TRANSACTIONS ON CAD

A Survey of Automated Techniques for
Formal Software Verification

Vijay D’Silva

Abstract—The quality and the correctness of software is often
the greatest concern in electronic systems. Formal verification
tools can provide a guarantee that a design is free of specific
flaws. This paper surveys algorithms that perform automatic,
static analysis of software to detect programming errors or
prove their absence. The three techniques considered are static
analysis with abstract domains, model checking, and bounded
model checking. A short tutorial on these techniques is provided,
highlighting their differences when applied to practical problems.
The paper also surveys the tools that are available implementing
these techniques, and describes their merits and shortcomings.

Index Terms—Model Checking, Software Verification, Static
Analysis, Predicate Abstraction, Bounded Model Checking

I. INTRODUCTION

Correctness of computer systems is critical in today’s in-
formation society. Though modern computer systems consist
of complex hardware and software components, ensuring the
correctness of the software part is often a greater problem
than that of the underlying hardware. This is especially
true of software controlling transportation and communication
infrastructure. The website [52] documents this problem by
providing over one-hundred “software horror stories”.

Manual inspection of complex software is error-prone and
costly, so tool support is in dire need. Several tools attempt
to uncover design flaws using test vectors to examine specific
executions of a software system. Formal verification tools, on
the other hand, can check the behavior of a design for all
input vectors. Numerous formal tools to hunt down functional
design flaws in silicon are available and in wide-spread use.
In contrast, the market for tools that address software quality
is still in its infancy.

Research in software quality has an enormous breadth. We
focus on methods satisfying two criteria:

1) The method provides a rigorous guarantee of quality.
2) The method should be highly automated and scalable to
cope with the enormous complexity of software systems.

In practice, quality guarantees rarely refer to ’total correct-
ness’ of a design, as ensuring the absence of all bugs in a

This research is supported by an award from IBM Research, by a Microsoft
Graduate Scholarship, and by the European Union as part of the FP7-STREP
MOGENTES. Copyright (c) 2008 IEEE. Personal use of this material is per-
mitted. However, permission to use this material for any other purposes must
be obtained from the IEEE by sending an email to pubs-permissions @ieee.org.

V. D’Silva is with the Computer Science Department at ETH Zurich,
Switzerland. E-mail: vijay.dsilva@inf.ethz.ch

D. Kroening is with the Computing Laboratory at Oxford University, UK.
E-mail: kroening@comlab.ox.ac.uk

G. Weissenbacher is with the Computer Science Department at ETH Zurich,
Switzerland. E-mail: georg.weissenbacher @inf.ethz.ch

Daniel Kroening

Georg Weissenbacher

design is usually too expensive. However, a guarantee that
specific flaws are absent is achievable and is a good metric of
quality. Due to the first criterion, we do not survey random
testing and automated test-case generation, though metrics
such as branch coverage can be viewed as quality guarantees.

The second criterion, automation, implies that we exclude
techniques such as dynamic verification using test vectors, and
in particular, unit testing. We also exclude formal techniques
requiring substantial manual effort, e.g., tools that require user
interaction to construct a proof (e.g., ACL2, PVS or HOL),
techniques that use refinement steps to construct programs
from specifications (e.g., the B-method [1]) and tools that
require significant annotations from the programmer (e.g.,
ESC/Java [61]). Consequently, we only survey static analysis
techniques, which do not rely on program execution and
require minimal user interaction.

Outline

The three techniques we survey are Abstract Static Analysis,
Model Checking, and Bounded Model Checking. We begin
with abstract static analysis (§ II). Light-weight versions of
these techniques are used in software development tools, e.g.,
for pointer analysis in modern compilers. A formal basis
for such techniques is Abstract Interpretation, introduced
by Cousot and Cousot [46]. We briefly describe the formal
background and then summarize tools that implement them.

The second part of the survey addresses Model Checking
for software (§ III). Model Checking was introduced by
Clarke and Emerson [36], and independently by Queille and
Sifakis [97]. The basic idea is to determine if a correctness
property holds by exhaustively exploring the reachable states
of a program. If the property does not hold, the model
checking algorithm generates a counterexample, an execution
trace leading to a state in which the property is violated. The
main benefit of model checking compared to the techniques
in § II is its ability to generate counterexamples. As the
state space of software programs is typically too large to
be analyzed directly, model checking is often combined with
abstraction techniques. We survey predicate abstraction, a
popular abstraction technique for software model checking.

The third part of the survey is dedicated to a formal
technique that performs a depth-bounded exploration of the
state space (§ IV). As this technique is a form of Model
Checking, it is called Bounded Model Checking (BMC). We
present BMC separately, as the requirement to analyze the
entire state space is relaxed: BMC explores program behavior
exhaustively, but only up to a given depth. Bugs that require
longer paths are missed.

TRANSACTIONS ON CAD

II. ABSTRACT STATIC ANALYSIS

Static analysis encompasses a family of techniques for
automatically computing information about the behavior of
a program without executing it. Though such techniques
are used extensively in compiler optimization, we focus on
their use in program verification. Most questions about the
behavior of a program are either undecidable or it is infeasible
to compute an answer. Thus, the essence of static analysis
is to efficiently compute approximate but sound guarantees:
guarantees that are not misleading.

The notion of approximation is qualitative, as opposed to
that used in most engineering problems. A sound approxima-
tion is one that can be relied upon. For example, a proce-
dure for detecting division-by-zero errors in a program must
consider all possible run-time values of variables involved in
division operations. An approximate procedure may compute
either a subset or a superset of these values and expressions.
If a subset is computed and no error is found, returning ‘No
Division Errors’ is unsound because an error may still
exist. If a superset is computed and no errors are found,
returning ‘No Division Errors’ is justified. A spurious
warning is an error message about a bug that does not exist in
the program. A missed bug is one that exists but is not reported
by an analysis procedure. Due to the undecidability of static
analysis problems, devising a procedure that does not produce
spurious warnings and does not miss bugs is not possible.

We introduce the vocabulary of static analysis in § II-A and
illustrate an abstract analysis in § II-B. We survey abstractions
of numeric data types in § II-C and of the heap in § II-D. We
conclude this section with a review and discussion of static
analysis tools (§ II-E,§ II-F). The relationship between static
analysis and model checking is briefly discussed in § III.

A. General Schema and Terminology

Static analysis techniques typically propagate a set of values
through a program until the set saturates, i.e., does not change
with further propagation. Mathematically, such analyses are
modeled as iterative application of a monotone function.
Saturation occurs when a fixed point of the function is reached.
We illustrate this idea with a deliberately simplified example.

Example 1: We want to determine all values the variable i
may take in the program below. Such information has various
applications. If i is used as an array index, the analysis is
useful for ensuring that the array bounds are not exceeded.

int i = 0;

do {
assert(i <= 10);
i = i+2;

} while (i < 5);

The control flow graph (CFG) for this program is shown in
Figure 1(a). Each node is annotated with its value-set, i.e.,
the values i may have on reaching that program location. Let
Int be the set of values a variable of type int can have. For
the analysis, we propagate a value-set of i along the edges
of the CFG adding new values as they are encountered. The

annotations computed in the first two iterations are shown in
grey and black, respectively, in Figure 1(a).

The initial value-set of i, being undefined, is Int. After
the assignment i = 0, the value-set is {0}. The statement
assert(i <= 10) does not change i, so L3 has the same
annotation as L2. After the statement i = i + 2, the set {0}
is changed to {2}. As 2<05, this set is propagated from L4
to L2. The set {0} is propagated from L1 to L2 and {2} is
propagated from L4 to L2, so L2 is annotated with the union
of {0} and {2}. A node like L2 with multiple incoming edges
is a join point and is labeled with the set obtained by merging
all sets propagated to it. The value-set is repeatedly propagated
along the CFG in Figure 1(a) until a fixed point is reached. U

The analysis above is a concrete interpretation of the
program. Subsets of Int represent precise values of i during
execution and constitute a concrete domain. Concrete inter-
pretation is impractical because value-sets grow large rapidly
and such naive propagation along a CFG does not scale. In
practice, precision is often traded for efficiency by using an
approximation of the value-set, or by ignoring certain aspects
of the program’s structure during propagation. With regard to
the latter approach, we use the following taxonomy of program
analyses: a program analysis method is

o Flow sensitive if the order of execution of statements in
the program is considered.

o Path sensitive if it distinguishes between paths through a
program and attempts to consider only feasible ones.

o Context sensitive if method calls are analyzed differently
based on the call site.

o Inter-procedural if the body of the method is analysed in
the context of each respective call site.

If one of these conditions is ignored, the analysis technique is
flow, path or context insensitive, respectively. An analysis not
distinguishing the call sites of the methods is intra-procedural.

B. Abstract Interpretation

Peter Naur observed when working on the Algol compiler
that abstract values may suffice for program analysis [95]. In
early tools, the relation between an abstract analysis and a
program’s run-time behavior was often unclear. Cousot and
Cousot [46] introduced abstract interpretation as a framework
for relating abstract analyses to program execution.

An abstract domain is an approximate representation of sets
of concrete values. An abstraction function is used to map
concrete values to abstract ones. An abstract interpretation
involves evaluating the behavior of a program on an abstract
domain to obtain an approximate solution. An abstract in-
terpretation can be derived from a concrete interpretation by
defining counterparts of concrete operations, such as addition
or union, in the abstract domain. If certain mathematical
constraints between the abstract and concrete domains are met,
fixed points computed in an abstract domain are guaranteed to
be sound approximations of concrete fixed points [47].

Example 2: A possible abstract domain for the analysis in
Example 1 is the set of intervals, {[a,b]|a < b} where a and
b are elements of Int. The concrete operations in Example 1

TRANSACTIONS ON CAD

[i < 5] [i < 5]

(a) Concrete Interpretation

Fig. 1.

(b) Abstract Interpretation

[i < 5]

2,6] [2,6]
[i > 5]
L53[5.6] [5,6]

(c) Abstract Fixpoint Computed

Concrete and abstract interpretations of a program. The values of i are collected at program locations in (a). Data is abstracted using intervals in

(b) and the fixed point is reached in (c). The labels on the edges denote the condition that has to hold for flow of control to pass the edge; the labels on the
nodes correspond to variable valuations. The annotation of control locations computed in two successive iterations are shown in grey and black, respectively.

are addition and union on subsets of Int. Addition and union
for intervals are defined in the intuitive manner.

The abstract interpretation of the program is illustrated in
Figure 1(b). Let min and max be the minimum and maximum
values of an int variable. The abstract value of i at L1 is
[min,max], and at L2 is [0, 0]. This interval is propagated to
L3, and then transformed by i = i + 2 to [2,2]. The union
of the intervals [0, 0] and [2, 2] at the join point L2 is [0, 2] as
shown. The information that i was not 1 is lost by merging
the intervals. The intervals computed in the second iteration
are shown in black in Figure 1(b). Propagation ends when a
fixed point is reached as shown in Figure 1(c). O

A typical choice of an abstract domain and sensitivity of the
analysis yields imprecise but sound answers to program analy-
sis problems. However, the abstract analysis may still require
an infeasible number of iterations to reach a fixed point. A
widening operator is used to accelerate and ensure termination
of fixed point computations, usually by incurring further loss
of precision. A complementary narrowing operator is then
used to improve the precision of the solution.

C. Numerical Abstract Domains

Over the years, various abstract domains have been de-
signed, particularly for computing invariants about numeric
variables. The class of invariants that can be computed, and
hence the properties that can be proved, varies with the
expressive power of a domain. Relational domains can capture
relationships between variables and non-relational domains
cannot. An abstract domain is more precise than another if
less information is lost. The information loss between different
domains may be incomparable as we illustrate shortly. We now
review common abstract domains beginning with simple non-
relational ones and progressing to relational domains.

The domain of Signs has three values: {Pos,Neg, Zero}.
Intervals are more expressive as the values in the Signs domain
are modeled by the intervals [min, 0], [0, 0] and [0, max]. The
domain of Parities abstracts values as Even and 0dd. Though
the domain Parities has fewer elements than the domains of

Signs or Intervals, it cannot be compared with the latter two.
No interval can be used to model all odd or even values. The
domain of Congruences generalizes Parities, representing a
value v by (v mod k) for some fixed integer k.

Consider the expression 1/(z — y). If abstract interpretation
is used to show that (x mod k) # (y mod k), we may
conclude that division by zero does not occur in evaluating this
expression. Congruences can be used to prove dis-equalities
but not inequalities between variables. Non-relational domains
are efficient to represent and manipulate. Unfortunately, even
simple properties like « <y cannot be represented.

We now survey some relational domains. Difference Bound
Matrices (DBMs) are conjunctions of inequalities of the form
z—y < cand £ < ¢ [19]. They were initially used to
analyze timed Petri-nets and later for model checking real-
time systems [91], [110]. DBMs allow for more precise ab-
straction than intervals but do not admit constraints of the form
(—x — y < ¢). Octagons are a more expressive domain with
equations of the form (az + by < ¢) where a,b € {—1,0,1}
and c is an integer [92]. Octahedra [33] generalize Octagons
to more than two variables. The domain of Polyhedra is among
the earliest and most popular relational domains used to prove
numerical properties of programs, and timing behavior of
embedded software [48], [67]. A polyhedron is a conjunction
of inequalities of the form aix; + - + a2, < ¢, where
a; and c are integers. Manipulating polyhedra involves com-
puting convex hulls, which is computationally expensive. The
time and space requirements of procedures for manipulating
polyhedra are usually exponential in the number of variables.

The domains of Signs, Intervals, DBMs, Octagons, Octa-
hedra and Polyhedra form a hierarchy in terms of expressive
power. They are useful for computing inequality constraints
about integer variables and for deriving such invariants for
nested program loops. The related ellipsoid domain encodes
non-linear relationships of the form ax? + bxy + cy? < n and
has been used to analyze real-time digital filters [59].

These relational domains cannot be used to prove dis-
equalities. Consider the expression 1/(2* 2 + 1 —y). An ab-

TRANSACTIONS ON CAD

stract domain for proving that division by zero does not occur
should allow us to conclude that 2+ x4 1 # y. The domain of
Linear Congruences combines features of Polyhedra and Con-
gruences, containing equations of the form axz+by = ¢ mod k.
If we can conclude that 2 « x + 1 mod &k # y mod k, the
result of the expression above is well defined. In general, new
domains can be designed from existing ones as required [47].
The domains described above have been used to prove
properties of avionic and embedded software [25]. Numeric
domains have also been used to analyze pointer behavior [54],
string manipulations [55] and program termination [41].

D. Shape Analysis

The next class of abstract analyses and domains we consider
concern the heap and are essential for analyzing programs
with pointers. Alias analysis is the problem of checking
if two pointer variables access the same memory location.
Points-to analysis requires identifying the memory locations
a pointer may access [71]. Shape analysis, formulated by
Reynolds [100] and later independently by Jones and Much-
nick [81], generalizes these problems to that of verifying
properties of dynamically created data structures, so called
because such properties are related to the “shape” of the heap.

The abstract domain for points-to analysis contains storage
shape graphs [32], also called alias graphs [72]. Nodes in
the graph represent variables and memory locations and edges
encode points-to relationships. Considering program structure
significantly affects the efficiency of shape analysis. The
fastest and most popular points-to analysis algorithms are flow-
insensitive [4], [103], disregarding control flow. We illustrate
a flow-insensitive analysis in the next example.

Example 3: Consider the program fragment below and the
question “Do x and y point to the same memory location?”

1: int s*xa, *xb, *x, x*y

2: x = (intx) malloc(sizeof(int));
3: y = (intx) malloc(sizeof(int));
4: a = &x;

5: b = &y;

6: xa = y;

The construction of a points-to graph is shown below.

Line 2,3 [}¢——x I
. a b
Line 4,5 }t }#}
a b

Line 6)t ;,-

The effect of malloc statements (lines 2,3) is modeled by
adding a memory node and a pointer to it. Edges are added
to the graph to model the assignments in lines 4 and 5. The
effect of line 6 is to add another edge from the node labeled
x. As the algorithm is flow-insensitive and conservative, edges
can be added but not removed. Such changes are called weak
updates. By analyzing the final graph, we can conclude that

a and b point to different locations, but we can only conclude
that x and y may point to the same location. |

Flow-insensitive analyses are efficient but imprecise. For
programs with significant pointer manipulation, the impreci-
sion snowballs and most edges may point to the same memory
location. Canonical abstractions are a more precise abstract
domain designed to address these issues [101]. The concrete
domain is a graph-based representation of the heap augmented
with logical predicates, which describe relationships between
heap cells. Examples of such relationships are that one cell is
reachable from the other, or that a cell does not point to the
other. A canonical abstraction is an abstract graph with nodes
representing heap cells, summary nodes representing multiple
heap cells, and three-valued predicates that may evaluate to
True, False or Don’t Know. Thus, it is possible to
distinguish between pointer variables that point to the same
location, that do not point to the same location and that may
point to the same location. More sophisticated relationships
can be expressed and analyzed using predicates.

E. Static Analysis Tools

An early, popular static analysis tool for finding simple
errors in C programs is LINT, released in 1979 by Bell
Labs. Several modern tools emulate and extend LINT in terms
of the kind of errors detected, warnings provided and user
experience. FINDBUGS for Java is a notable modern tool with
similar features. We mention LINT and FINDBUGS because
of their significance and influence on static analysis tools.
However, these tools are unsound and provide no rigorous
guarantees so we do not discuss them further.

Though several commercial static analyzers are available,
the details of the techniques implemented and their soundness
is unclear, so we refrain from a full market survey, and only
list a few exemplary tools. Grammatech Inc. produces CODE-
SONAR, a tool using inter-procedural analyses to check for
template errors in C/C++ code. These include buffer overflows,
memory leaks, redundant loop and branch conditions. The K7
tool from KlocWork has similar features and supports Java.

The company Coverity produces PREVENT, a static ana-
lyzer, and EXTEND, a tool for enforcing coding standards.
PREVENT has capabilities similar to those of CODESONAR,
but also supports Microsoft COM and Win32 APIs and con-
currency implemented using PThreads, Win32 or WindRiver
VxWorks. In January 2006, as part of a United States De-
partment of Homeland Security sponsored initiative, Coverity
tools were used to find defects in over 30 open source projects.

Abstract interpretation tools were used to identify the error
leading to the failure of the Ariane 5 rocket [88]. Abstract
domains for finding buffer overflows and undefined results
in numerical operations are implemented in the Astrée static
analyzer [25], used to verify Airbus flight control software.
Polyspace Technologies markets C and Ada static analyzers.
The C Global Surveyor (CGS), developed at NASA, is a static
analyzer specially developed for space mission software. The
Polyspace tool and CGS have been used to analyze software
used on the Mars Path-Finder, Deep Space One and Mars
Exploration Rover. AbsInt GmbH is a company selling PAG,

TRANSACTIONS ON CAD

a program analyzer generator used to analyze architecture-
dependent properties such as worst case execution time, cache
performance, stack usage and pipeline behavior.

Several tools require annotations such as types, pre- and
post-conditions, and loop invariants to be provided. Annota-
tions may reduce the information the static analyzer has to
compute and improve its precision, but increase the burden on
the programmer. This approach is used to varying degrees in
the (ESC/Java) tool family [61] and Microsoft’s PREFIX and
PREFAST [89]. The annotation and verification mechanism
has been integrated in programming languages and develop-
ment environments such as SPARK [16] and SPEC# [17], to
make writing annotations a natural part of programming. We
only mention these techniques for completeness.

F. Merits and Shortcomings

The experience of using static analyzers is comparable to
using a compiler. Most analyzers can be used to analyze large
software systems with minimal user interaction. Such tools are
extremely robust, meaning that they can cope with large and
varied inputs, and are efficient. Conversely, the properties that
can be proved are often simple and are usually hard coded
into the tools, for example, ensuring that array bounds are
not exceeded, that arithmetic overflows do not occur, or, more
recently, that assertion are not violated. Early static analyzers
produced copious warnings and hence fell into disuse. Recent
tools include options for the user to control the verbosity of
the output and to specify which properties must be analyzed.
Unlike in model checking, generating counterexamples is
difficult or even impossible, due to the precision loss in join
and widening operations, and is a current research topic [65].

Simple abstract domains and analyses, which disregard
program structure may be useful for compiler optimization
but rarely suffice for verification. The invariants computed
by flow- and context-insensitive analyses can only be used to
show the absence of simple errors. In contrast, model checking
tools can prove more complicated properties of programs
expressed in temporal or other logics, are more precise, and
provide counterexamples. Model checkers are less robust due
to the state-space explosion problem. These differences are
discussed in greater detail in the next section.

III. SOFTWARE MODEL CHECKING
A. Introduction and overview

Model checking is an algorithmic method for determining
if model of a system satisfies a correctness specification [36],
[97]. A model of a program consists of states and transitions.
A specification or property is a logical formula. A state is an
evaluation of the program counter, the values of all program
variables, and the configurations of the stack and the heap.
Transitions describe how a program evolves from one state to
another. Model checking algorithms exhaustively examine the
reachable states of a program. This procedure is guaranteed
to terminate if the state space is finite. If a state violating a
correctness property is found, a counterexample — an execution
trace demonstrating the error — is produced. Due to their
diagnostic value, counterexamples, to quote Clarke and Veith,

13

. are the single most effective feature to convince system
engineers about the value of formal verification” [35].

Model checking tools verify partial specifications, usually
classified as safety or liveness properties. Intuitively, safety
properties express the unreachability of bad states, such as
those in which an assertion violation, null pointer dereference,
or buffer overflow has occurred, or API usage contracts,
like the order of function calls, are not respected. Liveness
properties express that something good eventually happens,
like the condition that requests must be served eventually, or
that a program must eventually terminate.

The distinction between model checking and static analysis
is primarily historical. Static analysis methods were used to
compute simple, pre-defined facts about programs by ana-
lyzing the source code. These methods traded precision for
efficiency, in particular by being flow- and path- insensitive,
using abstraction, and by merging abstract states at join points.
In contrast, model checking was conceived to check possibly
complex, temporal logic properties of manually constructed,
finite-state models. Model checkers emphasized precision,
exploring a program’s state space in a flow- and path-sensitive
manner, without merging states. However, theoretical results
have shown that static analysis methods can be cast as model
checking algorithms and vice versa [102], [104]. In practice,
static analyzers and model checkers still differ in their ap-
plicability and capabilities. Nonetheless, modern static ana-
lyzers support specification mechanisms, and software model
checkers use abstraction and operate on program code, so the
practical distinction may cease to be meaningful as well [23].

We discuss the two general approaches for state exploration
in § III-B, and cover a popular technique for constructing
abstract models in § III-C. We conclude this section with a
survey of model checkers in § III-D and a discussion in § III-E.

B. Explicit and Symbolic Model Checking

The principal issue in model checking is state-space explo-
sion [51]: the state-space of a software program is exponential
in various parameters such as the number of variables and
the width of datatypes. In the presence of function calls
and dynamic memory allocation, it is even infinite. Concur-
rency exacerbates the problem because the different thread
schedules, called interleavings, which must be considered are
exponential in the number of statements. Model checking
algorithms use instructions in the program to generate sets of
states to be analyzed. These states must be stored to ensure that
they are visited at most once. Methods for representing states
are divided into two categories. Explicit-state model checking
algorithms directly index states, and use graph algorithms to
explore the state space, starting from the initial states. Sym-
bolic model checking algorithms use implicit representations
of sets of states and may start from the initial states, error
states, or the property. We briefly describe both techniques.

Explicit state methods construct a state transition graph by
recursively generating successors of initial states. The graph
may be constructed in a depth-first, breadth-first, or heuristic
manner. New states are checked for a property violation on-
the-fly, so that errors can be detected without building the

TRANSACTIONS ON CAD

entire graph. Explored states are compressed and stored in
a hash table to avoid recomputing their successors. If the
available memory is insufficient, lossy compression methods
can be used. Bitstate hashing or hash compaction uses a fixed
number of bits from the compressed image of a state [74]. This
may cause hash collisions, which lead to error states being
missed. In practice, with state spaces containing close to a
billion states, and hash tables of several hundred megabytes,
the probability of missing a state can be less than 0.1%.

Partial order reduction is a method to prune the state space
exploration of concurrent programs [62]. The order in which
instructions in different threads are executed may not matter
for proving some properties. Transitions whose interleavings
do not affect the property can be grouped into classes. A model
checker only needs to generate one representative of each class
while constructing the state graph. In the best case, partial
order reduction can reduce the state space to be explored by
a factor that grows exponentially in the number of threads.

Symbolic model checking methods represent sets of states,
rather than enumerating individual states. Common symbolic
representations are BDDs [27] and propositional logic for
finite sets [24], and finite automata for infinite sets [82]. The
method enabled the verification of hardware designs with over
1020 states [90]. In contrast, explicit state methods at the time
scaled to a few thousand states.

A BDD is obtained from a Boolean decision tree by
maximally sharing nodes and eliminating redundant nodes.
For a fixed variable ordering, BDDs are canonical, permitting
Boolean function equivalence, essential in model checking, to
be checked efficiently. However, BDDs grow very large. The
issues in using finite automata for infinite sets are analogous.
Symbolic representations such as propositional logic formulas
are more memory efficient, at the cost of computation time.

Symbolic techniques work well for proving correctness and
handling state-space explosion due to program variables and
data types. Explicit-state techniques are well suited to error
detection and handling concurrency. An orthogonal approach
to counter state-space explosion is abstraction. It suffices to
analyze a sound abstraction of the program, with a smaller
state space. Abstractions were manually constructed, but are
constructed automatically in recent tools. Automated abstrac-
tion is based on abstract interpretation, but due to algorithmic
differences, we discuss these methods separately in § III-C.

C. Predicate Abstraction

Promoted by the success of the SLAM toolkit [10], predicate
abstraction is currently the predominant abstraction technique
in software model checking. Graf and Saidi use logical
predicates to construct an abstract domain by partitioning a
program’s state space [64]. This process differs from standard
abstract interpretation because the abstraction is parametrized
by, and specific to, a program. The challenge in predicate
abstraction is identifying predicates, since they determine
the accuracy of the abstraction. In counterexample-guided
abstraction refinement [87], [37], [7] (CEGAR), if model
checking the abstraction yields a counterexample that does not
exist in the concrete program, the abstract counterexample is

C program
1.) Compute
Abstraction
4.) Refine
Predicates

2.) Check
Abstraction

[no error]

3.) Check
Feasibility

[feasible]

report counterexample

Fig. 2. The CEGAR Abstraction-Refinement Scheme as described in
Section III-C

used to identify new predicates, and to obtain a more precise
abstraction. Fig. 2 shows the four phases of the CEGAR
loop: Abstraction, Verification, Simulation, Refinement. These
phases are discussed in § III-C1, III-C2, II-C3, and III-C4,
respectively. We use the program in Fig. 3(a), which is inspired
by a typical buffer overflow bug, as a running example to
illustrate these steps.

1) Abstraction techniques: In imperative programming lan-
guages, a program is a sequence of locations with instructions
(e.g. L1,L2,...in Fig. 3(a)). The effect of an instruction L1
is modeled by a mathematical relation I2y,;, which relates pro-
gram states to their successors reached by executing L1. The
union of the relations Ry1, Rro,..., say R, is the transition
relation of the program, which is used for model checking.

In predicate abstraction, a sound approximation Rof R is
constructed using predicates over program variables. A predi-
cate P partitions the states of a program into two classes: one
in which P evaluates to true, and one in which it evaluates to
false. Each class is an abstract state. Let A and B be abstract
states. A transition is defined from A to B (i.e. (A4, B) € R) if
there exists a state in A with a transition to a state in B. This
construction yields an existential abstraction of a program,
sound for reachability properties [34]. The abstract program
corresponding to Ris represented by a Boolean program [14];
one with only Boolean data types, and the same control flow
constructs as C programs (including procedures). Together, n
predicates partition the state space into 2™ abstract states, one
for each truth assignment to all predicates.

Example 4: The program from Example 1 with transition
from L3 to L4 modified to i++ is shown in Fig. 3(a). The
abstraction is constructed using the predicate (i = 0). The
predicate’s value at each program location is represented by
the variable b; in Fig. 3(b). Executing i++ in a state satisfying
(¢ = 0) will lead to a state satisfying —=(¢ = 0). In a state
satisfying —=(¢ = 0), we do not know the value of the predicate
after this instruction. Let % denote that a value is either true
or false. The effect of i++ is abstractly captured by the
conditional assignment to b; in Fig. 3(b).

Observe that every location reachable in the original pro-
gram is reachable in the abstraction. Though the original
program contains only one path to L5, the abstraction in
Fig. 3(b) contains infinitely many such paths. (|

Abstractions are automatically constructed using a decision

TRANSACTIONS ON CAD

[i < 5]

Lb5¢

(a) Concrete Program

Fig. 3.

(b) Abstraction for P = {b1}

[b2]
bhbgizbl?F : (b27* : F)7
b2?(017T : %) : F;

(c) Abstraction for P = {b1,b2}

Iterative application of predicate abstraction: The first abstraction (b) of the original program (a) uses the predicate (¢ = 0) (represented by the

variable b1). The second graph (c) shows a refinement of (b) with the additional predicate (¢ < 5) (variable b2).

procedure to decide, for all pairs of abstract states A, B, and
instructions Li, if Li permits a transition from A to B.

Example 5: Consider the transition from L3 — L4 in
Fig. 3(c) abstracted using (¢ = 0) and (¢ < 5). A transition
from the abstract state =(i = 0) A (i < 5) to =(i = 0) A=(i <
5) is permitted, and captured by the parallel assignment to by
and by. There is no transition from —(i = 0) A (i < 5) to
=(i = 0) A (i < 5) because this is inconsistent with i++.! [J

As n predicates lead to 2" abstract states, the method
above requires (2")? calls to a decision procedure to compute
an abstraction. In practice, a coarser but more efficiently
computed Cartesian Abstraction is obtained by constructing an
abstraction for each predicate separately and taking the product
of the resulting abstract relations. The decision procedures
are either First Order Logic theorem provers combined with
theories such as machine arithmetic, for reasoning about the
C programming language (e.g., ZAPATO [9] or Simplify [53]),
or SAT-solvers, used to decide the satisfiability of a bit-level
accurate representation of the formulas [39], [42], [85].

2) Verification: We now describe how an abstraction can
be verified. Despite the presence of a potentially unbounded
call stack, the reachability problem for sequential Boolean
programs is decidable [29].2 The intuition is that the successor
of a state is determined entirely by the top of the stack and
the values of global variables, both of which take values in
a finite set. Thus, for each procedure, the possible pairs of
input-output values, called summary edges, is finite and can
be cached, and used during model checking [14], [60].

All existing model checkers for Boolean programs are
symbolic. BDD-based tools do not scale if the number of vari-
ables is large. SAT-based methods scale significantly better,
but cannot be used to detect fixed points. For this purpose,
Quantified Boolean Formulas (QBF) solvers must be used.
QBEF, a classical PSPACE-complete problem, faces the same
scalability issues as BDDs. The verification phase is therefore
often the bottleneck of predicate abstraction.

I'We ignore a potential overflow in favor of a simplified presentation.
’In fact, all w-regular properties are decidable for sequential Boolean
programs [26].

Example 6: We partially demonstrate the reachability com-
putation with the abstract program in Fig. 3(c). After the
transition from L1 — L2, the variables b; and by both have
the value T. A symbolic representation of this abstract state is
the formula by A by. After the transition L3 — L4, the abstract
state is =b; A ba. Thus, the possible states at the location L2
are now (by A b)) V (—by A be), which equals by. After an
additional iteration of the loop L2, L3, L4, the possible states
are represented by T (meaning all values are possible). |

3) Simulation: The reachability computation above may
discover that an error state is reachable in the abstract program.
Subsequently, a simulation step is used to determine if the
error exists in the concrete program or if it is spurious.

Example 7: Consider Fig. 3(b). The location ERROR is
reachable via the execution trace L1, L2, L3, L4, L2, ERROR.
This trace is spurious in the program in Fig. 3(a), because
when L2 is reached for the second time, the value of 7 is 1
and the guard ¢ > 10 prevents the transition to ERROR. [

Symbolic simulation, in which an abstract state is propagated
through the sequence of program locations ocurring in the
abstract counterexample, is used to determine if an abstract
counterexample is spurious. If so, the abstraction must be
refined to eliminate the spurious trace. This approach does
not produce false error messages.

4) Refinement: There are two sources of imprecision in the
abstract model. Spurious traces arise because the set of pred-
icates is not rich enough to distinguish between certain con-
crete states. Spurious transitions arise because the Cartesian
abstraction may contain transitions not in the existential ab-
straction. Spurious traces are eliminated by adding additional
predicates, obtained by computing the weakest precondition
(or strongest postcondition) of the instructions in the trace.
Spurious transitions are eliminated by adding constraints to
the abstract transition relation. The next example shows how
new predicates are added.

Example 8: The instructions corresponding to the trace in
Ex. 7 are i=0, [1 < 10], i++, [< 5], and [¢ > 10] (see
Fig. 3(a)). Computing the weakest precondition along this
trace yields the formula (¢ > 10)A(¢ < 5). Using the strongest

TRANSACTIONS ON CAD

postcondition, we get (i = 1) A (¢ > 5). Both formulas are
inconsistent proving that the trace is infeasible. Therefore,
adding the predicates (¢ = 1) and (i < 5) to the abstraction
is sufficient to eliminate this spurious trace. (]

Existing refinement techniques heuristically identify a small
set of predicates that explain the infeasibility of the counterex-
ample. An alternative method is Craig interpolation [68].

Example 9: Adding the predicate (¢ < 5), whose value
is represented by by yields the refined abstract program in
Fig. 3(c). Reachability analysis determines that —b; A bo and
b1 A b are the only reachable states at L2 in Fig. 3(c), hence
ERROR is unreachable. The abstraction is sound, so we may
conclude that the original program in Fig. 3(a) is safe. (]

In fact, the predicate (i < 5) in Ex. 9 suffices to show that
any path ending with the suffix L4, L2, ERROR is infeasible,
and consequently that ERROR is unreachable in Fig. 3(a).
The predicate (¢ = 0) is not necessary. Choosing refinement
predicates “wisely” may lead to fewer refinement iterations.

Spurious transitions are eliminated by adding constraints to
the abstract model. For instance, the transition in Fig. 3(c)
from the abstract state —by A by at L3 to by A —by at L4 leads
to the inconsistent state (¢ = 0) A (¢ > 5). Such transitions
are eliminated by restricting the valuations of the Boolean
variables before and after the transition (e.g., by adding the
constraint =(—b; Aby A by A—bhy), where the primed variables
refer to the variables after executing the transition) [8].

Various techniques to speed up the refinement and the
simulation steps have been proposed. Path slicing eliminates
instructions from the counterexample that do not contribute to
a property violation [78]. Loop detection is used to compute
the effect of arbitrary iterations of loops in a counterexample
in a single simulation step [86]. The refinement step can
be accelerated by adding statically computed invariants [77],
[21], including those that eliminate a whole class of spurious
counterexamples [22]. Proof-based refinement eliminates all
counterexamples up to a certain length, shifting the computa-
tional effort from the verification to the refinement phase, and
decreasing the number of iterations required [3].

Concurrency: Multi-threaded programs pose a formidable
challenge in software verification. Predicate abstraction alone
is insufficient because the reachability problem for asyn-
chronous Boolean programs is undecidable [99]. A model
checker may (a) examine interleaved execution traces, or
(b) use rely-guarantee reasoning [80]. In the former case,
algorithms either compute an over-approximation of the set of
reachable states [44], or restrict the number of context switches
between threads [96]. Due to the undecidability issue, these
methods are necessarily incomplete.

Rely-guarantee reasoning permits modular verification, by
verifying each thread individually using environment assump-
tions that summarizes the behavior of all other threads. In
our setting, predicate abstraction and counterexample-guided
abstraction refinement is used to obtain an abstract model of
the program threads and their environment assumptions [69].

D. Model Checking Tools

1) Model checking: Holzmann’s SPIN project pioneered
explicit-state software model checking [73], [75]. SPIN was

initially used for verification of temporal logic properties of
communication protocols specified in the PROMELA language.
PROMELA supports simple data types, non-deterministic as-
signments and conditionals, simple loops, thread creation, and
message passing. SPIN operates on-the-fly and extensively
uses bit-state hashing and partial order reduction.

Some software model checkers, such as an early version of
the Java Pathfinder (JPF), translate Java code to PROMELA and
use SPIN for model checking [105]. PROMELA lacks impor-
tant features like dynamic memory allocation and is therefore
not well suited to modeling the Java language. Recent versions
of JPF analyze the bytecode of Java programs directly and
handle a much larger class of Java programs than the original
implementation. JPF also supports symbolic techniques, but
only for software testing purposes. The Bandera tool supports
state abstraction, but does not fully automate it [57].

Besides SPIN and JPF, two prominent representatives of the
class of explicit-state software model checkers are CMC [94]
and Microsoft Research’s ZING [5].

The VERISOFT software verification tool attempts to es-
chew state explosion by discarding the states it visits [63].
Since visited states are not stored, they may be repeatedly
visited and explored. This method is state-less and has to limit
the depth of its search to avoid non-termination. This approach
is incomplete for transition systems that contain cycles.

2) Predicate Abstraction: The success of predicate ab-
straction for software model checking was initiated by the
Microsoft Research’s SLAM toolkit [10]. SLAM checks a set
of about 30 predefined, system specific properties of Windows
Device drivers, such as “a thread may not acquire a lock
it has already acquired, or release a lock it does not hold”.
SLAM comprises the predicate abstraction tool C2BP [12],
[11], the BDD-based model checker BEBOP [14] for Boolean
programs [15], and the simulation and refinement tool NEW-
TON [13]. The BDD-based model checker MOPED [58] can be
used in place of BEBOP to check temporal logic specifications.

An incarnation of SLAM, the Static Driver Verifier (SDV)
tool, is currently part of a beta of the Windows Driver
Development Kit (DDK).> When combined with Cogent [42],
a decision procedure for machine arithmetic,SLAM can verify
properties that depend on bit-vector arithmetic.

The tool BLAST uses lazy abstraction: The refinement step
triggers the re-abstraction of only relevant parts of the original
program [70]. The tighter integration of the verification and
refinement phases enables a speedup of the CEGAR iterations.
Unlike SLAM, BLAST uses Craig interpolation to derive
refinement predicates from counterexamples [68]. Like SLAM,
BLAST provides a language to specify reachability properties.

The verification tools mentioned above use general purpose
theorem provers to compute abstractions and BDDs for model
checking. SATABS uses a SAT-solver to construct abstractions
and for symbolic simulation of counterexamples [39]. The bit-
level accurate representation of C programs makes it possible
to model arithmetic overflow, arrays and strings. SATABS
automatically generates and checks proof conditions for array
bound violations, invalid pointer dereferencing, division by

3http://www.microsoft.com/whdc/devtools/tools/sdv.mspx

TRANSACTIONS ON CAD

threshold

C program

/\

. Unroll . Check for

transition function

. counterexample

k times

[error found]
report
Compare k to
Increase completeness
k by one ompiete

[reached]

OK

Fig. 4. High level overview of BMC

zero, and assertions provided by the user.

SATABS uses a SAT-based model checker BOPPO to com-
pute the reachable states of the abstract program. BOPPO
relies on a QBF-solver for fixed point detection [43]. SATABS
can verify concurrent programs that communicate via shared
memory. To deal with concurrency, BOPPO combines symbolic
model checking with partial order reduction [43]. Unfortu-
nately, this approach still has severe scalability issues [107].

Gurfinkel’s model checker YASM can construct sound ab-
stractions for liveness properties [66]. The SLAM-based TER-
MINATOR tool also checks liveness properties [45]. However,
the latter is not dependent on predicate abstraction and can be
based upon any software model checker.

Sagar Chaki’s MAGIC framework [31] uses a composi-
tional approach and decomposes the program into several
smaller components which are verified separately. Further-
more, MAGIC is able to check concurrent programs that use
message passing, but does not support shared memory.

In an experimental version of SLAM for concurrent pro-
grams, BEBOP can be replaced by either the explicit state
model checker ZING [5] or the SAT-based tool BOPPO [44].
ZING does not report spurious counterexamples, but is poten-
tially non-terminating. BOPPO handles asynchronous programs
with recursion or an infinite number of threads by over-
approximating the set of reachable states, at the cost of
potential false positives.

E. Merits and Shortcomings

In practice, the counterexamples provided by model check-
ers are often of more value than a proof of correctness.
Predicate abstraction in combination with CEGAR is suitable
for checking control-flow related safety properties. Though no
false positives are reported, the abstraction-refinement cycle
may not terminate. Furthermore, the success of the approach
depends crucially on the refinement step: Many existing refine-
ment heuristics may yield a diverging set of predicates [79].
The main field of application is currently verification of safety
properties of device drivers and systems code up to 50 kLOCs.
Predicate abstraction does not work well in the presence of
complex heap-based data structures or arrays.

IV. BOUNDED MODEL CHECKING

A. Background on BMC

Bounded model checking (BMC) is one of the most com-
monly applied formal verification techniques in the semi-

conductor industry. The technique owes this success to the
impressive capacity of propositional SAT solvers. It was intro-
duced in 1999 by Biere et al. as a complementary technique
to BDD-based unbounded model checking [24]. It is called
bounded because only states reachable within a bounded
number of steps, say k, are explored. In BMC, the design under
verification is unwound k times and conjoined with a property
to form a propositional formula, which is passed to a SAT
solver (Fig. 4). The formula is satisfiable if and only if there
is a trace of length k that refutes the property. The technique
is inconclusive if the formula is unsatisfiable, as there may
be counterexamples longer than k steps. Nevertheless, the
technique is successful, as many bugs have been identified
that would otherwise have gone unnoticed.

Let R denote the transition relation of a design, containing
current and next state pairs, I denote the initial state predicate,
and p denote the property of interest. To obtain a BMC
instance with k steps, the transition relation is replicated &
times. The variables in each replica are renamed such that the
next state of step ¢ is used as current state of step ¢ 4+ 1. The
transition relations are conjoined, the current state of the first
step is constrained by I, and one of the states must satisfy —p:

INR N R A AN R
[] [] e - O (]

A satisfying assignment to this formula corresponds to a
path from the initial state to a state violating p. The size of
this formula is linear in the size of the design and in k.

We describe BMC for software in § IV-B and optimizations
to deal with loops in § IV-C. BMC is not complete, that is, it
cannot be used to prove and disprove properties, as we discuss
in § IV-D. In § IV-E, we survey solvers for BMC formulas,
followed by BMC tools in § IV-F, and conclude this section
with a discussion in § IV-G.

B. Unwinding the Entire Program at Once

BMC is also applicable to system-level software. The most
straight-forward manner to implement BMC for software is to
treat the entire program as a transition relation as described
in § III-C1. Each basic block is converted into a formula by
transforming it into Static Single Assignment (SSA) form [2].
Arithmetic operators in basic blocks are converted into their
circuit equivalents. Arrays and pointers are treated as in the
case of memories in hardware verification using a large case
split over the possible values of the address.

An unwinding with k steps permits exploring all program
paths of length k or less. The size of this basic unwinding
is k times the size of the program. For large programs,
this is prohibitive, and thus, several optimizations have been
proposed. The first step is to analyze the possible control
flow in the program. Consider the small control flow graph
in Fig. 5(a). Each node corresponds to one basic block; the
edges correspond to possible control flow between the blocks.
Note that block L1 can only be executed in the very first step
of any path. Similarly, block L2 can only be executed in step 2,
4, 6 and so on. This is illustrated in Fig. 5(b): the unreachable
nodes in each time-frame are in gray.

TRANSACTIONS ON CAD

L1

L4

L5

(a) Control Flow Graph

Fig. 5.

(b) Unrolling the Transition Relation

(c) Unrolling the Loops

There are two ways to unroll the model given by the control flow graph (a): When unrolling the entire transition relation (b), the unreachable nodes

(in gray) may be omitted. When unrolling the loops (c), a separate unwinding bound has to be provided for each loop.

if (x) {
while (x) BODY;
BODY; — if (x)
BODY;
else

assume (false);

}

Fig. 6. A loop-based unrolling of a while loop with depth two. The assume
statement cuts of any path passing through it.

C. Unwinding Loops Separately

Consider again the example in Fig. 5(a): observe that any
path through the CFG visits L4 and L5 at most once. Note that
the unwinding of the transition relation in Fig. 5(b) contains
three copies of L4 and LS. Such redundancy can be eliminated
by building a formula that follows a specific path of execution
rather than treating the program as a transition relation. In
2000, Currie et al. proposed this approach in a tool that
unwinds assembly programs running on DSPs [49]

This motivated the idea of loop unwinding. Instead of
unwinding the entire transition relation, each loop is unwound
separately. Syntactically, this corresponds to a replication of
the loop body together with an appropriate guard (Fig 6). The
effect on the control flow graph is illustrated in Fig. 5(c),
in which the loop between L2 and L3 is unwound twice.
Such an unwinding may result in more compact formulas
and requires fewer case-splits in the formula, as there are
fewer successors for each time-frame. As a disadvantage, the
loop-based unwinding may require more time-frames to reach
certain locations. In Fig 5(b), the unwinding of depth 1 suffices
to determine if L4 is reachable in one step, while an unwinding
of depth 5 is required in Fig 5(c).

Loop unwinding differs from enumerative, path-based ex-
ploration: in the example, the path that corresponds to the
branch from L1 to L4 merges with the path that follows the
loop. As a consequence, the formula that is generated is linear
in the depth and in the size of the program, even if there is
an exponential number of paths through the CFG.

D. A Complete BMC for Software

Bounded Model Checking, when applied as described
above, is inherently incomplete, as it searches for property
violations only up to a given bound and never returns “No
Errors”. Bugs that are deeper than the given bound are
missed. Nevertheless, BMC can be used to prove liveness and
safety properties if applied in a slightly different way.

Intuitively, if we could search deep enough, we could
guarantee that we have examined all the relevant behavior of
the model, and that searching any deeper only exhibits states
that we have explored already. A depth that provides such a
guarantee is called a completeness threshold [84]. Computing
the smallest such threshold is as hard as model checking, and
thus, one settles for over-approximations in practice.

In the context of software, one way to obtain a depth-bound
for a program is to determine a high-level worst-case execution
time (WCET). This time is given by a bound on the maximum
number of loop-iterations and is usually computed via a simple
syntactic analysis of loop structures. If the syntactic analysis
fails, an iterative algorithm can be applied. First, a guess of
the bound on the number of loop iterations is made. The
loop is then unrolled up to this bound, as in Fig 6, but with
the assumption replaced by an assertion called an unwinding
assertion. If the assertion is violated, there are paths in the
program exceeding the bound, and a new guess for the bound
is made [83], [38]. This method is applicable if the program
(or its main loop body) has a run-time bound, which is highly
desirable for many embedded applications.

In the next section, we discuss methods for reasoning about
formulas arising in BMC.

E. Solving the Decision Problem

The result of unwinding, either of the entire program, by
unwinding loops, or by following specific paths of execution,
is a bit-vector formula. In addition to the usual arithmetic
and bit-level operators, the formula may also contain operators
related to pointers and (possibly unbounded) arrays. There is

TRANSACTIONS ON CAD

a large body of work on efficient solvers for such formulas.
The earliest work on deciding bit-vector arithmetic is based
on algorithms from the theorem proving community, and uses
a canonizer and solver for the theory. The work by Cyrluk
et al. [50] and by Barrett et al. on the Stanford Validity
Checker [18] fall into this category. These approaches are very
elegant, but are restricted to a subset of bit-vector arithmetic
comprising concatenation, extraction, and linear equations (not
inequalities) over bit-vectors.

With the advent of efficient propositional SAT solvers
such as ZChaff [93], these approaches have been obsoleted.
The most commonly applied approach to check satisfiability
of these formulas is to replace the arithmetic operators by
circuit equivalents to obtain a propositional formula, which is
then passed to a propositional SAT solver. This approach is
commonly called ’bit-blasting’ or ’bit-flattening’, as the word-
level structure is lost. The Cogent [42] procedure mentioned
earlier belongs to this category. The current version of CVC-
Lite [20] pre-processes the input formula using a normal-
ization step followed by equality rewrites before finally bit-
blasting to SAT. Wedler et al. [106] have a similar approach
wherein they normalize bit-vector formulas to simplify the
generated SAT instance. STP [30], which is the engine behind
EXE [109], is a successor to the CVC-Lite system; it performs
several array optimizations, as well as arithmetic and Boolean
simplifications on a bit-vector formula before bit-blasting.
Yices [56] applies bit-blasting to all bit-vector operators except
for equality. Bryant et al. present a method to solve hard
instances that is based on iterative abstraction refinement [28].

FE. Tools that implement BMC

There are a number of BMC implementations for software
verification. The first implementation of a depth-bounded
symbolic search in software is due to Currie et al. [49].

One of the first implementations of BMC for C programs
is CBMC [83], [38], developed at CMU; it emulates a wide
range of architectures as environment for the design under
test. It supports both little- and big-Endian memory models,
and the header files needed for Linux, Windows, and Mac-OS
X. It implements loop unrolling as described in § IV-C, thus
avoiding the exponential blowup inherent in path enumeration.
It uses bit-flattening to decide the resulting bit-vector formula.
It includes options to export the formula to various word-level
formats. It is the only tool that also supports C++, SpecC
and SystemC. The main application of CBMC is checking
consistency of system-level circuit models given in C or
SystemC with an implementation given in Verilog. IBM has
developed a version of CBMC for concurrent programs [98].

The only tool that implements an unwinding of the entire
transition system, as described in § IV-B, is F-SOFT [76], de-
veloped at NEC Research. It features a SAT solver customized
for BMC decision problems. The benchmarks that have been
reported are system-level UNIX applications such as pppd.

A number of variants of these implementations have been
reported. Armando et al. implement a version of CBMC that
generates a decision problem for an SMT solver for integer lin-
ear arithmetic [6]. The performance of off-the-shelf constraint
solvers on such decision problems is evaluated in [40].

SATURN is a specialized implementation of BMC, tailored
to the properties it checks [108]. It implements loop unwinding
as described in § IV-C. The authors have applied it to check
two different properties of Linux kernel code: NULL-pointer
dereferences and locking API conventions. They demonstrate
that the technique is scalable enough to analyze the entire
Linux kernel. Soundness is relinquished for performance;
SATURN performs at most two unwindings of each loop. Bugs
that require more than two unwindings are missed.

The EXE tool is also specialized to bug-hunting [109]. It
combines explicit execution and path-wise symbolic simula-
tion to detect bugs in system-level software such as file system
code. It uses a very low-level memory model, which permits
checking programs that contain arbitrary pointer type-casts.

G. Merits and Shortcomings

BMC is the best technique to find shallow bugs, and it
provides a full counterexample trace in case a bug is found.
It supports the widest range of program constructions. This
includes dynamically allocated data structures; for this, BMC
does not require built-in knowledge about the data structures
the program maintains. On the other hand, completeness is
only obtainable on very ’shallow’ programs, i.e., programs
without deep loops.

V. SUMMARY AND CONCLUSION

In this article, we surveyed three main techniques for
automatic formal verification of software. We focused on tools
that provide some form of formal guarantee, and thus, aid to
improve software quality. We summarize the tools discussed
in this survey in Tab. I. The table provides the main features of
each tool, including the programming languages it supports.

Static analysis techniques based on abstract interpretation
scale well at the cost of limited precision, which manifests
itself in a possibly large number of false warnings. The tool
support is mature. Model Checking tools that use abstraction
can check complex safety properties, and are able to generate
counterexamples. Bounded Model Checkers are very strong at
detecting shallow bugs, but are unable to prove even simple
properties if the program contains deep loops. The model
checking-based tools for software are less robust than static
analysis tools and the market for these tools is in its infancy.

Research Challenges: The challenges for future research
in software analysis are dynamically allocated data structures,
shared-variable concurrency, and the environment problem.
None of the tools we survey is able to assert even trivial
properties of dynamically allocated data structures, despite the
large body of (theoretical) research in this area. Similarly,
concurrency has been the subject of research for decades,
but the few tools that analyze programs with shared-variable
concurrency still scale poorly. Any formal analysis requires a
formal model of the design under test — in case of software,
this model often comprises a non-trivial environment that
the code runs in (libraries, other programs, and hardware
components). As programs often rely on properties of this
environment, substantial manual effort is required to model
these parts of the environment.

TRANSACTIONS ON CAD

S .
SL S 4
§o 0.\\0 @*6*' i@o
RPN @Q o4
Tool name | Tool developer SN WP Languages
ASTREE Ecole Normale Supérieure X X C (subset)
.| CODESONAR | Grammatech Inc. X X C, C++, ADA
~ [PolySpace PolySpace Technologies X | X X C, C++, ADA, UML
PREVENT Coverity X | x X C. C++, Java
BLAST UC Berkeley/EPF Lausanne| x X X X C
F-SOFT (abs) | NEC X X X C
Java PathFind.| NASA X X | X X Java
— | MAGIC Carnegie Mellon University | x [x | X x 1 C
= SATABS Oxford University X X X X C, C++, SpecC, SystemC
SLAM Microsoft X X | X X C
SPIN Bell Labs? X | x| x PROMELA, C3
ZING Microsoft Research X | x| X ZING (object oriented)
CBMC CMU/Oxford University X X X C, C++, SpecC, SystemC
> F-SOFT (bmc) NEC X X X C
~ | EXE Stanford University X X | x C
SATURN Stanford University X X | x C
1) does not support shared memory concurrency
2) originally developed by Bell Labs, now freely available
3) C is supported by automatic translation to PROMELA
TABLE I

TooL OVERVIEW

ACKNOWLEDGEMENTS. We thank Michele Mazzucchi,

[11]

Viktor Schuppan, and Thomas Wahl for their helpful input.

REFERENCES
(1]
(2]

University Press, 1996.

[12]

J.-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge

[13]

B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality

of variables in programs. In Principles of Programming Languages

(POPL), pages 1-11. ACM, 1988.
[3]

[14]

N. Amla and K. L. McMillan. A hybrid of counterexample-based and

proof-based abstraction. In Formal Methods in Computer-Aided Design

(FMCAD), volume 3312 of LNCS, pages 260-274. Springer, 2004.
L. O. Andersen. Program Analysis and Specialization for the C Pro-

(4]

[15]

gramming Language. PhD thesis, DIKU, University of Copenhagen,

May 1994.
(3]

rency Theory (CONCUR), pages 1-15. Springer, August 2004.
[6]

of software using SMT solvers instead of SAT solvers.

pages 146—162. Springer, 2006.
[7]

697 of LNCS. Springer, 1993.
[8]

in software predicate abstraction.

T. Ball, B. Cook, S. Das, and S. K. Rajamani. Refining approximations
In Tools and Algorithms for the

[16]

T. Andrews, S. Qadeer, S. K. Rajamani, and Y. Xie. Zing: Exploiting
program structure for model checking concurrent software. In Concur-

[17]

A. Armando, J. Mantovani, and L. Platania. Bounded model checking
In Model
Checking and Software Verification (SPIN), volume 3925 of LNCS,

[18]

F. Balarin and A. L. Sangiovanni-Vincentelli. An iterative approach to
language containment. In Computer Aided Verification (CAV), volume

[19]

[20]

Construction and Analysis of Systems (TACAS), volume 2988 of LNCS.

Springer, 2004.
[9]
theorem proving for predicate abstraction refinement.
Aided Verification (CAV), volume 3114 of LNCS. Springer, 2004.

[10] T. Ball, B. Cook, V. Levin, and S. K. Rajamani.

SLAM and

[21]

T. Ball, B. Cook, S. K. Lahiri, and L. Zhang. Zapato: Automatic
In Computer

[22]

Static Driver Verifier: Technology transfer of formal methods inside

Microsoft.
LNCS. Springer, 2004.

In Integrated Formal Methods (IFM), volume 2999 of

[23]

T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic
predicate abstraction of C programs. In Programming Language Design
and Implementation (PLDI), pages 203-213. ACM, 2001.

T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian
abstraction for model checking C programs. Software Tools for
Technology Transfer (STTT), 5(1):49-58, 2003.

T. Ball and S. Rajamani. Generating Abstract Explanations of Spurious
Counterexamples in C Programs. Technical Report MSR-TR-2002-09,
Microsoft Research, January 2002.

T. Ball and S. K. Rajamani. Bebop: A symbolic model checker
for Boolean programs. In Model Checking and Software Verification
(SPIN), volume 1885 of LNCS, pages 113-130. Springer, 2000.

T. Ball and S. K. Rajamani. Boolean programs: A model and process
for software analysis. Technical Report 2000-14, Microsoft Research,
February 2000.

J. Barnes. High Integrity Software: The SPARK Approach to Safety
and Security. Addison-Wesley, 2003.

M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming
system: An overview. In Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices, volume 3362 of LNCS, pages 49-69.
Springer, 2004.

C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure for
bit-vector arithmetic. In Design Automation Conference (DAC), pages
522-527. ACM, June 1998.

R. E. Bellman. Dynamic programming. Princeton University Press,
1957.

S. Berezin, V. Ganesh, and D. Dill. A decision procedure for fixed-
width bit-vectors. Technical report, Computer Science Department,
Stanford University, 2005.

D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Invari-
ant synthesis for combined theories. In Verification, Model Checking
and Abstract Interpretation (VMCAI), volume 4349 of LNCS, pages
378-394. Springer, 2007.

D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path
invariants. In Programming Language Design and Implementation
(PLDI), pages 300-309. ACM, 2007.

D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software

TRANSACTIONS ON CAD

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

verification: Concretizing the convergence of model checking and
program analysis. In Computer Aided Verification (CAV), volume 4590
of LNCS, pages 504-518. Springer, 2007.

A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model
checking without BDDs. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), volume 1579 of LNCS, pages 193—
207. Springer, 1999.

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. Design and implementation of a special-
purpose static program analyzer for safety-critical real-time embedded
software. In The Essence of Computation: Complexity, Analysis,
Transformation. Essays Dedicated to Neil D. Jones, volume 2566 of
LNCS, pages 85-108. Springer, October 2002.

A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of
pushdown automata: Application to model-checking. In Concurrency
Theory (CONCUR), volume 1243 of LNCS, pages 135-150. Springer,
1997.

R. E. Bryant. Graph-based algorithms for Boolean function manipula-
tion. IEEE Transactions on Computers, 35(8):677-691, 1986.

R. E. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, O. Strichman,
and B. Brady. Deciding bit-vector arithmetic with abstraction. In Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 4424 of LNCS. Springer, 2007.

J. R. Biichi. Regular canonical systems. Archive for Mathematical
Logic, 6(3-4):91, April 1964.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: Automatically generating inputs of death. In Computer and
Communications Security (CCS), pages 322-335. ACM, 2006.

S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular
verification of software components in C. [EEE Transactions on
Software Engineering (TSE), pages 388—402, June 2004.

D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers
and structures. In Programming Language Design and Implementation
(PLDI), pages 296-310, New York, NY, USA, 1990. ACM Press.

R. Clarisé and J. Cortadella. The octahedron abstract domain. In
Symposium on Static Analysis (SAS), pages 312-327, 2004.

E. Clarke, O. Grumberg, and D. Long. Model checking and abstrac-
tion. ACM Transactions on Programming Languages and Systems,
16(5):1512-1542, 1994.

E. Clarke and H. Veith. Counterexamples revisited: Principles, algo-
rithms, applications. In Verification: Theory and Practice, volume 2772
of LNCS, pages 208-224. Springer, 2003.

E. M. Clarke and E. A. Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Logic of
Programs, volume 131 of LNCS, pages 52-71. Springer, 1981.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Computer Aided
Verification (CAV), volume 1855 of LNCS, pages 154-169. Springer,
2000.

E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 2988 of LNCS, pages 168-176. Springer,
2004.

E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate
abstraction of ANSI-C programs using SAT. Formal Methods in System
Design (FMSD), 25:105-127, September—November 2004.

H. Collavizza and M. Rueher. Exploration of the capabilities of con-
straint programming for software verification. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume 3920
of LNCS, pages 182-196. Springer, 2006.

M. Col6n and H. Sipma. Synthesis of linear ranking functions. In Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 2031 of LNCS, pages 67-81. Springer, 2001.

B. Cook, D. Kroening, and N. Sharygina. Cogent: Accurate theorem
proving for program verification. In Computer Aided Verification
(CAV), volume 3576 of LNCS, pages 296-300. Springer, 2005.

B. Cook, D. Kroening, and N. Sharygina. Symbolic model checking
for asynchronous Boolean programs. In Model Checking and Software
Verification (SPIN), volume 3639 of LNCS, pages 75-90. Springer,
2005.

B. Cook, D. Kroening, and N. Sharygina. Over-approximating Boolean
programs with unbounded thread creation. In Formal Methods in
Computer-Aided Design (FMCAD), pages 53-59. IEEE, 2006.

B. Cook, A. Podelski, and A. Rybalchenko. Abstraction-refinement
for termination. In Static Analysis Symposium (SAS), volume 3672 of
LNCS, pages 87-101. Springer, 2005.

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints. In Principles of Programming Languages (POPL), pages
238-252. ACM, 1977.

P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In Principles of Programming Languages (POPL), pages
269-282. ACM, 1979.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Principles of Programming Lan-
guages (POPL), pages 84-96. ACM, 1978.

D. W. Currie, A. J. Hu, and S. P. Rajan. Automatic formal verification
of DSP software. In Design Automation Conference (DAC), pages
130-135. ACM, 2000.

D. Cyrluk, M. O. Méller, and H. RueB. An efficient decision procedure
for the theory of fixed-sized bit-vectors. In Computer Aided Verification
(CAV), LNCS, pages 60-71. Springer, 1997.

S. Demri, F. Laroussinie, and P. Schnoebelen. A parametric analysis
of the state-explosion problem in model checking. Compututer and
System Sciences, 72(4):547-575, 2006.
N. Dershowitz. Software horror stories.
~nachumd/verify/horror.html.

D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for
program checking. Technical Report HPL-2003-148, HP Labs, January
2003.

A. Deutsch. Interprocedural may-alias analysis for pointers: beyond
k-limiting. In Programming Language Design and Implementation
(PLDI), pages 230-241. ACM, 1994.

N. Dor, M. Rodeh, and S. Sagiv. Cleanness checking of string
manipulations in C programs via integer analysis. In Symposium on
Static Analysis (SAS), pages 194-212. Springer, 2001.

B. Dutertre and L. de Moura. The Yices SMT solver. Available
at http://yices.csl.sri.com/tool-paper.pdf, Septem-
ber 2006.

M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S. Pasdreanu,
H. Zheng, and W. Visser. Tool-supported program abstraction for finite-
state verification. In International Conference on Software Engineering
(ICSE), pages 177-187. 1IEEE, 2001.

J. Esparza and S. Schwoon. A BDD-based model checker for recursive
programs. In Computer Aided Verification (CAV), volume 2102 of
LNCS, pages 324-336. Springer, 2001.

J. Feret. Static analysis of digital filters. In European Symposium on
Programming (ESOP), volume 2986 of LNCS. Springer, 2004.

A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach
to model checking pushdown systems. In Verification of Infinite State
Systems (INFINITY), volume 9 of ENTCS. Elsevier, 1997.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. In Programming Language
Design and Implementation (PLDI), pages 234-245. ACM, 2002.

P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem, volume 1032
of LNCS. Springer, 1996.

P. Godefroid. Model checking for programming languages using
VeriSoft. In Principles of Programming Languages (POPL), pages
174-186. ACM, 1997.

S. Graf and H. Saidi. Construction of abstract state graphs with PVS.
In Computer Aided Verification (CAV), volume 1254 of LNCS, pages
72-83. Springer, 1997.

B. S. Gulavani and S. K. Rajamani. Counterexample driven refinement
for abstract interpretation. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), volume 3920 of LNCS, pages 474—
488. Springer, 2006.

A. Gurfinkel and M. Chechik. Why waste a perfectly good abstraction?
In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 3920 of LNCS, pages 212-226. Springer, 2006.

N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-
time systems using linear relation analysis. Formal Methods in System
Design (FMSD), 11(2):157-185, 1997.

T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstrac-
tions from proofs. In Principles of Programming Languages (POPL),
pages 232-244. ACM, 2004.

T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-
modular abstraction refinement. In Computer Aided Verification (CAV),
volume 2725 of LNCS, pages 262-274. Springer, 2003.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction.
In Principles of Programming Languages (POPL), pages 58-70. ACM,
2002.

In http://www.cs.tau.ac.il/

TRANSACTIONS ON CAD

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]
[86]

[87]

[88]

[89]

[90]
[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

M. Hind. Pointer analysis: haven’t we solved this problem yet? In
Program analysis for software tools and engineering, pages 5461,
New York, NY, USA, 2001. ACM Press.

M. Hind, M. Burke, P. Carini, and J.-D. Choi. Interprocedural pointer
alias analysis. ACM Transactions on Programming Languages and
Systems (TOPLAS), 21(4):848-894, 1999.

G. J. Holzmann. The model checker SPIN. I[EEE Transactions on
Software Engineering, 23(5):279-295, 1997.

G. J. Holzmann. State compression in SPIN: Recursive indexing
and compression training runs. In Model Checking and Software
Verification (SPIN), 1997.

G. J. Holzmann. Software model checking with SPIN. Advances in
Computers, 65:78-109, 2005.

F. Ivancic, I. Shlyakhter, A. Gupta, and M. K. Ganai. Model checking
C programs using F-SOFT. In International Conference on Computer
Design (ICCD), pages 297-308. IEEE, 2005.

H. Jain, F. Ivancic, A. Gupta, I. Shlyakhter, and C. Wang. Using
statically computed invariants inside the predicate abstraction and
refinement loop. In Computer Aided Verification (CAV), volume 4144
of LNCS, pages 137-151. Springer, 2006.

R. Jhala and R. Majumdar. Path slicing. In Programming Language
Design and Implementation (PLDI), pages 38-47. ACM, 2005.

R. Jhala and K. L. McMillan. A practical and complete approach to
predicate refinement. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 3920 of LNCS, pages 459-473.
Springer, 2006.

C. B. Jones. Specification and design of (parallel) programs. In IFIP
Congress, pages 321-332, 1983.

N. D. Jones and S. S. Muchnick. Flow analysis and optimization
of LISP-like structures. In Principles of Programming Languages
(POPL), pages 244-256, New York, NY, USA, 1979. ACM Press.

Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic
model checking with rich ssertional languages. In Computer Aided
Verification (CAV), volume 1254 of LNCS, pages 424-435. Springer,
1997.

D. Kroening, E. M. Clarke, and K. Yorav. Behavioral consistency of
C and Verilog programs using bounded model checking. In Design
Automation Conference (DAC), pages 368-371. ACM, 2003.

D. Kroening and O. Strichman. Efficient computation of recurrence
diameters. In Verification, Model Checking and Abstract Interpretation
(VMCAI), volume 2575 of LNCS, pages 298-309. Springer, 2003.

D. Kroening and O. Strichman. Decision Procedures. Springer, 2008.
D. Kroening and G. Weissenbacher. Counterexamples with loops for
predicate abstraction. In Computer Aided Verification (CAV), volume
4144 of LNCS, pages 152-165. Springer, 2006.

R. P. Kurshan. Computer-Aided Verification of Coordinating Processes:
The Automata-Theoretic Approach. Princeton University Press, 1994.
P. Lacan, J. N. Monfort, L. V. Q. Ribal, A. Deutsch, and G. Gonthier.
ARIANE 5 — The Software Reliability Verification Process. In ESA
SP-422: DASIA 98 - Data Systems in Aerospace, pages 201-205, 1998.
J. R. Larus, T. Ball, M. Das, R. DeLine, M. Fahndrich, J. Pincus, S. K.
Rajamani, and R. Venkatapathy. Righting software. IEEE Software,
21(3):92-100, 2004.

K. L. McMillan. Symbolic Model Checking. Kluwer, 1993.

M. Menasche and B. Berthomieu. Time petri nets for analyzing
and verifying time dependent communication protocols. In Protocol
Specification, Testing, and Verification, pages 161-172, 1983.

A. Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation, 19(1):31-100, 2006.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. In Design Automation
Conference (DAC), pages 530-535. ACM, 2001.

M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L. Dill.
CMC: a pragmatic approach to model checking real code. SIGOPS
Operating Systems Review, 36(SI):75-88, 2002.

P. Naur. Checking of operand types in ALGOL compilers. In NordSAM
64; BIT 5, pages 151-163, 1965.

S. Qadeer and J. Rehof. Context-bounded model checking of con-
current software. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 3440 of LNCS, pages 93-107.
Springer, 2005.

J.-P. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In 5th International Symposium on Programming,
pages 337-351, 1982.

1. Rabinovitz and O. Grumberg. Bounded model checking of concurrent
programs. In Computer Aided Verification (CAV), volume 3576 of
LNCS, pages 82-97. Springer, 2005.

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

G. Ramalingam. Context-sensitive synchronization-sensitive analysis
is undecidable. ACM Transactions on Programming Languages and
Systems, 22(2):416—430, 2000.

J. C. Reynolds. Automatic computation of data set definitions. In /FIP
Congress (1), pages 456-461, 1968.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. ACM Transactions on Programming Languages and
Systems (TOPLAS), 24(3):217-298, 2002.

D. A. Schmidt. Data flow analysis is model checking of abstract
interpretations. In Principles of Programming Languages (POPL),
pages 38-48, New York, NY, USA, 1998. ACM.

B. Steensgaard. Points-to analysis in almost linear time. In Principles
of Programming Languages (POPL), pages 32—41. ACM, 1996.

B. Steffen. Data flow analysis as model checking. In Theoretical
Aspects of Computer Software, pages 346-365, London, UK, 1991.
Springer.

W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking
programs. Automated Software Engineering (ASE), 10(2):203-232,
2003.

M. Wedler, D. Stoffel, and W. Kunz. Normalization at the arithmetic
bit level. In Design Automation Conference (DAC), pages 457—462.
ACM, 2005.

T. Witkowski, N. Blanc, G. Weissenbacher, and D. Kroening. Model
checking concurrent Linux device drivers. In Automated Software
Engineering (ASE), pages 501-504. IEEE, 2007.

Y. Xie and A. Aiken. Scalable error detection using Boolean satisfiabil-
ity. In Principles of Programming Languages (POPL), pages 351-363.
ACM, 2005.

J. Yang, C. Sar, P. Twohey, C. Cadar, and D. R. Engler. Automatically
generating malicious disks using symbolic execution. In IEEE Sympo-
sium on Security and Privacy (S&P), pages 243-257. IEEE, 2006.

S. Yovine. Model checking timed automata. In European Educational
Forum: School on Embedded Systems, volume 1494 of LNCS, pages
114-152. Springer, 1996.

Vijay D’Silva received a Bachelors degree in Com-
puter Science and Engineering from the Indian In-
stitute of Technology Bombay, a Masters degree in
Business and Computer Science from the University
of Zurich, and is currently a PhD student at ETH
Ziirich, Switzerland.

Daniel Kroening received the M.E. and doctoral
degrees in computer science from the University of
Saarland, Saarbriicken, Germany, in 1999 and 2001,
respectively. He joined the Model Checking group
in the Computer Science Department at Carnegie
Mellon University, Pittsburgh PA, USA, in 2001 as
a Post-Doc.

He was an assistant professor at the Swiss Tech-
nical Institute (ETH) in Ziirich, Switzerland, from
2004 to 2007. He is now a lecturer at the Computing
Laboratory at Oxford University. His research inter-

ests include automated formal verification of hardware and software systems,
decision procedures, embedded systems, and hardware/software co-design.

Georg Weissenbacher received a diploma in Telem-
atics from Graz University of Technology, Austria,
and is currently a doctoral student at ETH Ziirich
in Switzerland. His research is funded by Microsoft
Research through its European PhD Scholarship
programme.

Prior to his doctoral studies, he worked as a
software developer at ARC Seibersdorf research
and Joanneum Research, the largest non-academic
research institutions in Austria.

