vic-
tim will happily install it on his phone. One
possible way of preventing malware from reach-
ing a victimś device is if the service provider
does content based filtering of all MMS mes-
sages being sent over the network. This will
take care of the MMS based worms and viruses
but then what about worms which spread over
Bluetooth? Also it is important to note that
the world of mobile malware is dominated by
Trojans and not by worms or viruses. These
programs do not need any propagation vector
and simply rely on the userś curiosity to down-
load and install them. Trojans pose a much
greater threat than worms and viruses because
they are relatively much easier to write and in
most of the cases do not require any ingenuity
on the part of the writer. Even with the Sym-
bian Signed initiative it would be very difficult
to get completely rid of such Trojan programs.
They will continue to reign and cause havoc for
at least the next few years.

Never underestimate thy enemies!!

Malware writers have known to be able to
find ways to hack into a system, no matter how
secure it is. Secure as it may look (and be), it
would be foolish to assume that malware writ-
ers would never be able to hack into Symbian
Signed. Only time will say what this gifted but

9



misdirected community of virus writers has in
store for mobile users. Till then,[1]

Stay Alert!! Stay Secured!!

References

[1] Symbian OS , www.symbian.com.

[2] Symbian C++ APIs, http://www.
symbian.com/developer/techlib/v70docs/
sdlv7.0/doc source/reference/cpp/index.
html.

[3] Virus Bulletin. VB2005 , https://www.
virusbtn.com/pdf/conference slides/2005/
JNiemela VB2005 sanitized.pdf.

[4] Thouky. mtlworld. http://homepage.
ntlworld.com/thouky/software/psifs/
sis.html.

[5] Symbian SIS files v9.1. http://
developer.symbian.com/main/downloads/
papers/SymbianOSv91/softwareinstallsis.
pdf.

[6] Symbian Signed https://www.
symbiansigned.com.

[7] F-Secure http://www.f-secure.com/.

[8] Mobile Evolution. Viruslist. http://
www.viruslist.com/en/analysis?pubid=
200119916beg..

[9] Virus List http://www.viruslist.com.

[10] Yahoo Groups. http://tech.groups.
yahoo.com/group/SymbWarrior/.

[11] Nokia Discussion Forum. http://
discussion.forum.nokia.com/.

[12] Symbian Security evolution. https://
www.symbiansigned.com/How has
Symbian Signed evolved with Symbian
OS v9.pdf.

[13] Fadia, Ankit. The Ethical Hacking
Guide to Hacking Mobile Phones.
Macmillan India Ltd. (India), Thomson
Learning (International), 2006.

[14] Harrison, Richard. Symbian OS C++
for Mobile Phones. John Wiley and
Sons Ltd, 2003.

10



Appendix

A List of Symbian Malware and the vulnerabilities which they
exploit

Sr.
No.

Family Name Type Vulnerabilities that it exploits Borrows
its traits
from

Remarks

1 Cabir
(June 2004)

Worm 2, 3 and 5.
Uses Bluetooth and File APIs. In-
cludes code to generate its own SIS
file

Original
Worm

First worm which showed the
world how to replicate.

2 CommWarrior
(March 2005)

Worm 2,3 and 5.
Uses Bluetooth MMS and File
APIs. Includes code to generate
its own SIS file

Original
Worm

First worm to cause financial dam-
ages via MMS

3 Skullers
(November 2004)

Trojan 1.
Overwrites all System applications
with dummy applications.

Original
Trojan

First Trojan to exploit an in-
built vulnerability in Symbian OS.
Showed the world how easy it is to
write Trojans.

4 Mosquit
(August 2004)

Trojan 2.
Uses SMS APIs

Original
Trojan

Sends SMS to premium numbers.

5 Lasco
(Jan 2005)

Worm 2,3,4 and 5 Cabir Also tampers existing SIS files by
embedding its own SIS file with
them.

6 Locknut
(Feb 2005)

Trojan 6 Contains malformed .app and .rsc
files

7 Dampig
(March 2005)

Trojan 1 Skullers Disables some critical system ap-
plications

8 Drever
(March 2005)

Trojan 2.
Uses File APIs to overwrite the
boot loaders of anti-viruses.

Disables automatic startup of an-
tivirus programs.

9 Mabir
(April 2005)

Worm 2,3 and 5 Cabir and
Comm-
Warrior

Spreads via Bluetooth/MMS

10 Fontal
(April 2005)

Trojan 6 Locknut Installs corrupted font files.

11 Hobbes
(April 2005)

Trojan 1 and 6.
Installs corrupted binaries

Skullers Causes application loader to crash
in older versions of Symbian.

12 Appdisabler
(May 2005)

Trojan 1 Skullers Disables critical system applica-
tions. Also installs variants of
Cabir, Locknut and Skulls

13 Doomboot
(May 2005)

Trojan 1 and 6 Skullers Replaces system applications with
malformed binaries.

14 Blankfont
(August 2005)

Trojan 6 Fontal Installs corrupted font files.

15 Skudoo
(August 2005)

Trojan 1,2,3,5 and 6 Mix of some
worms and
Trojans

Installs some variants of Skullers,
Cabir and Doomboot.

16 SingleJump
(August 2005)

Trojan 1 Skullers Also installs some variants of
Fontal, Blackfont, Appdisabler
etc.

17 Cardtrap
(Sep 2005)

Trojan 1.
Disables several critical system ap-
plications apart from installing 3
Windows worms.

Skullers The first crossover worm. It in-
stalls three Windows worms onto
the deviceś memory card. It also
installs an autorun.ini file so that
if the card is inserted into a PC us-
ing Windows then the autorun file
will try to execute these worms.

11



18 Cardblock
(September 2005)

Trojan 2.
Uses some APIs (DMMCCon-
troller) provided by Symbian to
set a random password for the
MMC

Blocks the MMC card inserted
into the phone by generating
a random password and setting
this password to the MMC card

19 PbStealer
(Nov 2005)

Trojan 2.
Uses Bluetooth, File and Con-
tactDatabase APIs

Dumps the contents of the con-
tacts database into a text file and
sends it to the first Bluetooth de-
vice.

20 Bootton
(Dec 2005)

Trojan 1 and 2.
Uses SysStartup APIs provided
by Symbian

Skullers Overwrites system applications
with a malicious program that
causes the device to reboot.

21 StealWar
(March 2006)

Trojan Same as the worms/Trojans that
it drops on the device

Basically a Worm/ Trojan drop-
per which install some variants of
Skullers/CommWarrior/PbStealer
etc.

22 Flexispy
(April 2006)

Trojan 2 Original
Spyware

Records details of voice call,
SMS and sends the details to a
remote server.

23 RommWar
(April 2006)

Trojan 6 Locknut Installs malformed system com-
ponents which cause the device
to freeze.

24 RomRide
(April 2006)

Trojan 1 and 6 Skullers/
Locknut

Installs malformed system com-
ponents which cause the device
to freeze.

TODO: Add the description of the worms and Trojans discovered in the period of April 2006
to May 2007.

12


