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Abstract

We propose a new algorithm for recovering asyn-
chronously from failures in a distributed computation. Our
algorithm is based on two novel concepts - a fault-tolerant
vector clock to maintain causality information in spite of
failures, and a history mechanism to detect orphan states
and obsolete messages. These two mechanisms together
with checkpointing and message-logging are used to restore
the system to a consistent state after a failure of one or more
processes. Our algorithm is completely asynchronous. It
handles multiple failures, does not assume any message or-
dering, causes the minimum amount of rollback and restores
the maximum recoverable state with low overhead. Earlier
optimistic protocols lack one or more of the above proper-
ties.

1. Introduction

For fault-resilience, a process periodically records its
state on a stable storage. This action is called checkpointing
and the recorded state is called a checkpoint. The check-
point is used to restore a process after a failure. However,
some information may be lost in restoring the system. This
loss may leave the distributedsystem in an inconsistent state.
The goal of a recovery protocol is to bring back the system
to a consistent state after one or more processes fail. A
consistent state is one where the send of a message must be
recorded in the sender’s state if the receipt of the message
has been recorded in the receiver’s state.

In consistent checkpointing, different processes synchro-
nize their checkpointing actions [3, 11]. After a process
fails, some or all of the processes rollback to their last check-
point such that the resulting system state is consistent. For�supported in part by the NSF Grants CCR-9520540 and ECS-9414780,
a TRW faculty assistantship award, a General Motors Fellowship, and an
IBM grant.

large systems, the cost of this synchronization is prohibitive.
Furthermore, these protocols may not restore the maximum
recoverable state [10].

If along with checkpoints, messages are logged to the sta-
ble storage, then the maximum recoverable state can always
be restored [10]. Theoretically, message logging alone is
sufficient, but checkpointing speeds up the recovery. Mes-
sages can be logged either by the sender or by the receiver.
In pessimistic logging, messages are logged either as soon
as they are received, or before the receiver sends a new mes-
sage [9]. When a process fails, its last checkpoint is restored
and the logged messages that were received after the check-
pointed state are replayed in the order they were received.
Pessimism in logging ensures that no other process needs to
be rolled back. Although this recovery mechanism is sim-
ple, it reduces the speed of the computation. Therefore, it is
not a desirable scheme in an environment where failures are
rare and message activity is high.

In optimistic recovery schemes [10, 14, 15, 16, 17], it is
assumed that failures are rare. A process stores the received
messages in volatile memory and logs it to stable storage
at infrequent intervals. Since volatile memory is lost in a
failure, some of the messages can not be replayed after the
failure. Thus, some of the process states are lost in the
failure. States in other processes that depend on these lost
states become orphan. A recovery protocol must rollback
these orphan states to non-orphan states. The following
properties are desirable for an optimistic recovery protocol:� Asynchronous recovery: A process should be able to

restart immediately after a failure [15, 17]. It should
not have to wait for messages from other processes.� Minimalamount of rollback: In some algorithms, pro-
cesses which causally depend on the lost computation
might rollback more than once. In the worst case, they
may rollback an exponential number of times. This is
called the domino effect. A process should rollback
at most once in response to each failure.



� No assumptions about the ordering of messages: If
assumptions are made about the ordering of messages
such as FIFO, then we lose the asynchronous char-
acter of the computation [14]. A recovery protocol
should make as weak assumptions as possible about
the ordering of messages.� Handle concurrent failures: It is possible that more
than one processes fail concurrently in a distributed
computation. A recovery protocol should handle this
situation correctly and efficiently [10, 15].� Low overhead: The algorithm should have a low over-
head in terms of number of control messages or the
amount of control information piggybacked on appli-
cation messages, both during a failure-free operation
and during recovery.� Recover maximum recoverable state: No computation
should be needlessly rolled back.

We present an optimistic recovery protocol which has all
the above features. Previous protocols lack one or more of
these properties. Table 1 shows a comparison of our work
with some other optimistic recovery schemes.

Strom and Yemini [17] initiated the area of optimistic
recovery using checkpointing. Their scheme, however, suf-
fers from the domino effect. Johnson and Zwaenepoel [10]
present a centralized protocol to optimistically recover the
maximum recoverable state. Other distributed protocols for
optimistic recovery can be found in [14, 15, 16]. Peterson
and Kearns [14] give a synchronous protocol based on vec-
tor clock. Their protocol cannot handle multiple failures.
Smith, Johnson and Tygar [15] present the first completely
asynchronous, optimistic protocol which can handle mul-
tiple failures. They maintain information about two levels
of partial order: one for the application and the other for
the recovery. The main drawback of their algorithm is the
size of its vector clock, resulting in high overhead during
failure-free operations. Another drawback is that erroneous
computation may continue for long time. An optimistic
protocol for fast output to environment is presented in [8].

Causal logging [1, 5] protocols are non-blocking and
orphan free. They log message in processes other than the
receiver. So synchronization is required during recovery.
Alvisi and Marzullo [2] present a theoretical framework for
different message logging protocols.

2. Our Model of Computation

A distributed computation is a set of process executions.
A process execution is a sequence of states in which a state
transition is caused by an external event: a send or a receive
of a message. Internal events do not cause state transitions;
we ignore them for the rest of the paper. Processes are
assumed to be piecewise deterministic. This means that

MO AR R T F

Strom et. al. [17] FIFO Yes �(2n) O(n) 1
Johnson et. al. [10] None No 1 O(1) n

Sistla et. al. [16] FIFO No 1 O(n) 1
Peterson et. al. [14] FIFO No 1 O(n) 1

Smith et. al. [15] None Yes 1 O(n2f) n
This Paper None Yes 1 O(n) n
Table 1. Comparison with related work.n: number of processes in the system, f : maximum number of

failures of any single process
MO: message ordering, AR: asynchronous recovery
R: maximum rollbacks per failure
T: number of timestamps in vector clock
F: number of concurrent failures allowed

when a process receives a message, it performs some in-
ternal computation, sends some messages and then blocks
itself to receive a message. All these actions are completely
deterministic, i.e. actions performed after a message receive
and before blocking for another message receive are com-
pletely determined by the contents of the message received
and the state of the process at the time of message receive.
A non-deterministic action can be modeled by treating it as
a message receive.

The receiver of a message depends on the content of the
message and therefore on the sender of the message. This
dependency relation is transitive. The receiver becomes de-
pendent only after the received message is delivered. From
now on, unless otherwise stated, receive of a message will
imply its delivery.

A process periodically takes its checkpoint. It also asyn-
chronously logs to the stable storage all messages received
in the order they are received. At the time of checkpointing,
all unlogged messages are also logged.

We assume that only processes fail. Messages are deliv-
ered reliably. A failed process restarts by creating a new
version of itself. It restores its last checkpoint and replays
the logged messages which were received after the restored
state. Since some of the messages might not have been
logged at the time of the failure, some of the old states, called
lost states, cannot be recreated. Now, consider the states in
other processes which depend on the lost states. These
states, called orphan states, must be rolled back. Other pro-
cesses have not failed, so before rolling back, they can log
all the unlogged messages and save their states. Thus no
information is lost in rollback. Note the distinction between
restart and rollback. A failed process restarts whereas an or-
phan process rolls back. Some information is lost in restart
but not in rollback. A process creates a new version of itself
on restart but not on rollback. A message sent by a lost or
an orphan state is called an obsolete message. A process
receiving an obsolete message must discard it. Otherwise
the receiver becomes an orphan.



In Figure 1, a distributed computation is shown. Process
P1 fails at state f10, restores state s11, takes some actions
needed for recovery and restarts from state r10. States s12
and f10 are lost . Being dependent on s12, state s22 of P2
is an orphan. P2 rolls back, restores state s21, takes actions
needed for recovery, and restarts from state r20.

Henceforth, notation i; j refer to process numbers; k; l; v
refer to version number of a process; s; u; w; x; y refer to a
state; Pi refers to process i; Pi;k refers to version k of Pi;s:p denotes the process number to which s belongs, that is,s:p = i) s 2 Pi; t; t0; t00 refer to timestamp; m refers to a
message.

We extend the Lamport’s happen before(! ) relation
[12]. For the states s and u, s ! u is the transitive closure
of the relation defined by the following three conditions:� s:p = u:p and s was executed immediately before u

(for example, s11! s12 in Figure 1), or� s:p = u:p and s is the state restored after a failure or
a rollback and u is the state after Pu:p has taken the
actions needed for recovery (for example, s11! r10
in Figure 1), or� s is the sender of a message m and u is the receiver
of m (for example, s00! s11 in Figure 1).

In figure 1, s00 ! s22, but s22 6! r20 (not happen before).
The protocol for recovery might cause some recovery

messages to be sent among processes. From here onward
‘application message’ will be referred to as ‘message’ and
‘recovery message’ will be referred to as ‘token’. Tokens
do not contribute to happen before; if s sends a token tou then because of this token, u does not become causally
dependent on s.

We say that s knows aboutPi;l through token or messages
if,

1. 9u : u:p = s:p and u has received a token about Pi;l
and u = s or u was executed before s, or,

2. 9u : u! s and u 2 Pi;l.
3. Fault-Tolerant Vector Clock

Vector clock is a vector whose number of component
equals the number of processes. Each entry is the timestamp
of the corresponding process. To maintain causality despite
failures, we extend each entry by a version number. The
extended vector clock is referred to as the Fault-Tolerant
Vector Clock (FTVC) or simply ‘clock’ . Let us consider
the FTVC of a process Pi. The version number in thei’th entry of its FTVC (its own version number) is equal
to the number of times it has failed and recovered. The
version number in the j’th entry is equal to the highest
version number of Pj on which Pi depends. Let entry
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Figure 1. A Distributed Computatione corresponds to a tuple(version v, timestamp ts). Then,e1 < e2 � (v1 < v2) _ [(v1 = v2) ^ (ts1 < ts2)].
A process Pi sends its FTVC along with every outgo-

ing message. After sending a message, Pi increments its
timestamp. On receiving a message, it checks whether the
message is obsolete or not (we will explain later how to do
this). If the message is obsolete it is discarded; otherwise,
the process updates its FTVC with the message’s FTVC by
taking the componentwise maximum of entries and incre-
menting its own timestamp. To take the maximum, the entry
with the higher version number is chosen. If both entries
have the same version number then the entry with the higher
timestamp value is chosen.

When a process restarts after a failure, it increments its
version number and sets its timestamp to zero. Note that
this operation does not require access to previous timestamp
which may be lost on a failure. It only requires its previous
version number. As explained in section 5, the version
number is not lost in a failure.

After a rollback, a process increments the timestamp of its
own component and leaves the version number unchanged.
A formal description of the FTVC algorithm is given in
Figure 2. An example of FTVC is shown in Figure 1. FTVC
of each state is shown in a rectangular box near it.

FTVC can be used to detect causal dependencies between
useful states, that is, the states which are neither lost nor
orphan. We define ordering between two FTVC c1 and c2
as follows.c1 < c2 � (8i : c1[i] � c2[i]) ^ (9j : c1[j] < c2[j]):
Let s:c denote the FTVC of Ps:p in state s. The following
lemma gives a necessary condition for ‘ 6!’ relation between
two useful states.



Process Pi :
type entry = (int ver, int ts) /* version, timestamp */
var clock : array [1..N] of entry

/* N : number of processes in system */

Initialize :8 j : clock[j].ver = 0 ; clock[j].ts = 0 ;
clock[i].ts = 1 ;

Send message :
send (data, clock) ;
clock[i].ts++ ;

Receive message (data, mclock) :
/* Pi receives vector ‘mclock’ in incoming message */8 j: clock[j] = max(clock[j],mclock[j]) ;

clock[i].ts++ ;
On Restart(state s restored after failure ) :

/* clock = s.clock */
clock[i].ver++ ;
clock[i].ts = 0 ;

On Rollback (state s is restored) :
/* clock = s.clock */
clock[i].ts++ ;

Figure 2. Formal description of the fault-tolerant
vector clock

Lemma 1 Let s and u be useful states (neither lost nor
orphan) and s 6= u. Then, s 6! u) u:c[s:p]< s:c[s:p]

Proof of this lemma can be found in [4]. As shown in the
next theorem, the above condition is also sufficient for ‘ 6!’
relation. It shows that despite failures, FTVC keeps track
of causality for the useful states. This may be of interest in
applications other than recovery, for example, in predicate
detection [6].
Theorem 1 Let s and u be useful states in a distributed
computation. Then, s! u iff s:c < u:c
Proof: If s = u, then the theorem is trivially true. Lets ! u. There is a message path from s to u such that
none of the intermediate states are either lost or orphan.
Due to monotonicity of the FTVC along each link in the
path, 8j : s:c[j] � u:c[j]. Since u 6! s, from lemma 1,s:c[u:p] < u:c[u:p]. The converse follows from lemma 1.

Note that the FTVC does not detect the causality for
either lost or orphan states. In Figure 1, r20.c < s22.c, even
though r20 6! s22. To detect causality for lost or orphan
states, we use history, as explained in Section 4.

4. History Mechanism

We first give some definitions which are similar to those
in [14]. A state is called lost, if it cannot be restored from
the stable storage after a process fails. To define a lost
state more formally, let restored(u) denote the state that is
restored after a failure. Then,

lost(s) � 9u : restored(u)^u:p = s:p^u:ver = s:ver^u! s
That is, a state s is lost if there exists a state u which was

restored after a failure and s was executed after u in that
version of the process.

States in other processes which are dependent on a lost
state are called orphan. Formally,orphan(s) � 9u : lost(u) ^ u:p 6= s:p ^ u! s

A message sent by a lost or an orphan state is not useful
in the computation and it should be discarded. It is called
obsolete. Formally,obsolete(m) � lost(m:sender) _ orphan(m:sender)
If an obsolete message has been received then the receiver
should rollback.

Orphan states and resulting obsolete messages are de-
tected using the history mechanism. This method requires
that after recovering from a failure, a process notifies other
processes by broadcasting a token. The token contains the
version number which failed and the timestamp of that ver-
sion at the point of restoration. We do not make any as-
sumption about the ordering of tokens among themselves or
with respect to the messages. We do assume that tokens are
delivered reliably.

Every process maintains some information, called his-
tory, about other processes in its volatile memory. In history
of Pi, there is a record for every known version of all pro-
cesses. If Pi has received a token about Pj;k, then it keeps
that token’s timestamp in the corresponding record in his-
tory. Otherwise, it keeps the highest value of the timestamp
that it knows for Pj;k through messages. A bit is kept to
indicate whether the stored timestamp corresponds to a to-
ken or a message. So a record in history has three fields:
a bit, a version number and a timestamp. The routine in-
sert(history[j], hist entry) inserts the record hist entry
in that part of the history of Pi which keeps track of Pj.
For a given version of a given process, only one record is
maintained. So on adding a record for Pj;v, any previous
record for Pj;v is deleted. Thus, on receiving a message
and its FTVC, for each entry ej(v; t) in the vector clock,Pi checks whether a record (mes; v; t0) exists for Pj;v in
history[j] such that t < t0. If no such record exists then
record (mes; v; t) is added to history[j]. By adding this
record, any previous record for Pj;v is deleted.

A formal description of the history manipulation algo-
rithm is given in Figure 3.

5. The Protocol

Our protocol for asynchronous recovery is shown in Fig-
ure 4. We describe the actions taken by a process, say Pi,
upon the occurrence of different events.



Process Pi :
type entry = (int ver, int ts) /* version, timestamp */

hist entry = record (mtype : (token,mes),
int ver, int ts)

var clock : array[1..N] of entry;
/* N : number of processes in system */
history : array[1..N] of set of hist entry;
token : entry;

Initialize :8j : insert(history[j], (mes,0,0)) ;
insert(history[i], (mes,0,1)) ;

Send message :
send(data, clock) ;

Receive token (v1,t1) from Pj :
insert(history[j], (token,v1,t1)) ;

Receive message (data, mclock) :8 j : if ((mes,mclock[j].ver,t) 62 history[j])
or (t < mclock[j].ts) then

/* A record for mclock[j].ver does not exist */
/* or it exists and t is the time-stamp in it */
insert(history[j], (mes,v,mclock[j].ts)) ;

On Restart
(state s is restored after a failure of version v)
/* history = s.history */
insert(history[i], (token,v,clock[i].ts)) ;

Figure 3. Formal description of the history mecha-
nism

On Message Receive: On receiving a message, Pi
first checks whether the message is obsolete. This is done
as follows. Let ej refer to the jth entry in the message’s
FTVC. Recall that each entry is of the form (v; t) where v
is the version number and t is the timestamp. If there exists
an entry ej , such that ej is (v; t) and (token; v; t0) belongs
to history[j] of Pi and t > t0 then the message is obsolete.
This is proved later.

If the message is obsolete, then it is discarded. Otherwise,Pi checks whether the message is deliverable. The message
is not deliverable if its FTVC contains a version numberk for any process Pj, such that Pi has not received all the
tokens of the form Pj;l for all l less than k. In this case,
the delivery of the message is postponed. Since we assume
failures to be rare, this should not affect the speed of the
computation.

If the message is delivered then the vector clock and the
historyare updated. Pi updates its FTVC with the message’s
FTVC as explained in Section 3. The message and its FTVC
is logged in a volatile storage. Asynchronously, volatile log
is flushed to the stable storage. The history is updated as
explained in Section 4.

On Restart after a Failure: After a failure, Pi restores
its last checkpoint from the stable storage (including the
history). Then it replays all the logged messages received

after the restored state, in the receipt order. Then it creats a
token containing its current version number and timestamp.
After that it increments its own version number and resets
its own timestamp to zero. Then it updates its history and
takes a new checkpoint. Finally, it broadcasts the token and
starts computing in a normal fashion. The new checkpoint
is needed to avoid the loss of the current version number in
another failure. Note that the recovery is unaffected by a
failure during this checkpointing.

On Receiving a Token: We require all tokens to be
logged synchronously. This prevents the process from losing
the information about the token if it fails after acting on it.
Since we expect the number of failures to be small, this
would incur only a small overhead.

The token enables a process to discover if it has become
an orphan. To check whether it has become an orphan it
proceeds as follows. Assume that it received the token (v; t)
from Pj. It checks whether a record (mes; v; t0) exists in
its history for Pj;v, such that t < t0. If such a record exists,
then Pi is an orphan and it needs to rollback. We prove this
claim later.

If the process Pi discovers that it has become an orphan
then it rolls back. Regardless of the rollback, Pi enters the
record (token; v; t) in history[j]. Finally, messages that
were held for this token are delivered.

On Rollback: On a rollback due to token (v; t) from Pj,Pi first logs all the unlogged messages to the stable storage.
Then it restores the maximum checkpoint s such that the
history of s satisfies one of the following conditions:

1. There is no record for Pj;v in the history of s, or,
2. There is a record (mes; v; t00) for Pj;v in the history

and t00 < t.
These conditions imply that s is non-orphan. Then,

logged messages that were received after s are replayed
as long as one of the above conditions remain satisfied. It
discards the message that caused it to become orphan and
the checkpoints that follow this state. It replays the non-
obsolete messages among the remaining logged messages.
Now, the FTVC is updated by incrementing its timestamp.
Note that it does not increments its version number. Pi, then
restarts computing as normal.5.1. Remarks

The following issues are relevant to all the optimistic
protocols including ours. We just mention them and do not
discuss them any further.

1. Efficient failure detection and reliable broadcast in
asynchronous distributed system are challenging problems
in themselves [7].



Process Pi :
Receive message (data, mclock) :

/* Check whether message is obsolete */8 j : if ((token,mclock[j].ver,t)2 history[j])
and ( t < mclock[j].ts ) then discard message ;

if 9j; l s.t. l < mclock[j].ver ^ Pi has not received
token about Pj;l then

Postpone the delivery of the message till
that token arrives ;

if delivered then
Update history ; Update FTVC ;

Restart (after failure) :
restore last checkpoint ;
replay all the logged messages that follow the

restored state ;
token = clock[i] ;
Update history ; Update FTVC ;
Take checkpoint ;
Broadcast token ; continue as normal ;

Receive token (v,t) from Pj :
Synchronously log the token to the stable storage ;
if ((mes,v,t’) 2 history[j]) then

if (t < t’) then Rollback ;
/* Regardless of rollback, next 2 actions are taken */
Update history ;
Deliver messages that were held for this token ;

Rollback ( due to token (v,t) from Pj ) :
Log all the unlogged messages to the stable storage;
Restore the maximum checkpoint such that

no record (mes,v,t’) 2 history[j] or (t’ < t) ..(I)
Discard the checkpoints that follow ;
Replay the messages logged after this checkpoint

till condition (I) remains satisfied ;
Discard the message that caused it to become orphan ;
Replay the remaining non-obsolete logged messages ;
Update FTVC ;
continue as normal ;

Figure 4: Our Protocol for Asynchronous Recovery
2. On a failure, a process loses information about the

messages that it received but did not log before the failure.
These messages are lost forever, unless Pi also broadcasts
its clock with the token and other processes resend all the
messages that they sent to Pi (only those messages need
to be retransmitted whose send states were concurrent with
token’s state). This means that processes have to keep send-
history. Observe that no retransmission of messages is re-
quired during rollback of a process which has not failed, but
has become orphan due to a failure of some other process.
Before rolling back, it can log all the messages and so no
message is lost.

3. Some form of garbage collection is also required
for reclaiming space. Space required for checkpoints and
message logs can be bounded by using the scheme presented

in [18]. Before committing an output to the environment, a
process must make sure that it will never rollback the current
state or lose it in a failure.5.2. An Example

In Figure 5, ci is the checkpoint of process Pi. The
value of the FTVC and the history is also shown for some
of the states. The FTVC is shown in a box. The row i
of the FTVC and the history corresponds to Pi. Some of
the state transitions are not shown to avoid cluttering of
the figure. The process P1 fails in state f10. It restores
the checkpoint c1 and replays the logged messages. Then
it sends the token (0,3) (shown by dotted arrow) to other
processes. It restarts in state r10. P0 receives the messagem2 in state s03. m2’s FTVC contains an entry for version
1 of P1. As P0’s history does not contain the token about
version 0 of P1, it postpones the delivery of m2. It receives
the token in state s05. It detects that it is an orphan and
rolls back. It restores the checkpoint c0, replays the logged
messages until the message that made it an orphan. It restarts
in state r00. Since message m2 was held for this token, it
is delivered now. On receiving message m0, P2 detects that
it is obsolete and discards it. Dashed lines show the lost
computation. Solid lines show the useful computation at the
current point.

Note that if states03ofP0had delivered the messagem2,
then message m0’s FTVC would have contained entry (1,1)
for P1. Then P2 would not have been able to detect thatm0 is obsolete. So P2 would have delivered m0, resulting
in an orphan state. Since P2 had already received the token
for version 0 of P1, P2 would never have rolled back the
orphan state.5.3. Overhead Analysis

Except application messages, the protocol causes no extra
messages to be sent during failure-free run. The following
overheads are involved in this protocol:

1. FTVC: The protocol tags a FTVC to every application
message. The FTVC might be needed for purposes
other than recovery, for example predicate detection
[6]. Let the maximum number of failures of any pro-
cess be f . The protocol adds logf bits to each times-
tamp in vector clock. Since we expect the number of
failures to be small, log f should be small.

2. Token broadcast: A token is broadcast only when a
process fails. The size of a token is equal to just one
entry of vector clock. So broadcasting overhead is
low.

3. History: Let the number of processes in the system
be n. There are at most f versions of a process and
there is one entry for each version of a process in the
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Figure 5. An example of recovery

history. So the size of the history is O(nf). The
history is maintained in relatively inexpensive main
memory and f is expected to be small.

6. Proof of Correctness

The following lemma gives a necessary and sufficient
condition for orphan detection. This condition is used in the
Receive token part of the algorithm.
Lemma 2 orphan(s) � 9w : restored(w) ^ [w:clock =(v; t)] ^ 9(mes; v; t0) 2 s:history[w:p] such that t < t0.
Proof: (()

Since (mes; v; t0) 2 s:history[w:p], a message must
have been received with (v; t0) as the clock entry for the
process Pw:p. From properties of the FTVC, this implies
that there exists a state u in Pw:p with that vector clock
which causally precedes s. That is,9u : u:p = w:p^u:ver = w:ver^u:clock[u:p] = (v; t)^u! s
Since w:clock[w:p] = (v; t) ^ (t < t0), this implies that9u : restored(w)^u:p = w:p^u:ver = w:ver^w! u^u! s
From the definition of lost(u), this is equivalent to 9u :lost(u) ^ u! s. Thus, orphan(s) is true.

())
From definition, orphan(s) � 9y : lost(y) ^ y ! s.

Among all such y’s, let u be a maximum state for a given
version of a given process. Thus, there exists u such thatlost(u) ^ u! s, and8x : (x:p = u:p^x:ver = u:ver ^x 6= u^ lost(x)^x!s) implyx ! u …(1)

Let u:clock[u:p] = (v; t). On any path from u to s,u:pth entry (v; t) of FTVC could not have been overwrit-
ten. From (1), it could not be overwritten by an entry

from version v. For a higher version v0, overwriting pro-
cess would have waited for token about version v and then
that process would have rolled back. This implies that(mes; v; t) 2 s:history[u:p]. Further, lost(u) implies,9w : restored(w) ^w! u ^w:version = u:version

Therefore, 9w : restored(w)^w:clock = (v; t0)^(t0 <t)
The next lemma gives a sufficient condition to detect an

obsolete message. It also states the circumstances in which
this condition is necessary.
Lemma 3 For any message m received in state s, if there
exists an entry (token; v; t) in history of s for process Pj
and m:clock[j] = (v; t0) such that (t < t0), then m is obso-
lete. That is,[(token; v; t) 2 s:history[j] ^m.clock[j] = (v,t’)^t <t0]) obsolete(m).
This condition is also necessary when there are no undeliv-
ered tokens.
Proof: Since (token; v; t) 2 s:history[j], 9w : w:p =j ^ restored(w) ^ w:clock[j] = (v; t): From FTVC al-
gorithm and m:clock[j] = (v; t0), we get that 9u 2 Pj :u:clock[j] = (v; t0). Since (t < t0) and a token (v; t) exists
for Pj, it follows that u is a lost state.

Let x be the state from which the message m is sent,
that is x = m:sender. From u:clock[j] = (v; t0), u !x_u = x. This implies that lost(x) _ orphan(x). That is,obsolete(m).

For converse, the definition of obsolete(m) implylost(m:sender) _ orphan(m:sender). This implies that9u : restored(u) ^ u ! m:sender. Let u:clock[u:p] =(v; t). (u ! m:sender) ) f(m:sender):clock[u:p] =(v; t0) ^ (t0 > t)}. This is because on the path from u tom:sender; (v; t0) could not have been overwritten by an



entry from higher version v0 of Pu:p. Before overwriting,
a process would have waited for token about Pu:p;v and
then it would have rolled back. Since all tokens have been
delivered, so trivially, 9s : (token; v; t) 2 s:history[w:p].

The above test is optimal in the sense that except for the
conditions stated, a process Ps:p will not be able to detect an
obsolete message. It will accept it and become an orphan.
The next theorem shows that our protocol is correct.
Theorem 2 This protocol correctly implements recovery,
that is, either a process discards an obsolete message or the
receiver of an obsolete message eventually rolls back to a
non-orphan state.
Proof: Let a failure of the version v ofPi cause a message m
to become obsolete. If the receiver Pj has received a token
about Pi;v before receiving m, then by lemma 3, it will
recognize that m is obsolete and will discard m. Otherwise,
it will accept m and will become an orphan. But Pj will
eventually receive the token about Pi;v. Then by lemma
2, it will recognize that it is orphan and will rollback to a
non-orphan state.

Theorem 3 This protocol has following properties: asyn-
chronous recovery, minimal rollback, handling concurrent
failures, recovering maximum recoverable state.

Proof:
Asynchronous Recovery: After a failure, a process re-

stores itself and starts computing. It broadcasts a token
about its failure but it does not require any response.

Minimal Rollback: In response to the failure of a given
version of a given process, other processes rollback at most
once. This rollback occurs on receiving the corresponding
token.

Handling Concurrent Failures: In response to multiple
failures, a process rolls back in the order in which it receives
information about different failures. Concurrent failures
have the same effect as that of multiple non-concurrent fail-
ures.

Recovering Maximum Recoverable State: Only orphan
states are rolled back.
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