
End of Important Aside: Second Order conditions for
Convexity, Strong Convexity, Lipschitz Continuity of
Gradient, Convex Conjugate, Fenchel Duality.
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Using Strong Convexity: Revisiting Convergence Analysis

f(y) ≥ f(x) +∇⊤f(x)(y− x) + m
2 ∥y− x∥2

≥
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Using Strong Convexity: Revisiting Convergence Analysis

f(y) ≥ f(x) +∇⊤f(x)(y− x) + m
2 ∥y− x∥2

≥ minimum value the RHS can take as a function of y
Minimum value of RHS
∇f(x) +my−mx = 0
=⇒ y = x− 1

m∇f(x)
Thus,
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Using Strong Convexity: Revisiting Convergence Analysis

f(y) ≥ f(x) +∇⊤f(x)(y− x) + m
2 ∥y− x∥2

≥ minimum value the RHS can take as a function of y
Minimum value of RHS
∇f(x) +my−mx = 0
=⇒ y = x− 1

m∇f(x)
Thus,
f(y) ≥ f(x) +∇⊤f(x)

(
− 1
m∇f(x)

)
+ m

2




− 1
m∇f(x)





2

=⇒ f(y) ≥ f(x)− 1
2m



∇f(x)


2

▶ Here, LHS is independent of x, and RHS is independent of y
▶ Thus the inequality also holds for y = x∗ (point of minimum of f(x))
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Using Strong Convexity: Revisiting Convergence Analysis (contd.)

f(x) ≥ f(x∗) ≥ f(x)− 1

2m


∇f(x)



2
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Using Strong Convexity: Revisiting Convergence Analysis (contd.)

f(x) ≥ f(x∗) ≥ f(x)− 1

2m


∇f(x)



2

That is, if f(x∗) = p∗ then f(x) ∈
[
p∗ − 1

2m


∇f(x)



2 , p∗ + 1
2m



∇f(x)


2
]

October 16, 2018 180 / 425



Using Strong Convexity: Revisiting Convergence Analysis (contd.)

f(x) ≥ f(x∗) ≥ f(x)− 1

2m


∇f(x)



2

That is, if f(x∗) = p∗ then f(x) ∈
[
p∗ − 1

2m


∇f(x)



2 , p∗ + 1
2m



∇f(x)


2
]

If


∇f(x)



 is small, the point is nearly optimal
▶ If



∇f(x)


 ≤

√
2mϵ, then:

f(x)− p∗ ≤ ϵ
▶ As the gradient



∇f(x)


 approaches 0, we get closer to an optimal solution x∗
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Rate of Convergence using Strong Convexity and
Lipschitz Continuity for fixed step size (t = 1

l )
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Recap from Convergence using Lipschitz Continuity

We recap the (necessary) inequality resulting from Lipschitz continuity of ∇f(x):
f(y) ≤ f(x) +∇⊤f(x)(y− x) + L

2∥y− x∥2

Considering xk ≡ x, and xk+1 = xk − t∇f(xk) ≡ y, we get
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Recap from Convergence using Lipschitz Continuity

We recap the (necessary) inequality resulting from Lipschitz continuity of ∇f(x):
f(y) ≤ f(x) +∇⊤f(x)(y− x) + L

2∥y− x∥2

Considering xk ≡ x, and xk+1 = xk − t∇f(xk) ≡ y, we get

f(xk+1) ≤ f(xk)− t∇⊤f(xk)∇f(xk) + L (t)2
2




∇f(xk)




2

=⇒ f(xk+1) ≤ f(xk) + (
Lt2
2
− t)




∇f(xk)




2

See https://www.youtube.com/watch?v=SGZdsQviFYs&list=PLsd82ngobrvcYfCdnSnqM7lKLqE9qUUpX&index=17
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Using Strong Convexity: Revisiting Convergence Analysis (contd.)

Since f is strongly convex, and also Lipschitz continuous, we have for some L :

f(xk+1) ≤ f(xk) + (
Lt2
2
− t)




∇f(xk)




2

Also, 0 < t ≤ 2
L(1− c1) =⇒ Lt2

2 − t ≤ −c1t
Thus, we get the exit condition of backtracking line search

f(xk+1) ≤ f(xk)− c1t



∇f(xk)





2

=⇒ f
(
xk − t∇f(xk)

)
≤ f(xk)− c1t




∇f(xk)




2

Often c1 = 1
2 .
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Putting things together for Strong Convexity

Let p∗ = f(x∗)
f
(
x− t∇f(x)

)
≤ f(x)− t



∇f(x)


2 + Lt2

2



∇f(x)


2

▶ Consider RHS for

7See a more involved proof for backtracking line search later in the slides and later generalized for
proximal/generalized gradient descent
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Putting things together for Strong Convexity

Let p∗ = f(x∗)
f
(
x− t∇f(x)

)
≤ f(x)− t



∇f(x)


2 + Lt2

2



∇f(x)


2

▶ Consider RHS for t∗ = 1
L
7

=⇒ f
(
x− t∇f(x)

)
≤ f(x)− 1

2L


∇f(x)



2

=⇒ f
(
x− t∇f(x)

)
− p∗ ≤ f(x)− 1

2L


∇f(x)



2 − p∗

From strong convexity, we had
f(y) ≥ f(x)− 1

2m


∇f(x)



2

=⇒ p∗ ≥ f(x)− 1
2m



∇f(x)


2

=⇒


∇f(x)



2 ≥ 2m
(
f(x)− p∗

)

7See a more involved proof for backtracking line search later in the slides and later generalized for
proximal/generalized gradient descent
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Putting things together for Strong Convexity

Thus,
f
(
x− t∗∇f(x)

)
− p∗ ≤ f(x)− 1

2L


∇f(x)



2 − p∗
=⇒ f

(
x− t∗∇f(x)

)
− p∗ ≤ f(x)− 2m

2L
(
f(x)− p∗

)
− p∗

=⇒ f
(
x− t∗∇f(x)

)
− p∗ ≤

(
1− m

L
) (

f(x)− p∗
)

That is,
f(xk)− p∗ ≤

(
1− m

L
) (

f(xk−1)− p∗
)
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Putting things together for Strong Convexity

Thus,
f
(
x− t∗∇f(x)

)
− p∗ ≤ f(x)− 1

2L


∇f(x)



2 − p∗
=⇒ f

(
x− t∗∇f(x)

)
− p∗ ≤ f(x)− 2m

2L
(
f(x)− p∗

)
− p∗

=⇒ f
(
x− t∗∇f(x)

)
− p∗ ≤

(
1− m

L
) (

f(x)− p∗
)

That is,
f(xk)− p∗ ≤

(
1− m

L
) (

f(xk−1)− p∗
)

≤
(
1− m

L
)2 (f(xk−2)− p∗

)

...
≤

(
1− m

L
)k (f(x(0))− p∗

)
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Linear Convergence under Strong Convexity Assumption

We get linear convergence

f(xk)− p∗ ≤
(
1− m

L

)k (
f(x(0))− p∗

)

▶ Here, m
L ∈ (0, 1)

▶ This is, loosely speaking, faster than what we got using only Lipschitz continuity, which was:

f(xk)− p∗ ≤



x(0)−x∗





2

2tk
(sublinear convergence)

To obtain f(xk)− p∗ ≤ ϵ, we need
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Linear Convergence under Strong Convexity Assumption

We get linear convergence

f(xk)− p∗ ≤
(
1− m

L

)k (
f(x(0))− p∗

)

▶ Here, m
L ∈ (0, 1)

▶ This is, loosely speaking, faster than what we got using only Lipschitz continuity, which was:

f(xk)− p∗ ≤



x(0)−x∗





2

2tk
(sublinear convergence)

To obtain f(xk)− p∗ ≤ ϵ, we need O(log(1/ϵ)) iterations
Linear convergence ⇒ plot of iterations on the x-axis, and distance of function value from
p∗ on the y-axis on a log scale is linear
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R-convergence assuming Strong convexity and L-continuity
Now, let us consider the convergence result we got by assuming Strong convexity with
backtracking and exact line searches:

f(xk)− f(x∗) ≤
(
1− m

M

)k (
f(x(0))− f(x∗)

)

Here, vk can be considered
(
1− m

M
)k

α
▶ v∗ = 0

We get
vk+1 − v∗
vk − v∗ =

(
1− m

M

)
∈ (0, 1)

▶ We now have an upper bound < 1, unlike before
As r =

(
1− m

M
)
∈ (0, 1), vk is Q-linearly convergent

▶ Thus, under strong convexity, gradient descent is R-linearly convergent
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R-convergence assuming Strong convexity and L-continuity

Question: Is gradient descent under Strong convexity also Q-linearly convergent?
Recall one of the intermediate steps in getting the convergence results:
f(xk+1)− f(x∗) ≤

(
(1− m

M
) (

f(xk)− f(x∗)
)

▶ =⇒ f(xk+1)−f(x∗)
f(xk)−f(x∗) ≤

(
1− m

M
)

Now, r =
(
1− m

M
)
∈ (0, 1)

Yes, gradient descent under Strong convexity is also Q-linearly convergent
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Summary of Convergence Rate of Gradient Descent Method
For the gradient method, it can be proved that if f is strongly convex,

f(x(k)− p∗ ≤ ρk
(
f(x(0) − p∗

)
(49)

The value of the linear convergence factor ρ ∈ (0, 1) depends on the strong convexity
constant c, the value of x(0) and type of ray search employed.
The convergence rate is 1−m/L, where L/m is proportional to the condition number of
the Hessian. Large eigenvalues correspond to high curvature directions and small
eigenvalues correspond to low curvature directions. Many methods (such as conjugate
gradient) try to improve upon the gradient method by making the hessian better
conditioned. Convergence can be very slow even for moderately well-conditioned
problems, with condition number in the 100s.
The convergence of the steepest descent method can be stated in the same form as in
(49), since any norm can be bounded in terms of the Euclidean norm, i.e., there exists a
constant η ∈ (0, 1] such that ||x|| ≥ η||x||2 (see Section 9.4.3 of Boyd)
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(Sub)Gradient Descent: Generalization of Gradient Descent
Given a convex function f : Rn → R, not necessarily differentiable. Subgradient method is just
like gradient descent, but replacing gradients with subgradients. I.e., initialize x(0), then repeat

x(k) = x(k−1) − tk · h(k−1), k = 1, 2, 3, · · ·

where h(k−1) is any subgradient of f at x(k−1). We keep track of best iterate xkbest among
x(1), · · · ,x(k):

f(x(k)
best) = min

i=1,··· ,k
f(x(i))

To update each x(i), there are basically two ways to select the step size:
Fixed step size: tk = t for all k = 1, 2, 3 · · ·
Diminishing step size: choose tk to satisfy

lim
k→∞

(tk) = 0 ,

∞∑

k=1

tk =∞

See a more detailed derivation at https://youtu.be/1_3zQtH-w4U?list=PLsd82ngobrvcYfCdnSnqM7lKLqE9qUUpX&t=4503
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easy to check that the necessary descent condition holds

important given our step
sizes are fixed and given 

that multiple
subgradients exist of which
our choice might have been
random

https://en.wikipedia.org/wiki/Series_(mathematics)



Subgradient Algorithm: Convergence analysis
Given the convex function f : Rn → R that satisfies:

f is Lipschitz continuous with constant l > 0,
|f(x)− f(y)| ≤ l||x− y|| for all x,y

||x(1) − x∗|| ≤ R which means it is bounded

Theorem
For a fixed step size t, subgradient method satisfies

lim
k→∞

f(x(k)best) ≤ f(x∗) +
l2t
2

For diminishing step size such as tk = O
(

1√
k

)
,

f(x(k)best) ≤ f(x∗) + O
(

1√
k

)
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Subgradient Descent: Convergence Analysis (contd.)
Proof:

||x(k+1) − x∗||2 = ||x(k) − tkh(k) − x∗||2
= ||x(k) − x∗||2 − 2tk(h(k))T(x(k) − x∗) + (tk)2||h(k)||2

By definition of the subgradient method, we have

f(x∗) ≥ f(x(k)) + (h(k))T(x∗ − x(k))

−(h(k))T(x∗ − x(k)) ≤ −(f(x(k))− f(x∗))

Using this inequality, for k, k− 1, . . . i, i− 1, . . . 0 we have
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Subgradient Descent: Convergence Analysis (contd.)
Proof:

||x(k+1) − x∗||2 = ||x(k) − tkh(k) − x∗||2
= ||x(k) − x∗||2 − 2tk(h(k))T(x(k) − x∗) + (tk)2||h(k)||2

By definition of the subgradient method, we have

f(x∗) ≥ f(x(k)) + (h(k))T(x∗ − x(k))

−(h(k))T(x∗ − x(k)) ≤ −(f(x(k))− f(x∗))

Using this inequality, for k, k− 1, . . . i, i− 1, . . . 0 we have

||x(k+1) − x∗||2 ≤ ||x(k) − x∗||2 − 2tk(f(x(k))− f(x∗)) + (tk)2||h(k)||2

≤ ||x(1) − x∗||2 − 2

k∑

i=1

ti(f(x(i))− f(x∗)) +
k∑

i=1

(ti)2||h(i)||2
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Subgradient Descent: Convergence Analysis (contd.)

And since this is lower bounded by 0, we have

0 ≤ ||x(k+1) − x∗||2 ≤ R2 − 2
k∑

i=1

ti(f(x(i))− f(x∗)) +
k∑

i=1

(ti)2l2

⇒ 2
k∑

i=1

ti(f(x(i))− f(x∗)) ≤ R2 +
k∑

i=1

(ti)2l2

⇒ 2(
k∑

i=1

ti)(f(x(k)
best)− f(x∗)) ≤ R2 +

k∑

i=1

(ti)2l2
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Subgradient Descent: Convergence Analysis (contd.)

For a constant step size ti = t:

R2 + l2t2k
2tk → l2t

2
, as k→∞,

and for diminishing step size, we have:
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Subgradient Descent: Convergence Analysis (contd.)

For a constant step size ti = t:

R2 + l2t2k
2tk → l2t

2
, as k→∞,

and for diminishing step size, we have:

k∑

i=0

(ti)2 ≤ 0,

k∑

i=0

ti =∞

therefore,
R2 + l2

∑k
i=0(ti)2

2
∑k

i=0 ti
→ 0, as k→∞,
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Subgradient Descent: Convergence Analysis (contd.)

Consider taking ti = R/(l
√
k), for all i = 1, ..., k. Then we can obtain the following tendency:
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Subgradient Descent: Convergence Analysis (contd.)

Consider taking ti = R/(l
√
k), for all i = 1, ..., k. Then we can obtain the following tendency:

R2 + l2
∑k

i=0(ti)2

2
∑k

i=0 ti
=

Rl√
k
.

That is, subgradient method has convergence rate of O( 1√
k), and to get f(x(k)best)− f(x∗) ≤ ϵ,

needs O( 1
ϵ2
) iterations.

This is a much worse convergence rate than even O
(
1
k

)
obtained for gradient descent under

Lipschitz continuity alone.
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Optimization: Subgradient Descent and Constrained Optimization
Instructor: Prof. Ganesh Ramakrishnan
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Constrained Optimization in ℜ: Recap
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Global Extrema on Closed Intervals

Recall the extreme value theorem. A consequence is that:
if either of c or d lies in (a, b), then it is a critical number of f;
else each of c and d must lie on one of the boundaries of [a, b].

This gives us a procedure for finding the maximum and minimum of a continuous function f
on a closed bounded interval I:
Procedure

[Finding extreme values on closed, bounded intervals]:
1 Find the critical points in int(I).
2 Compute the values of f at the critical points and at the endpoints of the

interval.
3 Select the least and greatest of the computed values.
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Global Extrema on Closed Intervals (contd)

To compute the maximum and minimum values of f(x) = 4x3 − 8x2 + 5x on the interval
[0, 1],
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Global Extrema on Closed Intervals (contd)

To compute the maximum and minimum values of f(x) = 4x3 − 8x2 + 5x on the interval
[0, 1],

▶ We first compute f′(x) = 12x2 − 16x+ 5 which is 0 at x = 1
2 ,

5
6 .

▶ Values at the critical points are f( 12 ) = 1, f( 56 ) =
25
27 .

▶ The values at the end points are f(0) = 0 and f(1) = 1.
▶ Therefore, the minimum value is f(0) = 0 and the maximum value is f(1) = f(12 ) = 1.
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Global Extrema on Closed Intervals (contd)

To compute the maximum and minimum values of f(x) = 4x3 − 8x2 + 5x on the interval
[0, 1],

▶ We first compute f′(x) = 12x2 − 16x+ 5 which is 0 at x = 1
2 ,

5
6 .

▶ Values at the critical points are f( 12 ) = 1, f( 56 ) =
25
27 .

▶ The values at the end points are f(0) = 0 and f(1) = 1.
▶ Therefore, the minimum value is f(0) = 0 and the maximum value is f(1) = f(12 ) = 1.

In this context, it is relevant to discuss the one-sided derivatives of a function at the
endpoints of the closed interval on which it is defined.
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Global Extrema on Closed Intervals (contd)

Definition
[One-sided derivatives at endpoints]: Let f be defined on a closed bounded interval [a, b].

The (right-sided) derivative of f at x = a is defined as

f′(a) = lim
h→0+

f(a+ h)− f(a)
h

Similarly, the (left-sided) derivative of f at x = b is defined as

f′(b) = lim
h→0−

f(b+ h)− f(b)
h

Essentially, each of the one-sided derivatives defines one-sided slopes at the endpoints.

October 16, 2018 200 / 425



Global Extrema on Closed Intervals (contd)

Based on these definitions, the following result can be derived.

Claim
If f is continuous on [a, b] and f′(a) exists as a real number or as ±∞, then we have the
following necessary conditions for extremum at a.

If f(a) is the maximum value of f on [a, b], then f′(a) ≤ 0 or f′(a) = −∞.
If f(a) is the minimum value of f on [a, b], then f′(a) ≥ 0 or f′(a) =∞.

If f is continuous on [a, b] and f′(b) exists as a real number or as ±∞, then we have the
following necessary conditions for extremum at b
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Global Extrema on Closed Intervals (contd)

Based on these definitions, the following result can be derived.

Claim
If f is continuous on [a, b] and f′(a) exists as a real number or as ±∞, then we have the
following necessary conditions for extremum at a.

If f(a) is the maximum value of f on [a, b], then f′(a) ≤ 0 or f′(a) = −∞.
If f(a) is the minimum value of f on [a, b], then f′(a) ≥ 0 or f′(a) =∞.

If f is continuous on [a, b] and f′(b) exists as a real number or as ±∞, then we have the
following necessary conditions for extremum at b

If f(b) is the maximum value of f on [a, b], then f′(b) ≥ 0 or f′(b) =∞.
If f(b) is the minimum value of f on [a, b], then f′(b) ≤ 0 or f′(b) = −∞.
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Global Extrema on Closed Intervals (contd)

The following result gives a useful procedure for finding extrema on closed intervals.

Claim
If f is continuous on [a, b] and f′′(x) exists for all x ∈ (a, b). Then,

If f′′(x) ≤ 0, ∀x ∈ (a, b), then the minimum value of f on [a, b] is either f(a) or f(b). If, in
addition, f has a critical point c ∈ (a, b), then f(c) is the maximum value of f on [a, b].
If f′′(x) ≥ 0, ∀x ∈ (a, b), then the maximum value of f on [a, b] is either f(a) or f(b). If, in
addition, f has a critical point c ∈ (a, b), then f(c) is the minimum value of f on [a, b].
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Global Extrema on Open Intervals

The next result is very useful for finding extrema on open intervals.

Claim
Let I be an open interval and let f′′(x) exist ∀x ∈ I.

If f′′(x) ≥ 0, ∀x ∈ I, and if there is a number c ∈ I where f′(c) = 0, then f(c) is the
global minimum value of f on I.
If f′′(x) ≤ 0, ∀x ∈ I, and if there is a number c ∈ I where f′(c) = 0, then f(c) is the
global maximum value of f on I.

For example, let f(x) = 2
3x− sec x and

I = (−π
2 , π2 ).
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Global Extrema on Open Intervals

The next result is very useful for finding extrema on open intervals.

Claim
Let I be an open interval and let f′′(x) exist ∀x ∈ I.

If f′′(x) ≥ 0, ∀x ∈ I, and if there is a number c ∈ I where f′(c) = 0, then f(c) is the
global minimum value of f on I.
If f′′(x) ≤ 0, ∀x ∈ I, and if there is a number c ∈ I where f′(c) = 0, then f(c) is the
global maximum value of f on I.

For example, let f(x) = 2
3x− sec x and

I = (−π
2 , π2 ).f′(x) =

2
3 − sec x tan x = 2

3 − sin x
cos2 x = 0⇒ x = π

6 . Further,
f′′(x) = − sec x(tan2 x+ sec2 x) < 0 on (−π

2 , π2 ). Therefore, f attains the maximum value
f(π6 ) =

π
9 − 2√

3
on I.
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Global Extrema on Open Intervals (contd)
As another example, let us find the dimensions of the cone with minimum volume that can
contain a sphere with radius R. Let h be the height of the cone and r the radius of its base.
The objective to be minimized is the volume f(r, h) = 1

3πr2h. The constraint betwen r and h is
shown in Figure 10. The traingle AEF is similar to traingle ADB and therefore, h−R

R =
√
h2+r2
r .
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Global Extrema on Open Intervals (contd)

Our first step is to reduce the volume formula to involve only one of r28 or h.
The algebra involved will be the simplest if we solved for h.
The constraint gives us r2 = R2h

h−2R . Substituting this expression for r2 into the volume formula,
we get g(h) = πR2

3
h2

(h−2R) with the domain given by D =
{
h|2R < h <∞

}
.

Note that D is an open interval.
g′ = πR2

3
2h(h−2R)−h2

(h−2R)2 = πR2

3
h(h−4R)
(h−2R)2 which is 0 in its domain D if and only if h = 4R.

g′′ = πR2

3
2(h−2R)3−2h(h−4R)(h−2R)2

(h−2R)4 = πR2

3
2(h2−4Rh+4R2−h2+4Rh)

(h−2R)3 = πR2

3
8R2

(h−2R)3 , which is greater
than 0 in D.
Therefore, g (and consequently f) has a unique minimum at h = 4R and correspondingly,
r2 = R2h

h−2R = 2R2.

8Since r appears in the volume formula only in terms of r2.
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