
Distributed Fair Scheduling in a Wireless LAN
Nitin Vaidya, Senior Member, IEEE, Anurag Dugar,

Seema Gupta, and Paramvir Bahl, Senior Member, IEEE

Abstract—Fairness is an important issue when accessing a shared wireless channel. With fair scheduling, it is possible to allocate

bandwidth in proportion to weights of the packet flows sharing the channel. This paper presents a fully distributed algorithm for fair

scheduling in a wireless LAN. The algorithm can be implemented without using a centralized coordinator to arbitrate medium access.

The proposed protocol is derived from the Distributed Coordination Function in the IEEE 802.11 standard. Simulation results show that

the proposed algorithm is able to schedule transmissions such that the bandwidth allocated to different flows is proportional to their

weights. An attractive feature of the proposed approach is that it can be implemented with simple modifications to the IEEE 802.11

standard.

Index Terms—Medium access control, wireless networks, weighted fairness, distributed protocols.

�

1 INTRODUCTION

WIRELESS communication technology has gained wide-
spread acceptance in recent years. Wireless local area

networks have come into greater use with the advent of the
IEEE 802.11 standard and the availability of several
commercial products based on this standard. Fairness is an
important issue when accessing a shared wireless channel.
With fair scheduling, different flows wishing to share the
wireless channel can be allocated bandwidth in proportion
to their “weights.” This paper presents a distributedmedium
access control (MAC) protocol for fair scheduling in a
wireless LAN (operated in an “ad hoc” mode). Although
IEEE 802.11 wireless MAC is not fair (particularly on short
time-scales), the proposed protocol is derived from the
Distributed Coordination Function (DCF) in IEEE 802.11. An
attractive feature of the proposed approach is that it can be
implemented with simple modifications to IEEE 802.11.

In general, medium access control (MAC) protocols can
be divided into two types: centralized and distributed. In
centralized protocols, a designated host (often referred to as
base station or access point) coordinates access to the
wireless medium. Point Coordination Function (PCF) in
IEEE 802.11 is an example of the centralized approach. In
distributed protocols, a coordinator is not needed to
arbitrate access to the wireless medium. For instance, in
the CSMA (carrier sense multiple access) protocol, a node
wishing to transmit a packet does so only if it does not hear
another on-going transmission. CSMA protocol is fully
distributed since each node independently determines

whether to transmit a packet or not. Distributed Coordina-
tion Function (DCF) in IEEE 802.11 is an example of the
distributed approach.

This paper develops a distributed approach for fair

scheduling. Much research has been performed on “fair

queuing” algorithms for achieving a fair allocation of

bandwidth on a shared link [2], [4], [14], [20]. Consider

the system shown in Fig. 1, where a node maintains several

queues (or flows) which store packets to be transmitted on an

output link. A fair queuing algorithm is used to determine

which flow to serve next so as to satisfy a certain fairness

criterion. By design, these fair queuing algorithms are

centralized since they are executed on a single node (for

instance, a switch or router) which has access to all

information about the flows.

Fair queuing algorithms in the literature typically

attempt to approximate the Generalized Processor Sharing

(GPS) discipline [20]. When using the GPS discipline, a

server serves, say, n flows, each characterized by a positive

weight; let �i denote the weight associated with flow i

(i ¼ 1; � � � ; n). Let Wiðt1; t2Þ be the amount of flow i traffic

served in the interval ½t1; t2�. Then, for a GPS server [20], if

flow i is backlogged1 throughout ½t1; t2�, the following

condition holds:

Wiðt1; t2Þ
Wjðt1; t2Þ

� �i

�j
; 8j:

Equality holds above if flow j is also backlogged in interval

½t1; t2�. Note that the above condition is valid regardless of

how small the interval ½t1; t2�. This implies that the GPS

server can “interleave” data from different flows with an

arbitrarily fine granularity. The GPS discipline cannot be

accurately implemented in practice since data transmitted

on real networks is packetized. This observation led to the

development of several packet fair queuing algorithms

which approximate GPS under the constraint that each

616 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 4, NO. 6, NOVEMBER/DECEMBER 2005

. N. Vaidya is with the Department of Electrical and Computer Engineering
and the Coordinated Science Laboratory, University of Illinois at Urbana-
Champaign, 1308 West Main St., Urbana IL 61801.
E-mail: nhv@crhc.uiuc.edu.

. A. Dugar is with OPNET Technologies Inc., 7255 Woodmont Avenue,
Bethesda, MD 20878. E-mail: anurag_dugar@yahoo.com.

. S. Gupta is with Cisco Systems Inc., 510 McCarthy Blvd, Milpitas, CA
95035. E-mail: segupta@cisco.com.

. P. Bahl is with Microsoft Research, One Microsoft Way, Redmond, WA
98052. E-mail: bahl@microsoft.com.

Manuscript received 22 Aug. 2003; revised 21 May 2004; accepted 12 July
2004; published online 28 Sept. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-0134-0803. 1. A queue (or flow) is said to be backlogged if it is not empty.

1536-1233/05/$20.00 � 2005 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

packet must be transmitted as a whole [2], [4], [14], [20].
These protocols are centralized by design, as noted above.

There has been some work on achieving fairness in
wireless networks (e.g., [3], [12], [16], [17], [27], [26]). Some
of the past work on incorporating fairness into distributed
protocols has been limited in that these protocols attempt to
provide an equal share of bandwidth to different nodes
(essentially, node weights are implicitly assumed to be
equal). Other researchers have developed protocols that
take into consideration multihop network topology to
achieve fairness. For instance, Luo et al. [16] have devel-
oped mechanisms that achieve weighted fairness while also
trying to maximize the throughput. They proposed an
interesting approach based on the notion of a flow
contention graph that takes into account the topology of
the network. They have also developed a topology-
independent model for fair queuing [17]. The protocol
proposed in this paper is relatively simple, but with
relatively modest goals compared to the work of Luo et al.

In recent years, researchers have also considered the use
of fair queuing in the wireless cellular environment
illustrated in Fig. 2a. Although existing centralized algo-
rithms may be applied to the wireless environment (with
the base station acting as the coordinator), it has been
observed that fairness achieved by these algorithms may
suffer in the presence of location-dependent errors [19]. With
location-dependent errors, while error-free transmission may
be possible between a given host and the base station,

transmissions between another host and the base station
may be corrupted by errors. In this case, some mechanism
to “compensate” hosts whose packets are corrupted by
errors should be incorporated. Many approaches for
improving fairness in the presence of location-dependent
errors have been developed [15], [18], [19], [21]. These
approaches are centralized and require the base station to
coordinate access to the wireless channel, whereas the
proposed protocol is distributed.

There has also been work on distributed protocols that
takes priorities into account when performing medium
access control [1], [25], [23], [24]. For instance, Aad and
Castelluccia [1] present service differentiation mechanisms
for wireless networks. Their mechanism allows a host to
pick a backoff interval as a function of its priority, larger
backoff intervals being used for lower priority. Our
proposed fair scheduling mechanism uses a similar mechan-
ism, but with the goal of achieving weighted fair scheduling,
not priority scheduling. Our related work [22] proposed a
distributed MAC protocol for wireless networks to support
prioritized scheduling along with a weighted fair sharing of
the bandwidth among the users belonging to the same
priority level. Interesting work on a distributed scheduling
algorithm for real-time traffic on a wireless LAN has also
been performed [23]. This work, however, assumes that a
flow transmits packets with a constant rate. Such assump-
tions cannot be made when performing fair scheduling.

The rest of this paper is organized as follows: Section 2
discusses some background on the SCFQ fair queuing
protocol and IEEE 802.11. The proposed protocol is
discussed in Section 3. An approach to improve perfor-
mance of the proposed protocol is presented in Section 4
and an adaptive protocol in Section 5. Section 6 makes some
interesting observations about the proposed method.
Performance evaluation is presented in Section 7. Finally,
conclusions are presented in Section 8.

2 PRELIMINARIES

The objective behind this work was to develop a fair
scheduling MAC protocol for a wireless LAN (illustrated in
Fig. 2b), with the following properties: 1) The protocol must

VAIDYA ET AL.: DISTRIBUTED FAIR SCHEDULING IN A WIRELESS LAN 617

Fig. 1. A node with several flows sharing a link.

Fig. 2. Wireless environments. (a) In centralized approaches, the base station coordinates medium access. (b) In distributed approaches, all nodes

have identical responsibilities.

be fully distributed in that no single node should have any

special responsibility. 2) Each node should be able to

independently determine when to transmit a packet, without

knowing the state of (or existence of) flows at other

nodes—the state of a flow includes information such as

the weight of the flow, whether the flow is backlogged or

not, and the time of the arrival of packets on the flow.

3) Maintain compatibility or close resemblance to an

existing wireless MAC standard, to make it easier to

implement the proposed protocol. The next two sections

describe a centralized fair queuing algorithm and the IEEE

802.11 MAC protocol, which together form the basis for the

proposed fair scheduling protocol.

2.1 Self-Clocked Fair Queuing (SCFQ)

The algorithm proposed here was designed in an attempt to

emulate Self-Clocked Fair Queuing (SCFQ) in a distributed

manner. Two important issues are worth noting here: 1) The

proposed technique to implement distributed fair schedul-

ing can also be extended to other fair queuing algorithms,

such as Start-Time Fair Queuing (SFQ) [14]. 2) Although our

intention was to emulate SCFQ, the distributed implemen-

tation behaves somewhat differently, as discussed later in

Sections 6.1 and 6.4.
Now, we briefly describe the centralized SCFQ algorithm

[13] which assumes the architecture shown in Fig. 1. A

virtual clock is maintained by the central coordinator, and

vðtÞ denotes the virtual time at real time t. Let Pk
i denote the

kth packet arriving on flow i. Let Ak
i denote the real time at

which packet Pk
i arrives. Let Lk

i denote the size of packet P
k
i .

A start tag Sk
i and a finish tag Fk

i are associated with each

packet Pk
i , as described below. Let F 0

i ¼ 0; 8i.

1. On arrival of packet Pk
i , the packet is stamped with

start tag Sk
i , calculated as

Sk
i ¼ maximumfvðAk

i Þ; F k�1
i g:

Also, Fk
i , the finish tag of Pk

i , is calculated as

Fk
i ¼ Sk

i þ
Lk
i

�i
.

2. Initially, the virtual clock is set to 0, i.e., vð0Þ ¼ 0. The
virtual time is updated only when a new packet is
transmitted. When a packet begins transmission on
the output link, the virtual clock is set equal to the
finish tag of that packet.

3. Packets are transmitted on the link in increasing
order of their finish tags. Ties are broken arbitrarily.

As noted in Step 1 above, in the SCFQ algorithm (and,

also in other algorithms, such as SFQ [14], WFQ [4], WF2Q

[2], etc.), the start and finish tags are calculated when a

packet arrives in a flow. An alternative approach is to

calculate the start tag when a packet reaches the front of its

flow; that is, for a packet Pk
i in flow i, start and finish tags

are calculated only after all packets that arrived in flow i

before packet Pk
i have been serviced. If this approach were

to be used, then calculation of the start tag above should be

modified as follows: Let fki denote the real time when

packet Pk
i reaches the front of its flow. If Pk

i arrives on an

empty flow, then fk
i ¼ Ak

i ; else, f
k
i will denote the real time

when Pk�1
i finishes service. On arrival of packet Pk

i at the

front of its flow, the packet is stamped with start tag Sk
i ,

calculated as

Sk
i ¼ vðfki Þ: ð1Þ

The finish tag is calculated as before, as Fk
i ¼ Sk

i þ Lk
i =�i. It

is a simple exercise to verify that, for the SCFQ algorithm,

this new procedure and the earlier procedure result in the

same start and finish tags for all packets. In our distributed

implementation, however, we emulate the latter procedure.

2.2 IEEE 802.11 MAC: Distributed Coordination
Function

The medium access control protocol specified in the IEEE
802.11 standard cannot perform fair allocation, particularly
on short time scales, (even if we assume that all flows have
equal weights). However, using a mechanism similar to the
Distributed Coordination Function (DCF) in IEEE 802.11,
the proposed protocol is able to achieve significantly better
fairness.

We now briefly present salient features of the Dis-
tributed Coordination Function (DCF) in IEEE 802.11. A
CSMA/CA (collision avoidance) mechanism is incorpo-
rated in DCF. A similar mechanism is also used in the
proposed protocol. When a node i wishes to transmit a
packet, it chooses a “backoff” interval equal to Bi slots.2

Specifically, Bi is chosen uniformly distributed in the
interval ½0; cw�, where cw is the size of the so-called
contention window. cw at node i is reset to a value CWmin

at the beginning of time and also after each successful
transmission of a data packet by node i.

Now, if the transmission medium is not idle, node iwaits
until it becomes idle. Then, while the medium is idle, Bi is
decremented by 1 after each slot time.3 If the medium
becomes busy while Bi is nonzero, then Bi is frozen while
the medium is busy. Bi is decremented again when the
medium becomes idle. Eventually, when Bi reaches 0,
node i transmits a Request-to-Send (RTS) packet for the
intended destination of the packet. The destination node, on
receiving the RTS, sends a Clear-to-Send (CTS) packet.
Node i, on receipt of the CTS packet, transmits the data
packet. The receiver node, on receipt of data, sends an
acknowledgment (ACK).

Now, it is possible that two nodes, say i and j, may
choose their backoff intervals such that they both transmit
their RTS packets simultaneously, causing a collision
between the RTS packets. In this case, node i will not
receive a CTS, therefore, it will not be able to send the data
packet. When a CTS is not received, node i doubles its
contention window size cw, picks a new Bi uniformly
distributed over ½0; cw�, and repeats the above procedure.

3 DISTRIBUTED FAIR SCHEDULING (DFS)
PROTOCOL

The proposed Distributed Fair Scheduling (DFS) protocol is
based on the IEEE 802.11 MAC and SCFQ:

618 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 4, NO. 6, NOVEMBER/DECEMBER 2005

2. A slot is a fixed interval of time defined in IEEE 802.11.
3. Actually, node i waits for an interval known as an interframe spacing,

before starting to decrement Bi. We will omit such details in this discussion.
However, our simulation model does implement these details accurately.

. The DFS protocol borrows SCFQ’s idea of transmit-
ting the packetwhose finish tag is the smallest, aswell
as SCFQ’s mechanism for updating the virtual time.

. A distributed approach for determining the smallest
finish tag is employed, using the backoff interval
mechanism from IEEE 802.11 MAC. The essential
idea is to choose a backoff interval that is propor-
tional to the finish tag of the packet to be
transmitted. Several implementations of this idea
are possible, as discussed below.

We now describe the proposed approach. In our
discussion and simulations, we assume that all packets at
a node belong to a single flow—the proposed algorithm can
be easily extended when multiple queues are maintained at
each node (as discussed later in Section 6.2). Each node i

maintains a local virtual clock, viðtÞ, where við0Þ ¼ 0. Now,
Pk
i represents the kth packet arriving at the flow at node i

on the LAN.

. Each transmitted packet is tagged with its finish tag.

. When, at time t, node i hears or transmits a packet
with finish tag Z, node i sets its virtual clock vi
equal4 to maximumðviðtÞ; ZÞ.

. Start and finish tags for a packet are not calculated

when the packet arrives. Instead, the tags for a

packet are calculated when the packet reaches the

front of its flow. When packet Pk
i reaches the front of

its flow at node i, the packet is stamped with start

tag Sk
i , calculated as (similar to (1) for the SCFQ

algorithm) Sk
i ¼ vðfki Þ, where fki denotes the real

time when packet Pk
i reaches the front of the flow.

Finish tag Fk
i is calculated as follows, where the

appropriate choice of the Scaling_Factor allows us to
choose a suitable scale for the virtual time:

Fk
i ¼ Sk

i þ Scaling Factor � L
k
i

�i

¼ vðfk
i Þ þ Scaling Factor � L

k
i

�i
:

. The objective of the next step is to choose a backoff
interval such that a packet with a smaller finish tag
will ideally be assigned a smaller backoff interval.
This step is performed at time fk

i . Specifically, node i
picks a backoff interval Bi for packet Pk

i , as a
function of Fk

i and the current virtual time viðfk
i Þ, as

follows:

Bi ¼ Fk
i � vðfk

i Þ
� �

slots: ð2Þ

Now, observe that, since

Fk
i ¼ vðfk

i Þ þ Scaling Factor � L
k
i

�i
;

the above expression reduces to:

Bi ¼ Scaling Factor � L
k
i

�i

� �
: ð3Þ

Finally, to reduce the possibility of collisions, we
randomize the Bi value chosen above as follows:

Bi ¼ � �Bib c; ð4Þ

where � is a random variable with mean 1. In our
simulations, � is uniformly distributed in the interval
½0:9; 1:1�.

When this step is performed, a variable named
CollisionCounter is reset to 0.

. Collision handling: If a collision occurs (because
backoff intervals of two or more nodes count down
to 0 simultaneously), then the following procedure is
used.5 Let node i be one of the nodes whose
transmission has collided with some other node(s).
Node i chooses a new backoff interval as follows:

- Increment CollisionCounter by 1.
- Choose new Bi uniformly distributed in

1; 2CollisionCounter�1 � CollisionWindow
� �

, where
CollisionWindow is a constant parameter.

The above procedure tends to choose a relatively
small Bi (in the range ½1; CollisionWindow�) after
the first collision for a packet. The motivation for
choosing small Bi after the first collision is as
follows: The fact that node i was “a potential
winner” of the contention for channel access
indicates that it is node i’s turn to transmit in
the near future. Therefore, Bi is chosen to be small
to increase the probability that node i wins again
soon. However, to protect against the situation
when too many nodes collide, the range for Bi

grows exponentially with the number of consecu-
tive collisions.

The above protocol has two potential shortcomings:

. The DFS protocol can exhibit short-term unfairness
for some nodes when their packets collide. For
instance, assume that, at the beginning of time,
nodes 1, 2, and 3 pick backoff intervals of 25, 25, and
26 slots, respectively. Nodes 1 and 2 would collide
when their backoff intervals count down to 0 (the
backoff interval of node 3 would count down to one
slot by this time). After collision, nodes 1 and 2 pick
new backoff intervals of, say, 2 and 3 slots,
respectively. In this case, node 3 would end up
transmitting a packet before nodes 1 and 2, even
though these two nodes should have transmitted
earlier (since their original backoff intervals were
smaller).

To eliminate such unfairness, a collision resolu-
tion protocol which guarantees colliding stations
access prior to access by any other node (or a

VAIDYA ET AL.: DISTRIBUTED FAIR SCHEDULING IN A WIRELESS LAN 619

4. The virtual clock update mechanism in DFS differs somewhat from
that in SCFQ. Due to potential collision between packets in the distributed
implementation, occasionally a packet with a larger finish tag may be
transmitted before a packet with a smaller finish tag. To ensure that virtual
clocks are nondecreasing, maxðviðtÞ; ZÞ is used in this step. Incidentally, as
discussed later in Section 6.1, DFS can be implemented without maintaining
virtual clocks at the nodes.

5. Recall that, when the backoff interval reaches 0, a node transmits an
RTS (request-to-send) packet, similar to IEEE 802.11. When two or more
nodes count down backoff intervals to 0 simultaneously, their RTS packets
would collide.

protocol which ensures this with high probability)
must be used. Protocols for collision resolution in a
wireless LAN have been proposed [7], [22].
Analogous approaches may be used in conjunction
with our algorithm as well. For performance
evaluation, we consider the DFS algorithm pre-
sented above without using a perfect collision
resolution algorithm.

. Observe that, in DFS, the duration of the backoff
interval is directly proportional to the Scaling Factor
and inversely proportional to the weight of a flow.
When the weights of backlogged flows are small or the
Scaling Factor is chosen to be large, the duration of
the backoff intervals can become large. This leads to
long durations of idle time when the nodes are
counting down the backoff intervals to 0. To address
this problem, we now present two solutions. In one
of these solutions, we use mapping schemes to
compress the backoff intervals. In this solution the
Scaling Factor is constant and predefined. In the
other solution, we use an adaptive scheme to
dynamically choose the Scaling Factor as a function
of contention for the channel.

4 MAPPING SCHEMES

We will refer to the scheme presented above for
calculating the backoff interval as the linear scheme (or
linear mapping). From (2) and (3), observe that, in the
linear scheme, backoff interval Bi is a linear function of
finish tag and directly proportional to (1/flow weight).
This can make the backoff intervals large when flow
weights are small, as noted above. We consider an
alternative approach to obtain the backoff interval as a
function of the finish tag using some mapping schemes as
follows (other alternatives are also possible).

4.1 Exponential Mapping Scheme

Let � denote the backoff interval obtained in (4) using the
linear scheme described above. When using the exponential
scheme, we apply another function �ð�Þ to obtain the actual
backoff interval Bi to be used for medium access. Function
�ð�Þ is defined in Fig. 3. In the definition of �ð�Þ in Fig. 3,
note that Threshold, K1, and K2 are constant parameters.

Use of the � function has the impact of compressing large
� values into a smaller range; this has an advantage and a
disadvantage:

. The advantage is that the time spent in counting
down backoff intervals is reduced, potentially
improving performance when weights of back-
logged flows are small.

Example 1. Consider an example of two flows
with weights 0.01 and 0.02, respectively. It may be

the case that there are several other flows;
however, let us assume that the other flows are
not backlogged presently. With the linear approach,
backoff intervals would be inversely proportional
to the weights. With packets of size 1,000 bytes
and Scaling Factor ¼ 1=100, the linear approach
may yield backoff intervals of 1,000 slots and
500 slots, respectively, for the two flows. Now, for
the exponential scheme, suppose Threshold ¼ 80,
K1 ¼ 80, and K2 ¼ 0:002. Then, the corresponding
exponentially mapped backoff interval would be
�ð1; 000Þ ¼ 147 and �ð500Þ ¼ 125 slots, respectively.
Thus, the backoff interval of flow 2 would count
down to 0 much sooner with the exponential
mapping, as compared to the linear mapping.

. The disadvantage is that, since a larger range of
linear backoff intervals is “compressed” into a
smaller exponential range, the likelihood of collisions
can increase with the exponential scheme. For
instance, �ð990Þ ¼ �ð1; 000Þ ¼ 147; therefore, two
nodes which simultaneously begin counting down
from initial backoff intervals of 990 and 1,000 slots
when using the linear scheme would instead both
start counting down from 147 slots when using the
exponential scheme. If the linear scheme were to be
used, these two nodes would not collide, however,
with the exponential mapping scheme, they would
collide.

To reduce the possibility of such additional
collisions, when defining � we introduced Thresh-
old as a lower bound (on backoff interval) below
which the exponential function is not applied;
thus, the final value of Bi may belong to the linear
range (between 1 and Threshold) or the exponential
range (above Threshold).

A small Threshold may result in better through-
put but poorer fairness, depending upon the
network conditions. On the other hand, a larger
Threshold would yield better fairness but poorer
throughput. Thus, by choosing the appropriate
Threshold, a trade-off between fairness and through-
put can be obtained.

The above exponential mapping scheme needs to be
augmented to incorporate a recalculation procedure, as
discussed below.

4.1.1 Recalculation of Backoff Intervals

Unlike the case of linear mapping, additional care needs to
be taken to ensure fair allocation in the case of the
exponential mapping; in particular, the backoff intervals
must be “recalculated” after each packet transmission to
maintain fairness. Let us explain this using the following
example.

620 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 4, NO. 6, NOVEMBER/DECEMBER 2005

Fig. 3. Function �: Threshold, K1, and K2 are constant parameters. In our simulations, we use K1 ¼ Threshold.

Example 2. Consider two flows, flow 1 at node 1 and flow
2 at node 2, with weights 1.0 and 0.05, respectively.
Assume that both flows begin with several queued
packets of identical size at time 0. Let the packet size
be 1,000 bytes and the Scaling Factor be 0.01. Then,
Scaling Factor � packetsize=flow weight will be 10 slots
for flow 1 and 200 slots for flow 2. For simplicity, let us
assume that the random multiplier (i.e., �) used for all
packets is 1.0 in this example. Therefore, flow 1 will
pick a backoff interval of 10 slots for all its packets and
flow 2 will pick a backoff interval of 200 slots for all its
packets.6 As a result, on average, flow 2 will transmit
one packet for every 20 packets transmitted by flow 1
—this is consistent with the assigned weights. Now, if
the exponential scheme were to be used with
Threshold ¼ 80 slots, K1 ¼ 80, and K2 ¼ 0:002, then
flow 1 will continue to use a backoff interval of 10 slots,
but flow 2 will pick a backoff interval of �ð200Þ ¼ 97.
Now, unless some precaution is taken, flow 2 will
transmit a packet after approximately 9 or 10 packets
transmitted by flow 1, on average—this is inconsistent
with the assigned weights.

The above example illustrates that, unless modified, the
exponential mapping scheme presented above can result in
unfair bandwidth allocation. To avoid such unfairness, the
backoff intervals in the exponential range must be recalculated
after each packet transmission on the wireless channel. We
now describe our recalculation procedure. When using the
recalculation procedure, the � value for a given pending
packet may be recalculated many times.

Consider a packet P that is being transmitted on the
channel presently. Let the most recent value of � for this
packet be �current. Then, to allow recalculations to be
performed, when packet P is transmitted, we tag it with the
value �current. For instance, in Example 2 above, node 1
might tag its transmitted packet with �current ¼ 10. Now,
when some node i hears a packet transmitted by node j,
node i updates the � and Bi for its pending packet (if any),
as shown in Fig. 4.

The final step in Fig. 4 recalculates the backoff interval.
Node i then begins to count down from this new value ofBi.

In Example 2, flows 1 and 2 initially set � to 10 and
200 slots, respectively, and the backoff intervals to 10 and
97 slots, respectively, as discussed above. Now, when flow 1
transmits its packet after counting down the backoff
interval from 10 to 0, it tags the transmitted packet with
�current ¼ 10. On hearing this packet, node 2 updates its �

as 200� 10 ¼ 190 and recalculates the backoff interval as
�ð190Þ. (Now, for the packet on flow 2, �current ¼ 190.)

In the above example, since the backoff interval of flow 1
was in the linear range, for its transmitted packets, the most
recently calculated values of � and the chosen backoff
interval are equal—however, in general, this may not be the
case. For instance, if only flow 2 was backlogged in the
above example (i.e., flow 1 does not attempt to transmit),
then flow 2 will start with a backoff interval of 97 slots and
� ¼ 200 slots and eventually transmit a packet. This packet
would then have been tagged with its �current ¼ 200.

4.2 Other Mappings

In general, any increasing function can be used to map
� values to backoff intervals, similarly to the � exponential
mapping function defined earlier. Note that, although the
linear and exponential mapping functions are increasing,
they are not strictly monotonically increasing functions due
to the fact that backoff intervals must be integers. This can
result in many � values being mapped to the same backoff
interval. The frequency of such occurrences depends on
how much “compression” is performed by the mapping
function. Observe that the exponential function results in a
significantly greater compression than the linear mapping.
As a compromise between these two possibilities, in our
evaluation, we also consider another mapping, �ð�Þ,
defined in Fig. 5. We will refer to the mapping in Fig. 5 as
the square-root mapping. The procedure for using the square-
root mapping is identical to that for exponential mapping,
except that �ð�Þ is used instead of �ð�Þ. The recalculation
procedure is also similar to that for the exponential
mapping, with the only difference being that �ð�Þ is used
instead of �ð�Þ.

Fig. 6 illustrates the three mappings considered in this
paper. Clearly, many other alternatives for the mapping are
also possible. In this paper, however, only the above
mappings are evaluated.

5 ADAPTIVE DFS

The performance of DFS depends on the Scaling Factor

chosen and the weights assigned to various flows. In the
earlier discussion in this paper, we had chosen a static
Scaling Factor and had assigned static weights to the flows.

VAIDYA ET AL.: DISTRIBUTED FAIR SCHEDULING IN A WIRELESS LAN 621

6. In reality, due to randomization, the backoff intervals will not be
constant for a given flow.

Fig. 4. Recalculation procedure.

Fig. 5. Function �.

The choice of weights for the flows and the Scaling Factor

can significantly affect the performance of DFS. It should be
noted that larger weights result in DFS choosing smaller
contention windows. Therefore, if the weights are chosen to
be too large, DFS performance can degrade due to increased
collisions. On the other hand, smaller weights result in DFS
choosing larger contention windows. Therefore, if the
weights are chosen to be too small, DFS performance can
degrade due to increased overhead. Similarly, when the
Scaling Factor is chosen to be large, it results in DFS
choosing large contention windows, leading to a greater
overhead. On the other hand, when the Scaling Factor is
chosen to be small, it results in DFS choosing small
contention windows, thereby resulting in an increase in
the probability of collisions. Since the load on the network,
as well as the number of nodes in the Wireless LAN, can
vary dynamically, it is difficult to choose an appropriate
value of the Scaling Factor and appropriate weights for the
flows that would result in a good performance under all
load conditions. In this section, we present a scheme to
dynamically adapt the Scaling Factor as a function of the
contention for the channel. In principle, although it is
possible to utilize nonlinear mappings (e.g., exponential)
mapping in conjunction with the adaptive DFS, here we
focus only on the linear mapping.

5.1 Dynamic Adaptation of Scaling_Factor

For time-varying network conditions, dynamic adaptation

of the Scaling Factor is useful. In the proposed scheme,

when the contention for the channel increases (indicated by

collisions on the channel), the Scaling Factor is increased to

reduce the possibilty of collisions. On the other hand, when

there is low contention for the channel, the Scaling Factor

is reduced to avoid large backoff intervals and long

durations of idle time, thereby improving the aggregate

throughput. The dynamic adaptation of the Scaling Factor

also obviates the need for any mapping scheme to compress

the backoff interval to achieve a better performance. In the

dynamic adaptation scheme, when a node gets to transmit,

it piggybacks its Scaling Factori on the data packet. All

other nodes in the Wireless LAN snoop on the piggybacked

Scaling Factor value and adjust their Scaling Factor

accordingly so that all nodes have a unified view of the

contention for the channel bandwidth.
We now describe this scheme for dynamic adaptation of

the Scaling Factor in more detail. Every node in the
network maintains a CollisionCounter (as already explained
in the earlier discussion of the DFS scheme) and a
SuccessCounter. A node i uses these two variables in the
following manner:

. Before node i is about to transmit a data packet (after
receiving the CTS):

- It resets CollisionCounteri to 0.
- It increments SuccessCounteri by 1.
- If SuccessCounteri exceeds a certain prede-

fined threshold, say Success Threshold, it
resets SuccessCounteri to 0 and decreases the
Scaling Factor by a predefined multiplicative
decrement factor. Success Threshold, together
with the decrement factor, controls how gra-
dually the Scaling Factor would be decreased.

- It then piggybacks the Scaling Factor on the
data packet to be transmitted.

. After node i suffers a collision:

- It resets SuccessCounteri to 0.
- It increments CollisionCounteri by 1.
- It chooses a new Bi uniformly distributed in

1; 2CollisionCounter�1 � CollisionWindow
� �

, where
CollisionWindow is a constant parameter.

- If the CollisionCounteri > 1, it increases the
Scaling Factor by a certain predefined multi-
plicative increment factor.7

Whenever a node i transmits a data packet, it piggybacks

its Scaling Factori on the data packet. All other nodes in the

Wireless LAN snoop on the piggybacked Scaling Factor

value. Specifically, if a node, say node j, finds that

the piggybacked Scaling Factor is different from its

Scaling Factor, it takes the following actions:

. If CollisionCounterj ¼ 0,

- If node j was backlogged, it updates its
remaining slots to be counted down (say rsj)
as follows:

rsj ¼ rsj � Scaling Factori=Scaling Factorj
� �

;

ð6Þ

- Node j sets Scaling Factorj ¼ Scaling Factori.
- Node j resets SuccessCounterj to 0.

. If CollisionCounterj ¼ 1,

- Node j sets Scaling Factorj ¼ Scaling Factori.

622 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 4, NO. 6, NOVEMBER/DECEMBER 2005

Fig. 6. Illustration of the mapping functions: For all mappings, the

Scaling Factor is assumed to be 0.02. For the exponential and linear

mappings, the Threshold is 80. For exponential mapping, K1 ¼ 80 and

K2 ¼ 0:002.

7 . A node increments the Scaling Factor only when the
CollisionCounter > 1 because the first collision for a given packet is not
necessarily an indication of heavy contention for the channel. However,
when a node suffers a series of collisions for the same packet (in which case,
its CollisionCounter would be > 1), it is likely that there is heavy contention
for the channel.

. If CollisionCounterj > 1,

- If Scaling Factorj < Scaling Factori, node j
se ts Scaling Factorj ¼ Scaling Factori. E l se
Scaling Factorj remains unchanged.

We study the performance of Adaptive DFS in the
performance evaluation section.

6 OBSERVATIONS

6.1 Virtual Clocks

Recall that, with linear mapping, the backoff interval is
calculated using (3) and (4). Thus, the virtual clock value
maintained by a node is not used in the calculation of the
backoff interval at all. This means that, when using the
linear mapping, there is no need to tag the finish tag to the
transmitted packet or to maintain a virtual clock at the
nodes. This is the approach used in the evaluation of DFS.
For exponential and square-root mappings though, we need
to tag �current of the transmitted packet. Similarly, in the
exponential mapping scheme and the recalculation proce-
dure presented in the paper, the virtual time is not used.
Thus, there is no need to maintain virtual clocks in this case
as well. However, it should be noted that alternative
recalculation procedures can be conceived which make
use of the virtual time. When such procedures are used, it is
necessary to maintain virtual clocks.

6.2 Multiple Flows Per Node

In our discussion of DFS, we assumed that only one flow
exists at each node. In general, it is possible that each node
may maintain multiple flows locally. In this case, we modify
the DFS protocol as described below.

. Whenever a packet reaches the front of its flow at
some node i, start and finish tags for the packet are
calculated as described in DFS. Specifically, the start
tag is set equal to the current virtual time at node i and
the finish tag for the packet is set equal to the (start tag
+ Scaling_Factor*packet length/flow weight).

. When node i needs to choose the next packet that
it will attempt to transmit, it chooses the packet,

say P , with the smallest finish tag among packets

at the front of all backlogged flows at node i. The

backoff interval for packet P is calculated using

procedure described in Section 3. The rest of the

steps for transmitting P are identical to those

described in DFS.

An analogous procedure has been suggested in the paper
on MACAW [3], although that paper does not present a
mechanism for allocating bandwidth proportional to
weights of the flows.

6.3 Impact of Transmission Errors

In case of a wireless LAN, transmission errors can occur,

resulting in packet loss. There are two issues that need to

be addressed in this area: 1) How to determine which

packet is lost due to transmission errors. 2) How to

maintain fairness in presence of transmission errors,

assuming that the above question can be answered

satisfactorily. We have performed evaluation of the

proposed DFS scheme in the presence of errors. Our

simulations indicate that, in the presence of errors,

fairness achieved by DFS degrades (as might be ex-

pected), however, it remains fairer than IEEE 802.11. We

now briefly present some preliminary ideas on addressing

the above two questions:

. For the sender of a packet on the wireless channel, it
is difficult to determine whether a packet was lost
due to transmission errors or due to collision with
transmission by another node on the LAN.

As discussed previously, IEEE 802.11 provides for

an exchange of RTS and CTS packets that precedes

the transmission of the data packet. The heuristic we

propose (to be used in conjunction with DFS) is to

assume that any loss of RTS or CTS packets is due to

collisions and any loss of data or ACK packet is due

to transmission errors. Clearly, RTS and CTS packets

may be lost due to errors, too. Assume their loss to

be due to collision results in the invocation of the

collision handling procedure in DFS. Since the

backoff interval chosen after the first collision of a

packet is small, the cost of misinterpreting an error

loss as a collision loss is not high.
. Compensation of flows: Many centralized ap-

proaches have been developed for improving fair-
ness in the presence of location-dependent errors

[15], [18], [19], [21]. Among these proposals, the

schemes presented in [5] and [21] lend themselves

well to a distributed implementation. An additional

“compensating” flow at each node, similar to the

Long-Term Fairness Server (LTFS) defined in [21] can

be maintained in DFS. An LTFS is used to

temporarily allocate additional bandwidth to com-
pensate flows that suffer transmission errors. In the

distributed case, one or more LTFS can be main-

tained at each node on the LAN, whereas, in the

centralized algorithm in [21], only the base station

maintains LTFSs. Reference [5] proposes a different

mechanism, consisting of dynamic adaptation of

weights by erroneous flows to increase effort in order

to reclaim lost bandwidth. It shows that flows
experiencing low error-rates can achieve long-term

fairness. In [5], the amount of compensation can be

limited administratively by means of a power factor.

The idea of dynamic adaptation of weights has been

implemented in DFS in [10] to achieve long-term

fairness in the presence of errors.

6.4 Comparison of DFS and SCFQ

Note that we began with the goal of imitating SCFQ. As

seen from the description of DFS, the DFS algorithm may

appear to imitate SCFQ. However, there is a significant

difference between the behaviors of SCFQ and DFS.

Specifically, DFS can yield packet transmissions in an order

that cannot possibly be obtained in the centralized

implementation of SCFQ. In general, we believe that such

VAIDYA ET AL.: DISTRIBUTED FAIR SCHEDULING IN A WIRELESS LAN 623

a deviation is likely to occur when any centralized work-
conserving scheme8 is applied to a distributed environment.

To illustrate the difference between SCFQ and DFS,
consider a system consisting of two flows (in the distributed
case, the two flows reside on two different nodes). Let the
weight of flow 1 be 0.1 and the weight of flow 2 be 0.5.
Assume that, initially, both flows are empty. Also assume
that a packet arrives on flow 1 at time 0 and a packet of the
same size arrives on flow 2 at time 0.0002 second. Now, in
the centralized implementation, since only flow 1 is back-
logged at time 0 when using a work-conserving scheduler,
the packet from flow 1 is transmitted at time 0, followed by
the packet from flow 2.

In the distributed case, let us assume that the two flows
reside on two different nodes. With the distributed
implementation in DFS, a backoff interval of, say, 100 slots
may be chosen for flow 1. Let us assume that a slot is of
duration 0.00001 second. Also, assume that the linear
mapping is being used. Now, the packet on flow 2 arrives
at time 0.0002 second. By this time, flow 1’s backoff interval
would have counted down from 100 to 80 (because each slot
is of duration 0.00001 second). Since, weight of flow 2 is five
times the weight of flow 1, the backoff interval chosen for
the packet on flow 2 may be 20 slots. Thus, the backoff
interval of flow 2 will count down from 20 to 0 before
flow 1’s backoff interval counts down to 0. Therefore, flow 2
will transmit a packet before flow 1 can transmit.

Clearly, the centralized and distributed implementa-
tions result in different ordering of packet transmissions.
Essentially, this is because the distributed implementation
is not work-conserving. Some of the “work” is spent on
performing medium access control (MAC), not transmit-
ting packets from the flows. As seen above, the overhead
incurred by MAC may allow transmission of packets
which could not have been considered for transmission in
the centralized case.

7 PERFORMANCE EVALUATION

In this section, we present performance evaluation results
for the proposed DFS protocol. Performance evaluation is
performed using a modified version of the ns-2 simulator
[6]. The ns-2 simulator includes a module to simulate the
DCF function in IEEE 802.11. We modified this module to
simulate the proposed DFS protocol as well. The channel
bandwidth is assumed to be 2 Mbps. The virtual clock is not
used in the implementation, as discussed in Section 6.1.

In the simulation environment, the number of nodes on
the LAN is n, where we have considered n � 128. On a LAN
with n nodes, we set up n=2 flows (n is always chosen to be
an even number). Flow i is set up from node 2i to node 2iþ 1
(the nodes are numbered 0 through n� 1). The choice of the
destination nodes for the flows is somewhat arbitrary, and
any destination could have been chosen for each flow
without affecting the results.

In our simulations, each flow is assigned a fixed weight.
We assume that, in a practical implementation, the weights
will be assigned by an upper layer of the protocol stack,

with the job of the MAC protocol being to schedule packet
transmissions such that weighted fairness is achieved.
When the MAC protocol fails in its task (for instance,
perhaps due to transmission errors), the upper layers may
potentially adapt the weights to achieve desired bandwidth
distribution [10]. Such an adaptation of weights is beyond
the scope of this paper.

7.1 DFS with Static Parameters

Here, we present the performance evaluation results for the
proposed DFS protocol with static Scaling Factor. Unless
otherwise specified, the following assumptions are made:9

1. Each flow is backlogged throughout the duration of
the simulation.

2. All packets on all flows contain 584 bytes.10

3. Scaling Factor is 0.02.
4. CollisionWindow is four slots.
5. For the exponential and square-root mapping schemes,

Threshold = 80. For the exponential mapping, K1 ¼
80 and K2 ¼ 0:002.

6. The duration of simulations is 6 seconds.

Fig. 7 considers the case when the n=2 flows (in the case
of a LAN with n nodes) have identical weight. The chosen
weight for each flow is 2=n (this choice is arbitrary, and the
results hold for other choices too, except when the chosen
weights are very large). This figure plots the ratio
(throughput of a flow/flow weight) for all flows. The
number of nodes n is different in Figs. 7a, 7b, and 7c. Note
that the horizontal axes in Fig. 7 denote the destination
node for the flow whose (throughput/weight) ratio is
plotted in the figure. Results are plotted for IEEE 802.11,
and the DFS scheme using the linear, exponential, and
square-root mappings. The curve labeled Linear, EXP, and
SQRT corresponds to the DFS scheme using the respective
mapping schemes. Ideally, the (throughput/weight) curve
should be flat since all flows are always backlogged.
Observe that the three DFS schemes do achieve a nearly
flat curve. On the other hand, observe that IEEE 802.11
results in unfair performance.

For environments where all flows are always back-
logged, we evaluate a fairness index [11] as follows, where Tf

denotes throughput of flow f , and �f denotes weight of
flow f :

fairness index ¼
P

f Tf=�f

� �2

number of flows �
P

fðTf=�fÞ2
:

Fig. 8 studies the variation in fairness index (as defined
above) and aggregate throughput with the number of flows.
Aggregate throughput is obtained by adding the through-
put of all flows. Each flow is assigned a weight of 2=n (with
n=2 flows). Average throughput and averaged fairness
index over 10 runs are considered here. Observe that DFS

624 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 4, NO. 6, NOVEMBER/DECEMBER 2005

8. When using a work-conserving server, the output channel is not kept
idle if any flow is backlogged.

9. The evaluation presented here differs somewhat from [8]. There are
some differences in their implementations, such as the virtual clock field is
eliminated from the DFS header in this work.

10. 584 bytes is comprised of 512 data bytes and 72 bytes of UDP, IP, and
MAC headers. The exponential and square-root mappings have an extra
4 bytes in the MAC header for the �current field. These 4 bytes are not
counted in the throughput calculation for uniformity.

achieves very high fairness, while fairness achieved by IEEE

802.11 is often poor. However, the aggregate throughput

achieved by 802.11 may be higher. IEEE 802.11 results in a

greater throughput because the DFS scheme tends to choose

greater backoff intervals than 802.11, resulting in higher

overhead for DFS.
Now, when the three mappings for the DFS scheme are

considered, as seen in Fig. 8, the three mappings yield

comparable throughput and comparable fairness. As seen

later, the exponential and square-root mappings provide a

benefit when the backlogged flows have relatively small

weights—particularly when the weights of backlogged

flows add up to much less than 1. Fig. 9 plots fairness

index and aggregate throughput as a function of the

Scaling Factor. An average of throughput and fairness

index over four runs is considered here. Here, we only

consider the linear mapping—results for other mapping are

analogous. In this case, six flows are simulated with weights

being 1/2, 1/4, 1/8, 1/16, 1/32, and 1/32. Observe that, as

the Scaling Factor is increased, fairness increases. The

throughput initially improves when the Scaling Factor is

increased, but then degrades after the Scaling Factor is

increased further. A larger Scaling Factor results in large

backoff intervals, leading to a greater overhead. When the

Scaling Factor is very small, there are too many collisions,

resulting in low throughput; when the Scaling Factor is

VAIDYA ET AL.: DISTRIBUTED FAIR SCHEDULING IN A WIRELESS LAN 625

Fig. 7. Comparison of IEEE 802.11 and DFS. (a) Eight nodes. (b) 32 nodes. (c) 64 nodes.

Fig. 8 Average aggregate throughput and fairness index versus number of flows. (a) Aggregate throughput. (b) Fairness index.

Fig. 9 Impact of scaling factor. (a) Fairness index. (b) Aggregate throughput.

increased, collisions reduce and throughput improves.
However, when Scaling Factor is increased further,
throughput degradation due to large backoff intervals starts
to dominate, and the aggregate throughput decreases. Fig. 9
reinforces the observation that a trade-off exists between
aggregate throughput and fairness.

Now, we consider the impact of differing packet sizes
among flows. In Fig. 10a, we evaluate three flows, each with
weight 1/3, but their packet sizes are 584, 328, and 200 bytes,
respectively. The figure plots (throughput/weight) for the
three flows. Observe that the curve is horizontal for DFS
schemes. The DFS scheme can handle packets of differing
sizes without affecting fairness. We also simulated environ-
ments where packet sizes vary within each flow. The results
are similar to those in Fig. 10a and are omitted for brevity.

Now, consider the case of four flows: flow 0 ! 1 with
weight 0.02 and flow 2 ! 3 with a weight of 0.03, flow 4 !
5 with a weight 0.05, and flow 6 ! 7 with a weight of 0.9.
First, assume that all four flows are always backlogged.
Results for this case are shown in Fig. 10b. This figure plots
throughput/weight for the four flows. Observe that all
three DFS mappings are fair, although linear mapping gives
slightly higher throughput.

Next, assume that flow 6 ! 7with weight 0.9 is an on-off
source, with on-off periods of 0.3 and 5.4 seconds,
respectively. This flow coexists with the other three lower
weight flows listed above such that, for a simulation of
6 seconds, flow 6 ! 7 is on for 10 percent of the time. The
aggregate throughput achieved by the three lower weight
flows by the three mapping schemes is approximately:
1) Linear: 79 Kbps, 2) Exponential: 95 Kbps, and 3) Square-
root: 90 Kbps. The exponential and square-root schemes
yield 20 and 14 percent improvement over Linear. The
fairness achieved by the exponential and square-root
schemes remains high, in addition to the higher through-
put. We calculated the fairness index for each mapping,
over the different subintervals during which the set of
backlogged flows remained constant; the fairness indices
for all three mappings were over 0.999 in all cases. The
above example illustrates that the square-root and expo-
nential mappings can yield better throughput than the
linear mapping (along with good fairness) when the
aggregate weight of backlogged flows is small. On the

other hand, when some backlogged flows have large
weights, their backoff intervals are small and the idle time
while counting down the backoff interval is bounded by the
smallest backoff interval. Therefore, when at least one flow
with a large weight is backlogged, the gain due to
exponential and square-root mappings is not significant.

The results reported so far essentially evaluate the long-
term fairness of the proposed algorithm. A variation of
802.11, referred to as 802.11_Scaled, is also considered here.
802.11_Scaled chooses contention window values in the
interval [0, cw], where cw is the maximum backoff interval
picked by DFS after randomization. This allows us to study
the impact of proportionally large windows on fairness in
802.11. Fig. 11 illustrates the short-term behavior of the DFS
protocol in comparison to 802.11. We count the number of
packets (all packets are the same size in this case) serviced
from each flow over a window of size 0.04 second, where
the window itself slides every 0.02 second. Fig. 11 plots the
frequency distribution of the number of packets received by
8 flows, each with a weight of 1/8. Observe that DFS always
receives either one or two packets in all intervals. 802.11
receives zero packets in some intervals, showing that some
flows were put into backoff unfairly during those intervals.
802.11_Scaled performs better than 802.11 by achieving a
smaller spread than 802.11. We obtained a similar plot for
higher number of flows as shown in [10].

626 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 4, NO. 6, NOVEMBER/DECEMBER 2005

Fig. 10 Fairness results. (a) Fairness with variable packet sizes. (b) Fairness with variable weight.

Fig. 11. Number of packets received per sliding window of 0.04 second.

Fig. 12 shows the convergence of fairness index over

the short-term. This plot is for 24 flows, each with a

weight of 1/24. Note that DFS converges to the unit

fairness index value very soon. The convergence of

802.11_Scaled is faster as compared to 802.11. This shows

that the performance of 802.11 can be improved sig-

nificantly by the choice of proportionally large initial

contention windows. Yet DFS achieves a higher fairness

index than 802.11 and 802.11_Scaled. Hence, the key to

fairness in DFS is the choice of proportionally large initial

backoff intervals and the choice of a small window after

collision.

7.2 Adaptive DFS

Here, we present the performance evaluation results for

the case when the DFS protocol dynamically adjusts the

Scaling Factor according to the contention for the

channel. We also compare these results with the results

for the DFS protocol (linear mapping), which uses a static

Scaling Factor. Unless otherwise specified, the following

assumptions are made:

1. All packets on all flows contain 500 data bytes.
2. Success_Threshold is three packets.
3. Whenever the Scaling Factor has to be increased, it

is increased by 25 percent of the previous value.

Whenever the Scaling Factor has to be decreased, it
is decreased by 10 percent of the previous value.

4. CollisionWindow (used in calculating the backoff
interval after suffering a collision) is four slots.

5. The duration of simulations is 10 seconds.

Fig. 13 plots the piggybacked Scaling Factor as a
function of time. Here, we consider the case when there
are 10 flows, each with a weight 0.2. Each of these flows has
an on-off traffic source. The initial Scaling Factor is 0.015.
As can be observed from Fig. 13, the Scaling Factor

dynamically adapts itself according to the contention for
the channel. When there is little contention for the channel,
the Scaling Factor drops down in order to reduce the
overhead and long durations of idle time. However, if the
contention increases on the channel, the Scaling Factor

increases to reduce the probability of collisions.
As we had discussed earlier, it is difficult to choose an

appropriate value of the Scaling Factor and appropriate
weights for the flows that would result in a good
performance under all load conditions. The traffic load
on a Wireless LAN can vary dynamically. A given
Scaling Factor which is appropriate for a certain load
condition may not work as well for other load conditions.
Fig. 14 studies how the choice of the Scaling Factor

affects the performance of DFS (with static Scaling Factor)
and Adaptive DFS for a static assignment of weights to

VAIDYA ET AL.: DISTRIBUTED FAIR SCHEDULING IN A WIRELESS LAN 627

Fig. 12. Convergence of the fairness index over the short-term. Fig. 13. Dynamic adaptation of the Scaling Factor.

Fig. 14. Comparison of DFS and Adaptive DFS. (a) Fairness index. (b) Aggregate throughput.

the flows. Fig. 14a plots the variation in fairness index and
Fig. 14b plots the variation in aggregate throughput as a
function of the chosen Scaling Factor.

Here, we consider the case when there are 10 flows, each
with a weight 0.05. Each of these flows has a CBR traffic
source which is generating traffic at the rate of 0.2Mbps.
Both DFS and Adaptive DFS start with the same initial
Scaling Factor. In DFS, the Scaling Factor remains con-
stant throughout the entire duration of simulation, whereas
in Adaptive DFS, the Scaling Factor dynamically adapts as
per the contention for the channel. Here, we plot the
aggregate throughput and the fairness index achieved by
DFS and Adaptive DFS as a function of the Scaling Factor.
As can be observed from Fig. 14, when the Scaling Factor is
chosen to be very small, the fairness index degrades in case
of DFS. In DFS, when the Scaling Factor is very small, there
is an increased likelihood of collisions which can potentially
result in access priority reversals and unfairness toward
colliding nodes. When the Scaling Factor is chosen to be
large, the fairness index achieved by DFS improves, but, at
the same time, the aggregate throughput degrades. In DFS,
large Scaling Factor results in large backoff intervals,
leading to a greater overhead. Adaptive DFS, on the other
hand, dynamically adapts the Scaling Factor and operates
around the optimum Scaling Factor under the present load
conditions. Hence, irrespective of the choice of weights for
the flows or the choice of the initial Scaling Factor,
Adaptive DFS quickly converges to yield a good perfor-
mance (both in terms of fairness and aggregate throughput).

8 CONCLUSIONS

This paper considers the issue of fair scheduling in a wireless
LAN. The objective here is to develop a fully distributed
algorithm for scheduling packet transmissions such that
different flows are allocated bandwidth in proportion of
their weights. The paper proposes a Distributed Fair
Scheduling (DFS) approach obtained by modifying the
Distributed Coordination Function (DCF) in IEEE 802.11
standard. The similarities between DFS and DCF would
make it easier to incorporate DFS in a modified version of
802.11. Performance results show that the proposed proto-
col can allocate bandwidth in proportion to the weights of
the flows sharing the channel. We propose various mappings
that can be used to choose the appropriate backoff interval for
a packet. We also propose a scheme for dynamic adaptation
of the Scaling Factor which allows us to achieve good
performance irrespective of the choice of the initial
Scaling Factor or the assignment of weights to the flows.

ACKNOWLEDGMENTS

This work is supported in part by the US National Science
Foundation and Microsoft Research. This paper was
presented in part at Mobicom 2000.

REFERENCES

[1] I. Aad and C. Castelluccia, “Differentiation Mechanisms for IEEE
802.11,” Proc. INFOCOM 2001 Conf., 2001.

[2] J.C.R. Bennett and H. Zhang, “Wf2q: Worst-Case Fair Weighted
Fair Queueing,” Proc. INFOCOM ’96 Conf., Mar. 1996.

[3] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “MACAW:
A Media Access Protocol for Wireless LANs,” Proc. ACM
SIGCOMM Conf., pp. 212-225, Aug. 1994.

[4] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation
of a Fair Queueing Algorithm,” Proc. SIGCOMM Conf., Sept. 1995.

[5] D. Eckhardt and P. Steenkiste, “Effort-Limited Fair (ELF)
Scheduling for Wireless Networks,” Proc. IEEE INFOCOM 2000
Conf., 2000.

[6] K. Fall and K. Varadhan, “ns Notes and Documentation,”
technical report, VINT Project, Univ. of Califonia at Berkeley
and Lawrence Berkeley Nat’l Laboratory, 1997.

[7] R. Garces and J.J. Garcia-Luna-Aceves, “Near-Optimum Channel
Access Protocol Based on Incremental Collision Resolution and
Distributed Transmission Queues,” Proc. IEEE INFOCOM Conf.,
Mar.-Apr. 1998.

[8] N.H. Vaidya and P. Bahl, “Fair Scheduling In Broadcast
Environments,” Technical Report MSR-TR-99-61, Microsoft Re-
search, Aug. 1999.

[9] N.H. Vaidya, P. Bahl, and S. Gupta, “Fair Scheduling in a Wireless
LAN,” technical report, Texas A&M Univ., Apr. 2000.

[10] S. Gupta, “Study of Distributed Fair Scheduling in a Wireless
LAN,” Master of Science thesis, Texas A&M Univ., May 2000.

[11] R. Jain, G. Babic, B. Nagendra, and C. Lam, “Fairness, Call
Establishment Latency and Other Performance Metrics,” Techni-
cal Report ATM_Forum/96-1173, ATM Forum Document, Aug.
1996.

[12] M. Gerla, K. Tang, and R. Bagrodia, “TCP Performance in Wireless
Multihop Networks,” Proc. IEEE Workshop Mobile Computing
Systems and Applications (WMCSA), pp. 41-50, Feb. 1999.

[13] S.J. Golestani, “A Self-Clocked Fair Queueing Scheme for Broad-
band Applications,” Proc. IEEE INFOCOM Conf., 1994.

[14] P. Goyal, H.M. Vin, and H. Cheng, “Start-Time Fair Queueing: A
Scheduling Algorithm for Integrated Services Packet Switching
Networks,” IEEE/ACM Trans. Networking, vol. 5, pp. 690-704, Oct.
1997.

[15] S. Lu, T. Nandagopal, and V. Bharghavan, “A Wireless Fair
Service Algorithm for Packet Cellular Networks,” Proc. ACM
MobiCom Conf., 1998.

[16] H. Luo, S. Lu, V. Bharghavan, “A New Model for Packet
Scheduling in Multihop Wireless Networks,” Proc. ACM MOBI-
COM Conf., Aug. 2000.

[17] H. Luo and S. Lu, “A Topology-Independent Fair Queueing
Model in Ad Hoc Wireless Networks,” Proc. IEEE Int’l Conf.
Network Protocol, 2000.

[18] T. Nandagopal, S. Lu, and V. Bharghavan, “A Unified Architec-
ture for the Design and Evaluation of Wireless Fair Queueing
Algorithms,” Proc. ACM MobiCom Conf., Aug. 1999.

[19] T.S. Ng, I. Stoica, and H. Zhang, “Packet Fair Queueing:
Algorithms for Wireless Networks with Location-Dependent
Errors,” Proc. INFOCOM Conf., Mar. 1998.

[20] A.K. Parekh and R.G. Gallager, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The
Single-Node Case,” IEEE/ACM Trans. Networking, vol. 1, June
1993.

[21] P. Ramanathan and P. Agrawal, “Adapting Packet Fair Queueing
Algorithms to Wireless Networks,” Proc. ACM MobiCom Conf.,
1998.

[22] A. Dugar, N.H. Vaidya, and P. Bahl, “Priority and Fair Scheduling
in a Wireless LAN,” Proc. IEEE Military Comm. Conf. (MILCOM),
Oct. 2001.

[23] J.L. Sobrinho and A.S. Krishnakumar, “Real-Time Traffic over the
IEEE 802.11 Medium Access Control Layer,” Bell Labs Technical J.,
pp. 172-187, Autumn 1996.

[24] K. Ramamritham andW. Zhao, “Virtual Time CSMA Protocols for
Hard Real-Time Communication,” IEEE Trans. Software Eng.,
vol. 13, no. 8, pp. 938-952, Aug. 1987.

[25] S.M. Sharrock and D.H. Du, “Efficient CSMA/CD-Based Protocols
for Multiple Priority Classes,” IEEE Trans. Computers, vol. 38, no. 7,
pp. 943-954, July 1989.

[26] L. Tassiulas and S. Sarkar, “Maxmin Fair Scheduling in Wireless
Networks,” Proc. IEEE INFOCOM Conf., pp. 763-772, 2002.

[27] X. Wu, C. Yuen, Y. Gao, H. Wu, B. Li, “Fair Scheduling with
Bottleneck Consideration in Wireless Ad-Hoc Networks,” Proc.
IEEE Int’l Conf. Computer Comm. and Networks (ICCCN), pp. 568-
572, Oct. 2001.

628 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 4, NO. 6, NOVEMBER/DECEMBER 2005

Nitin Vaidya received the PhD degree from
the University of Massachusetts at Amherst.
He is presently an associate professor of
electrical and computer engineering at the
University of Illinois at Urbana-Champaign
(UIUC). He has held visiting positions at
Microsoft Research, Sun Microsystems, and
the Indian Institute of Technology-Bombay. He
is a recipient of a CAREER award from the US
National Science Foundation. He served as

program cochair for 2003 ACM MobiCom and general chair for 2001
ACM MobiHoc. He presently serves as editor-in-chief the IEEE
Transactions on Mobile Computing. He is a senior member of the
IEEE and a member of the IEEE Computer Society.

Anurag Dugar graduated from the National
Institute of Technology Karnataka, India, in
electronics and communication engineering. He
received the MS degree in computer engineer-
ing from Texas A&M University in 2001. He was
a research assistant in the Mobile Computing
and Networking Group in the Department of
Computer Science at Texas A&M University. He
is currently working as a senior software
engineer in the Modeling Research and Devel-

opment Division at OPNET Technologies, Bethesda, Maryland. At
OPNET Technologies, he has been engaged in developing features in
OPNET’s suite of Intelligent Network Management Solutions.

Seema Gupta graduated from the Indian In-
stitute of Technology, New Delhi, in mathe-
matics and computer applications in 1998. She
received the MS degree in computer science
from Texas A&M University in 2000. Since the
summer of 2000, she had worked as a software
engineer with Cisco Systems, San Jose, Cali-
fornia. She worked on several projects in the
areas of network security, AAA (Authentication
Authorization Accounting), and intelligent edge
subscriber services.

Paramvir Bahl received the PhD degree in
computer systems engineering from the Univer-
sity of Massachusetts Amherst. He is a senior
researcher and manager of the Networking
Research Group at Microsoft Research. Some
of his seminal research includes: WiLIB, a
general purpose programming interface for
wireless network cards; RADAR, a signal-
strength based indoor user-location determina-
tion system; CHOICE, an edge-server based

public area wireless network; and UCOM, a multiradio wireless system.
Currently, he leads MESH, a community networking and residential
broadband access network project, and NetHealth, an enterprise and
home network self-managing diagnostic system. Several of his ideas are
incorporated into Microsoft’s core Windows Operating System product.
In addition to building systems, he has authored more than 65 scientific
papers, 45 issued and pending patent applications, and a book chapter.
He is the founder and chairman of ACM SIGMOBILE, the founder and
past editor-in-chief of ACM Mobile Computing and Communications
Review (1996-2001), and the founder of ACM/USENIX MobiSys. He is a
fellow of the ACM, an IEEE senior member, and past president of the
electrical engineering honor society Eta Kappa Nu-Zeta Pi.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

VAIDYA ET AL.: DISTRIBUTED FAIR SCHEDULING IN A WIRELESS LAN 629

