(Log) Barrier methods

Barrier Methods for Constrained Optimization

Consider a more general constrained optimization problem

$$
\begin{aligned}
& \min _{\mathbf{x} \in \mathbf{R}^{n}} f(\mathbf{x}) \\
& \text { s.t. } g_{i}(\mathbf{x}) \leq 0 i=1 \ldots m \\
& \text { and } A \mathbf{x}=\mathbf{b}
\end{aligned}
$$

Possibly reformulations of this problem include:

$$
\min _{x} f(x)+\lambda B(x)
$$

where B is a barrier function like
(1) $B(x)=\frac{\rho}{2}\|A \mathbf{x}-\mathbf{b}\|^{2}$ (in Augmented Langragian - for a specific type of strong convexity wrt $\left.\|.\|^{2}\right)$)
(2) $B(x)=\sum I_{g_{i}}(\mathbf{x})$ (Projected Gradient Descent: built on this \& a linear approximation to $f(\mathbf{x})$)
(3) $B(x)=\phi_{g_{i}}(\mathrm{x})=-\frac{1}{t} \log \left(-g_{i}(\mathrm{x})\right)$

- Here, $-\frac{1}{t}$ is used instead of λ. Lets discuss this in more details

Barrier Method: Example

As a very simple example, consider the following inequality constrained optimization problem.

$$
\begin{array}{ll}
\operatorname{minimize} & x^{2} \\
\text { subject to } & x \geq 1
\end{array}
$$

The logarithmic barrier formulation of this problem is

$$
\operatorname{minimize} \quad x^{2}-\mu \ln (x-1)
$$

The unconstrained minimizer for this convex logarithmic barrier function is $\widehat{\mathbf{x}}(\mu)=\frac{1}{2}+\frac{1}{2} \sqrt{1+2 \mu}$. As $\mu \rightarrow 0$, the optimal point of the logarithmic barrier problem approaches the actual point of optimality $\widehat{\mathbf{x}}=1$ (which, as we can see, lies on the boundary of the feasible region). The generalized idea, that as $\mu \rightarrow 0, f(\widehat{\mathbf{x}}) \rightarrow p^{*}$ (where p^{*} is the optimal for primal) will be proved next.

Barrier Method and Linear Program

Recap:

Problem type	Objective Function	Constraints	$L^{*}(\lambda)$	Dual constraints	Strong duality
Linear Program	$\mathbf{c}^{\prime} \mathbf{x}$	$A \mathbf{x} \leq \mathbf{b}$	$-\mathbf{b}^{\prime} \lambda$	$A^{\prime} \lambda+\mathbf{c}=\mathbf{0}$	Feasible primal

What are necessary conditions at primal-dual optimality?

- ..
- ..

Log Barrier (Interior Point) Method

- The log barrier function is defined as

$$
B(x)=\phi_{g_{i}}(\mathbf{x})=-\frac{1}{t} \log \left(-g_{i}(\mathbf{x})\right)
$$

- Approximates $\sum I_{g_{i}}(\mathbf{x})$ (better approximation as $t \rightarrow \infty$)
- $f(\mathbf{x})+\sum_{i} \phi_{g_{i}}(\mathbf{x})$ is convex if f and g_{i} are convex

Why? $\phi_{g_{i}}(\mathbf{x})$ is negative of monotonically increasing concave function (log) of a concave function $-g_{i}(\mathbf{x})$

- Let λ_{i} be lagrange multiplier associated with inequality constraint $g_{i}(\mathbf{x}) \leq 0$
- We've taken care of the inequality constraints, lets also consider an equality constraint $A \mathbf{x}=\mathbf{b}$ with corresponding langrage multipler (vector) ν

Log Barrier Method (contd.) (KKT based intepretation)

- Our objective becomes

$$
\begin{gathered}
\min _{x} f(x)+\sum_{i}\left(-\frac{1}{t}\right) \log \left(-g_{i}(x)\right) \\
\text { s.t. } A x=b
\end{gathered}
$$

- At different values of t, we get different $x^{*}(t)$
- Let $\lambda_{i}^{*}(t)=$
- First-order necessary conditions for optimality (and strong duality) ${ }^{17}$ at $x^{*}(t), \lambda_{i}^{*}(t)$:

[^0]- Our objective becomes

$$
\begin{gathered}
\min _{x} f(x)+\sum_{i}\left(-\frac{1}{t}\right) \log \left(-g_{i}(x)\right) \\
\text { s.t. } A x=b
\end{gathered}
$$

- At different values of t, we get different x^{*}
- Let $\lambda_{i}^{*}(t)=\frac{-1}{\operatorname{tg}_{i}\left(x^{*}(t)\right)}$
- First-order necessary conditions for optimality (and strong duality) ${ }^{18}$ at $x^{*}(t), \lambda_{i}^{*}(t)$:
(1) $g_{i}\left(x^{*}(t)\right) \leq 0$
(2) $A x^{*}(t)=b$
(3) $\nabla f\left(x^{*}(t)\right)+\sum_{i=1}^{m} \lambda_{i}^{*}(t) \nabla g_{i}\left(x^{*}(t)\right)+\nu^{*}(t)^{\top} A=0$
(9) $\lambda_{i}^{*}(t) \geq 0$
\star Since $g_{i}\left(x^{*}(t)\right) \leq 0$ and $t \geq 0$
- All above conditions hold at optimal solution $\mathbf{x}(t), \nu(t)$, of barrier problem \Rightarrow $\left(\lambda_{i}^{*}(t), \nu^{*}(t)\right)$ are dual feasible. (onlt complementary slackness is violated)

[^1]
Log Barrier Method \& Duality Gap (KKT based intepretation)

- If necessary conditions are satisfied and if f and g_{i} 's are convex, and g_{i} 's strictly feasible, the conditions are also sufficient. Thus, $\left(x^{*}(t), \lambda_{i}^{*}(t), \nu^{*}(t)\right)$ form a critical point for the Lagrangian

$$
L(\mathbf{x}, \lambda, \nu)=f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})+\nu^{\top}(A \mathbf{x}-\mathbf{b})
$$

- Lagrange dual function

$$
\begin{gathered}
L^{*}(\lambda, \nu)=\min _{\mathbf{x}} L(\mathbf{x}, \lambda, \nu) \\
L^{*}\left(\lambda^{*}(t), \nu^{*}(t)\right)=f\left(\mathbf{x}^{*}(t)\right)+\sum_{i=1}^{m} \lambda_{i}^{*}(t) g_{i}\left(\mathbf{x}^{*}(t)\right)+\nu^{*}(t)^{\top}\left(A \mathbf{x}^{*}(t)-\mathbf{b}\right) \\
=\mathrm{f}\left(\mathbf{x}^{*}(\mathrm{t})\right)-\mathrm{m} / \mathrm{t}
\end{gathered}
$$

- m/t... is the duality gap upperbound
- As $t \rightarrow \infty$, duality gap \rightarrow. 0

Log Barrier Method \& Duality Gap (KKT based intepretation)

- If necessary conditions are satisfied and if f and g_{i} 's are convex, and g_{i} 's strictly feasible, the conditions are also sufficient. Thus, $\left(x^{*}(t), \lambda_{i}^{*}(t), \nu^{*}(t)\right)$ form a critical point for the Lagrangian

$$
L(\mathbf{x}, \lambda, \nu)=f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})+\nu^{\top}(A \mathbf{x}-\mathbf{b})
$$

- Lagrange dual function

$$
\begin{gathered}
L^{*}(\lambda, \nu)=\min _{\mathbf{x}} L(\mathbf{x}, \lambda, \nu) \\
L^{*}\left(\lambda^{*}(t), \nu^{*}(t)\right)=f\left(\mathbf{x}^{*}(t)\right)+\sum_{i=1}^{m} \lambda_{i}^{*}(t) g_{i}\left(\mathbf{x}^{*}(t)\right)+\nu^{*}(t)^{\top}\left(A \mathbf{x}^{*}(t)-\mathbf{b}\right) \\
=f\left(x^{*}(t)\right)-\frac{m}{t}
\end{gathered}
$$

- $\frac{m}{t}$ here is called the duality gap
- As $t \rightarrow \infty$, duality gap $\rightarrow 0$, but computing optimal solution $\mathrm{x}(t)$ to barrier problem will be that harder

Log Barrier Method \& Duality Gap (KKT based intepretation)

- At optimality, primal optimal = dual optimal
i.e. $p^{*}=d^{*}$
- From weak duality,

$$
\begin{gathered}
f\left(\mathrm{x}^{*}(t)\right)-\frac{m}{t} \leq p^{*} \\
\Longrightarrow f\left(\mathrm{x}^{*}(t)\right)-p^{*} \leq \frac{m}{t}
\end{gathered}
$$

- The duality gap is always $\leq \frac{m}{t}$
- The more we increase t, the smaller will be the duality gap

Log Barrier method: Start with small t (conservative about feasibility set Iteratively solve the barrier formulation (start with solution to prev itera increase value of t

The Log Barrier Method

Also known as sequential unconstrained minimization technique (SUMT) \& barrier method \& path-following method
(2) Start with $t=t^{(0)}, \mu>1$, and consider ϵ tolerance
(2) Repeat INNER ITERATION: (solved using Dual Ascent or Augment Lagrangian)
(1) Solve Newton algo especially good for this

$$
\mathbf{x}^{*}(t)=\underset{x}{\operatorname{argmin}} f(\mathbf{x})+\sum_{i=1}^{m}\left(-\frac{1}{t}\right) \log \left(-g_{i}(x)\right)
$$

for solving for $\mathrm{x}^{*}(\mathrm{t})$, initialize using $x^{*}(\mathrm{t}-1)$
s.t. $A x=b$
(2) If $\frac{m}{t}<\epsilon$, Quit
else, set $t=\mu t$ Scale up the value of t multiplicatively in every
outer iteration

The Log Barrier Method

Also known as sequential unconstrained minimization technique (SUMT) \& barrier method \& path-following method
(1) Start with $t=t^{(0)}, \mu>1$, and consider ϵ tolerance
(2) Repeat
(1) Solve

$$
\begin{gathered}
\mathbf{x}^{*}(t)=\underset{x}{\operatorname{argmin}} f(\mathbf{x})+\sum_{i=1}^{m}\left(-\frac{1}{t}\right) \log \left(-g_{i}(x)\right) \\
\text { s.t. } A x=b
\end{gathered}
$$

(2) If $\frac{m}{t}<\epsilon$, Quit
else, set $t=\mu t$
Note: Computing $\mathrm{x}^{*}(t)$ exactly is not necessary since the central path has no significance other than that it leads to a solution of the original problem for $t \rightarrow \infty$;
Also small $\mu \Rightarrow$ faster inner iterations. Large $\mu \Rightarrow$ faster outer iterations.

\qquad
\qquad
\qquad
\qquad
\qquad

Central path for an LP with $\mathrm{n}=2$ and $\mathrm{m}=6$. The dashed curves show three contour lines of the logarithmic barrier function φ. The central path converges to the optimal point x^{*} as $t \rightarrow \infty$. Also shown is the point on the central path with $t=10$.
[Figure source: Boyd \& Vandenberghe]

- In the process, we can also obtain $\lambda^{*}(t)$ and $\nu^{*}(t)$
- Convergence of outer iterations:

We get ϵ accuracy after $\left(\frac{\log \left(\frac{m}{\epsilon t(0)}\right)}{\log (\mu)}\right)$ updates of t

Log Barrier Method \& Strictly Feasible Starting Point

- The inner optimization in the iterative algorithm using a barrier method,

$$
\mathbf{x}^{*}(t)=\underset{x}{\operatorname{argmin}} f(x)+\sum_{i}\left(-\frac{1}{t}\right) \log \left(-g_{i}(x)\right)
$$

$$
\text { s.t. } A x=b
$$

can be solved using (sub)gradient descent starting from older value of x from previous iteration

- We must start with a strictly feasible \mathbf{x}, otherwise
$-\log \left(-g_{i}(\mathbf{x})\right) \rightarrow \infty$

How to find a strictly feasible $\mathbf{x}^{(0)}$?

How to find a strictly feasible $\mathbf{x}^{(0)}$?

- Basic Phase I method

$$
\begin{aligned}
& \mathbf{x}^{(0)}=\underset{\mathbf{x}}{\operatorname{argmin}} \Gamma \\
& \text { s.t. } \\
& g_{i}(\mathbf{x}) \leq \Gamma
\end{aligned}
$$

- We solve this using the barrier method, and thus will also need a strictly feasible starting $\hat{\mathbf{x}}^{(0)}$
- Here,

$$
\Gamma=\max _{i=1 \ldots m} g_{i}\left(\hat{\mathbf{x}}^{(0)}\right)+\delta
$$

where, $\delta>0$

- i.e. Γ is slightly larger than the largest $g_{i}\left(\hat{\mathbf{x}}^{(0)}\right)$
- On solving this optimization for finding $\mathbf{x}^{(0)}$,
- If $\Gamma^{*}<0, \mathbf{x}^{(0)}$ is strictly feasible
- If $\Gamma^{*}=0, \mathbf{x}^{(0)}$ is feasible (but not strictly)
- If $\overline{\Gamma^{*}>0}, \mathbf{x}^{(0)}$ is not feasible
- A slightly 'richer' problem can consider different Γ_{i} for each g_{i}, to improve numerical precision

Choice of a good $\hat{\mathbf{x}}^{(0)}$ or $\mathbf{x}^{(0)}$ depends on the nature/class of the problem, use domain knowledge to decide it

Log Barrier Method \& Strictly Feasible Starting Point

- We need not obtain $\mathbf{x}^{*}(t)$ exactly from each outer iteration
- If not solving for $\mathbf{x}^{*}(t)$ exactly, we will get ϵ accuracy after more than $\left(\frac{\log \left(\frac{m}{\epsilon t(0)}\right)}{\log (\mu)}\right)$ updates of t
- However, solving the inner iteration exactly may take too much time
- Fewer inner loop iterations correspond to more outer loop iterations

Log Barrier Method \& Strictly Feasible Starting Point

- We need not obtain $\mathbf{x}^{*}(t)$ exactly from each outer iteration
- If not solving for $\mathbf{x}^{*}(t)$ exactly, we will get ϵ accuracy after more than $\left(\frac{\log \left(\frac{m}{\epsilon t(0)}\right)}{\log (\mu)}\right)$ updates of t
- However, solving the inner iteration exactly may take too much time
- Fewer inner loop iterations correspond to more outer loop iterations
- Second order descent algorithms (such as Newton Descent) found effective in such settings for following reasons:

Log Barrier Method \& Strictly Feasible Starting Point

- We need not obtain $\mathbf{x}^{*}(t)$ exactly from each outer iteration
- If not solving for $\mathbf{x}^{*}(t)$ exactly, we will get ϵ accuracy after more than $\left(\frac{\log \left(\frac{m}{\epsilon t(0)}\right)}{\log (\mu)}\right)$ updates of t
- However, solving the inner iteration exactly may take too much time
- Fewer inner loop iterations correspond to more outer loop iterations
- Second order descent algorithms (such as Newton Descent) found effective in such settings for following reasons:

Recall: Curvature naturally characterized by the Hessian

- Accounts for curvature of the function; useful to converge to $\mathbf{x}(\mu t)$ quickly from $\mathbf{x}(t)$.
- Quadratic convergence when close to $x^{*}(t)$ Proved in Boyd
- Less (or no) dependence on step size t^{k} Accouting for curvature reduces sensitivity to step size

Second Order Descent and Approximations Sections 4.5.2-4.5.6 of BasicsOfConvexOptimization.pdf

Newton's Algorithm as a Steepest Descent Method

- This choice of $\Delta \mathrm{x}^{k+1}$ corresponds to the direction of steepest descent under the matrix norm ${ }^{19}$ induced by the Hessian $\nabla^{2} f\left(x^{k}\right)$:

$$
\Delta \mathbf{x}^{(k)}=\operatorname{argmin}\left\{\nabla^{T} f\left(\mathbf{x}^{(k)}\right) \mathbf{v} \mid\|\mathbf{v}\|_{\nabla^{2} f\left(\mathbf{x}^{k}\right)}=1\right\} .
$$

- Equivalently, based on approximating a function around the current iterate $\mathbf{x}^{(k)}$ using a second degree Taylor expansion.

$$
Q(\mathbf{x}) \approx \widetilde{f}(\mathbf{x})=f\left(\mathbf{x}^{(k)}\right)+\nabla^{T} f\left(\mathbf{x}^{(k)}\right)\left(\mathbf{x}-\mathbf{x}^{(k)}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{(k)}\right)^{T} \nabla^{2} f\left(\mathbf{x}^{(k)}\right)\left(\mathbf{x}-\mathbf{x}^{(k)}\right)
$$

- Convex $f \Rightarrow$ Hessian is positive semi-definite $\mathrm{Q}(\mathrm{x})$ will ALSO be convex

The red ellipsoid fits the geoid well in North America.

The blue ellipsoid fits the geoid well in Europe.

Newton's Algorithm as a Steepest Descent Method

- This choice of $\Delta \mathrm{x}^{k+1}$ corresponds to the direction of steepest descent under the matrix norm ${ }^{19}$ induced by the Hessian $\nabla^{2} f\left(\mathrm{x}^{k}\right)$:

$$
\Delta \mathbf{x}^{(k)}=\operatorname{argmin}\left\{\nabla^{T} f\left(\mathbf{x}^{(k)}\right) \mathbf{v} \mid\|\mathbf{v}\|_{\nabla^{2} f\left(\mathbf{x}^{k}\right)}=1\right\} .
$$

- Equivalently, based on approximating a function around the current iterate $\mathbf{x}^{(k)}$ using a second degree Taylor expansion.

$$
Q(\mathbf{x}) \approx \widetilde{f}(\mathbf{x})=f\left(\mathbf{x}^{(k)}\right)+\nabla^{T} f\left(\mathbf{x}^{(k)}\right)\left(\mathbf{x}-\mathbf{x}^{(k)}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{(k)}\right)^{T} \nabla^{2} f\left(\mathbf{x}^{(k)}\right)\left(\mathbf{x}-\mathbf{x}^{(k)}\right)
$$

- Convex $f \Rightarrow$ convex quadratic approximation. Newton's method is based on solving the approximation exactly
- Setting gradient of quadratic approximation (with respect to \mathbf{x}) to $\mathbf{0}$ gives

$$
\nabla^{T} f\left(\mathbf{x}^{(k)}\right)+\nabla^{2} f\left(\mathbf{x}^{(k)}\right)\left(\mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\right)=0
$$

Assuming $\nabla^{2} f\left(\mathbf{x}^{k}\right)$ is invertible, next iterate is $\underline{\mathbf{x}}^{(k+1)}=\mathbf{x}^{(k)}-\left(\nabla^{2} f\left(\mathbf{x}^{(k)}\right)\right)^{-1} \nabla f\left(\mathbf{x}^{(k)}\right)$

Newton's Algorithm as a Steepest Descent Method

Find a starting point $\mathbf{x}^{(0)} \in \mathcal{D}$.
Select an appropriate tolerance $\epsilon>0$. repeat

1. Set $\Delta \mathbf{x}^{(k)}=-\left(\nabla^{2} f\left(\mathbf{x}^{(k)}\right)\right)^{-1} \nabla f(\mathbf{x})$.
2. Let $\lambda^{2}=\nabla^{T} f\left(\mathbf{x}^{(k)}\right)\left(\nabla^{2} f\left(\mathbf{x}^{(k)}\right)\right)^{-1} \nabla f\left(\mathbf{x}^{(k)}\right) \Leftrightarrow \underline{\text { Directional derivative in the Newton Direction }}$
3. If $\frac{\lambda^{2}}{2} \leq \epsilon$, quit.
4. Set step size $t^{(k)}=1$. Obtain $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+t^{(k)} \Delta \mathbf{x}^{(k)}$.
5. Set $k=k+1$.

until

Figure 32: The Newton's method which typically uses a step size of $1 . \Delta \mathbf{x}^{(k)}$ can be shown to be always a Descent Direction (Theorem 83 of notes). For $\mathbf{x} \in \Re^{n}$, each Newton's step takes $O\left(n^{3}\right)$ time (without using any fast matrix multiplication methods).

Variants of Newtons's Method

- Special Cases: When Objective function is a composition of two functions (such as Loss I over some Prediction function m): Gauss Newton Approximation (Section 4.5.4 of BasicsOfConvexOptimization.pdf) and Levenberg-Marquardt (Section 4.5.5)
- Quasi-Newton Algorithms: When Hessian inverse $\left(\nabla^{2} f\left(x^{k+1}\right)\right)^{-1}$ is approximated by a matrix $\underline{B^{k+1}}$ such that
- gradient of quadratic approximation $Q\left(x^{k}\right)$ agrees at x^{k} and x^{k+1}
- B^{k+1} is as close as possible to B^{k} in some norm (such as the Frobenius norm) See BFGS (Section 4.5.6), LBFGS etc.

Cutting Plane Algorithm

(Invoking Linear Programs for Non-linear constraints)

Cutting Plane Algorithm

Consider amother general formulation of convex optimization problems ${ }^{20}$:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & g_{j}(\mathbf{x}) \leq 0 \quad \text { for } j=1,2, \ldots, m \tag{92}
\end{array}
$$

where $g_{j}(\mathbf{x})$ are convex functions.

- How can every convex optimization problem be presented in this form?
${ }^{20}$ All convex optimization problems of the form discussed so far can be cast in this form.

Cutting Plane Algorithm

Consider amother general formulation of convex optimization problems ${ }^{20}$:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & g_{j}(\mathbf{x}) \leq 0 \quad \text { for } j=1,2, \ldots, m \tag{92}
\end{array}
$$

where $g_{j}(\mathbf{x})$ are convex functions.

- How can every convex optimization problem be presented in this form? For objective function $f(\mathbf{x})$, translate it into a constraint $f(\mathbf{x})-c \leq 0$ and minimize c
- Let $\mathbf{s}_{j}\left(\mathbf{x}^{i}\right)$ be a subgradient for g_{j} at \mathbf{x}^{i}. By definition of subgradient

[^2]
Cutting Plane Algorithm

Consider amother general formulation of convex optimization problems ${ }^{20}$:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & g_{j}(\mathbf{x}) \leq 0 \quad \text { for } j=1,2, \ldots, m \tag{92}
\end{array}
$$

where $g_{j}(\mathbf{x})$ are convex functions.

- How can every convex optimization problem be presented in this form? For objective function $f(\mathbf{x})$, translate it into a constraint $f(\mathbf{x})-c \leq 0$ and minimize c
- Let $\mathbf{s}_{j}\left(\mathbf{x}^{i}\right)$ be a subgradient for g_{j} at \mathbf{x}^{i}. By definition of subgradient $g_{j}(\mathbf{x}) \geq g_{j}\left(\mathbf{x}^{i}\right)+\mathbf{s}_{j}^{T}\left(\mathbf{x}^{i}\right)\left(\mathbf{x}-\mathbf{x}^{i}\right)$ for all $\mathbf{x} \in \operatorname{dom}\left(g_{j}\right)$. [Eg: $\mathbf{s}_{j}\left(\mathbf{x}^{i}\right)$ could be $\nabla g_{j}\left(\mathbf{x}^{i}\right)$]

[^3]
Cutting Plane Algorithm (contd.)

- Since we are restricting the search to \mathbf{x} such that $g_{j}(\mathbf{x}) \leq 0$,

The tangent hyperplane lower bound to g j shopuld necessarily be also $<=0$

Cutting Plane Algorithm (contd.)

- Since we are restricting the search to \mathbf{x} such that $g_{j}(\mathbf{x}) \leq 0,0 \geq g_{j}\left(\mathbf{x}^{i}\right)+\mathbf{s}_{j}^{T}\left(\mathbf{x}^{i}\right)\left(\mathbf{x}-\mathbf{x}^{i}\right)$ for all $\mathbf{x} \in \operatorname{dom}\left(g_{j}\right)$
- When the last inequality is enumerated for all values of i and j, we get several linear constraints:
$\mathbf{s}_{j}^{T}\left(\mathbf{x}^{i}\right) \mathbf{x} \leq \mathbf{s}_{j}^{T}\left(\mathbf{x}^{i}\right) \mathbf{x}^{i}-g_{j}\left(\mathbf{x}^{i}\right)$ for fixed i and all j and $\mathbf{x} \in \operatorname{dom}\left(g_{j}\right) \equiv A_{i} \mathbf{x} \leq A_{i} \mathbf{x}^{i}-\mathbf{g}_{i}$

$$
A_{i}=\left[\begin{array}{l}
\mathbf{s}_{1}\left(\mathbf{x}^{i}\right) \tag{93}\\
\mathbf{s}_{2}\left(\mathbf{x}^{i}\right) \\
\cdot \\
\cdot \\
\mathbf{s}_{m}\left(\mathbf{x}^{i}\right)
\end{array}\right] \quad \mathbf{g}_{i}=\left[\begin{array}{l}
g_{1}\left(\mathbf{x}^{i}\right) \\
g_{2}\left(\mathbf{x}^{i}\right) \\
\cdot \\
\cdot \\
g_{m}\left(\mathbf{x}^{i}\right)
\end{array}\right]
$$

Cutting Plane Algorithm (contd.) $x^{\wedge} 0$--> x^1 --> x^2... --> x^k

- Stacking all the A_{i} 's and g_{i} 's together

$$
A^{k}=\left[\begin{array}{l}
A_{0} \tag{94}\\
A_{1} \\
\cdot \\
\cdot \\
A_{k}
\end{array}\right] \quad \mathbf{b}^{k}=\left[\begin{array}{l}
A_{0} \mathbf{x}^{0}-\mathbf{g}_{0} \\
A_{1} \mathbf{x}^{1}-\mathbf{g}_{1} \\
\cdot \\
\cdot \\
A_{k} \mathbf{x}^{k}-\mathbf{g}_{k}
\end{array}\right]
$$

- With this, the necessary feasible conditions are: $A^{k} \mathbf{x}<\mathbf{b}^{k}$.
- Idea: Solve the following LP iteratively, until all original constraints are respected:
As k increases, number of constraints increases making it more and more likely

$$
\mathbf{x}_{*}^{k}=\underset{\mathbf{x}}{\operatorname{argmin}} \quad \mathbf{c}^{T} \mathbf{x} .
$$

that the original constraints are satisified

Kelly's Cutting Plane Algorithm (contd.)

Step 1

Input an initial feasible point, \mathbf{x}^{0} and set $k=0$.
Step 2: Evaluate A^{k} and \mathbf{b}^{k}
Step 3
Solve the LP problem

$$
\mathbf{x}_{*}^{k}=\underset{\mathbf{x}}{\operatorname{argmin}} \quad \mathbf{c}^{T} \mathbf{x} .
$$

Step 4

If $\max \left\{g_{j}\left(\mathbf{x}_{*}^{k}\right), 1 \leq j \leq m\right\}<\epsilon$ output $\mathbf{x}_{*}=\mathbf{x}_{*}^{k}$ as the point of optimality and stop. Otherwise, set $k=k+1, \mathbf{x}^{k+1}=\mathbf{x}_{*}^{k}$, update A^{k} and \mathbf{b}^{k} from (94) using (93) and repeat from Step 3.

Figure 33: Optimization for the convex problem in (92) using Kelly's cutting plane algorithm.

Primal Active-Set Algorithm (Lazy Projection Methods)

Interior point algo forced feasibility at every step
Projection methods force projection at every step
Active set $==>$ Keep track of set of active and inactive constraints and be lazy in projection

Quadratic Optimization: Primal Active-Set Algorithm

$$
\begin{array}{ll}
\operatorname{minimize} & f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} Q \mathbf{x}+\mathbf{c}^{T} \mathbf{x}+\beta \tag{95}\\
\text { subject to } & A \mathbf{x} \geq \mathbf{b}
\end{array}
$$

where $Q \succ 0$. The KKT conditions are:

Quadratic Optimization: Primal Active-Set Algorithm

$$
\begin{array}{ll}
\operatorname{minimize} & f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} Q \mathbf{x}+\mathbf{c}^{T} \mathbf{x}+\beta \tag{95}\\
\text { subject to } & A \mathbf{x} \geq \mathbf{b}
\end{array}
$$

where $Q \succ 0$. The KKT conditions are:

- $Q \widehat{\mathbf{x}}+c-\sum_{i=1}^{m} \widehat{\lambda}_{i} \mathbf{a}_{i}=0$
- $\widehat{\lambda}_{i}\left(\mathbf{a}_{i}^{T} \widehat{\mathbf{x}}-b_{i}\right)=0$ for $i=1 . . m$
- $\hat{\lambda}_{i} \geq 0$ for $i=1 . . m$
- $A \widehat{\mathrm{x}} \geq \mathbf{b} .$.

Quadratic Optimization: Primal Active-Set Algorithm

$$
\begin{array}{ll}
\operatorname{minimize} & f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} Q \mathbf{x}+\mathbf{c}^{T} \mathbf{x}+\beta \tag{95}\\
\text { subject to } & A \mathbf{x} \geq \mathbf{b}
\end{array}
$$

where $Q \succ 0$. The KKT conditions are:

- $Q \widehat{\mathbf{x}}+c-\sum_{i=1}^{m} \widehat{\lambda}_{i} \mathbf{a}_{i}=0$
- $\widehat{\lambda}_{i}\left(\mathbf{a}_{i}^{T} \widehat{\mathbf{x}}-b_{i}\right)=0$ for $i=1 . . m$
- $\widehat{\lambda}_{i} \geq 0$ for $i=1 . . m$
- $A \widehat{\mathbf{x}} \geq \mathbf{b}$... If $\widehat{\mathbf{x}}$ lies in interior of feasible region then corresponding lambdas should be 0

Quadratic Optimization: Primal Active-Set Algorithm

$$
\begin{array}{ll}
\operatorname{minimize} & f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} Q \mathbf{x}+\mathbf{c}^{T} \mathbf{x}+\beta \tag{95}\\
\text { subject to } & A \mathbf{x} \geq \mathbf{b}
\end{array}
$$

where $Q \succ 0$. The KKT conditions are:

- $Q \widehat{\mathbf{x}}+c-\sum_{i=1}^{m} \mathrm{a}_{i}=0$
- $\widehat{\lambda}_{i}\left(\mathbf{a}_{i}^{T} \widehat{\mathbf{x}}-b_{i}\right)=0$ for $i=1$..m
- $\hat{\lambda}_{i} \geq 0$ for $i=1 . . m$
- $A \widehat{\mathbf{x}} \geq \mathbf{b}$... If $\widehat{\mathbf{x}}$ lies in interior of feasible region then
(1) $\hat{\lambda}=0$
(2) $\hat{x}=-Q^{-1} \mathbf{c}$

Quadratic Optimization: Primal Active-Set Algorithm

$$
\begin{array}{ll}
\operatorname{minimize} & f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} Q \mathbf{x}+\mathbf{c}^{T} \mathbf{x}+\beta \tag{96}\\
\text { subject to } & A \mathbf{x} \geq \mathbf{b}
\end{array}
$$

where $Q \succ 0$. The KKT conditions are:

- $Q \widehat{\mathbf{x}}+c-\sum_{i=1}^{m} \widehat{\lambda}_{i} \mathbf{a}_{i}=0$
- $\widehat{\lambda}_{i}\left(\mathbf{a}_{i}^{T} \widehat{\mathbf{x}}-b_{i}\right)=0$ for $i=1 . . m$
- $\widehat{\lambda}_{i} \geq 0$ for $i=1 . . m$
- $A \widehat{\mathbf{x}} \geq \mathbf{b} \ldots$ If some $\mathbf{a}_{i}^{T} \mathbf{x}^{*}=b_{i}$ for some $i \in I^{*}$ (index set of active constraints) then

Quadratic Optimization: Primal Active-Set Algorithm

$$
\begin{array}{ll}
\operatorname{minimize} & f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} Q \mathbf{x}+\mathbf{c}^{T} \mathbf{x}+\beta \tag{96}\\
\text { subject to } & A \mathbf{x} \geq \mathbf{b}
\end{array}
$$

where $Q \succ 0$. The KKT conditions are:

- $Q \widehat{\mathbf{x}}+c-\sum_{i=1}^{m} \widehat{\lambda}_{i} \mathbf{a}_{i}=0$
- $\widehat{\lambda}_{i}\left(\mathbf{a}_{i}^{T} \widehat{\mathbf{x}}-b_{i}\right)=0$ for $i=1$..m
- $\hat{\lambda}_{i} \geq 0$ for $i=1 . . m$
- $A \widehat{\mathbf{x}} \geq \mathbf{b} \ldots$ If some $\mathbf{a}_{i}^{T} \mathbf{x}^{*}=b_{i}$ for some $\underline{i \in I^{*}}$ (index set of active constraints) then, one needs to iteratively solve x^{k} and $I_{k} \quad$ Basic idea: Assume that the only tests one needs to prepare for are the tests happening tomorrow (that is, the index set I_k) and that tests thereafter l_k complement) will be dealt with when one gets to them!!

Quadratic Optimization: Primal Active-Set Algorithm

$$
\begin{array}{ll}
\operatorname{minimize} & f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} Q \mathbf{x}+\mathbf{c}^{T} \mathbf{x}+\beta \tag{96}\\
\text { subject to } & A \mathbf{x} \geq \mathbf{b}
\end{array}
$$

where $Q \succ 0$. The KKT conditions are:

- $Q \widehat{\mathbf{x}}+c-\sum_{i=1}^{m} \widehat{\lambda}_{i} \mathbf{a}_{i}=0$
- $\widehat{\lambda}_{i}\left(\mathbf{a}_{i}^{T} \widehat{\mathbf{x}}-b_{i}\right)=0$ for $i=1 . . m$
- $\widehat{\lambda}_{i} \geq 0$ for $i=1 . . m$
- $A \widehat{\mathbf{x}} \geq \mathbf{b}$... If some $\mathbf{a}_{i}^{T} \mathbf{x}^{*}=b_{i}$ for some $i \in I^{*}$ (index set of active constraints) then, one needs to iteratively solve x^{k} and I_{k}
(3) $\mathrm{x}^{k+1}=\mathrm{x}^{k}+\alpha_{k} \mathrm{~d}^{k}$
(9) Simplified objective: Find $\mathbf{d}^{k}=\underset{\mathbf{d}}{\operatorname{argmin}} f_{k}(\mathbf{d})$

How much are we allowed to move so that the active constraints are not violated!

Quadratic Optimization: Primal Active-Set Algorithm

$$
\begin{array}{ll}
\mathbf{d}^{k}= & \underset{ }{\operatorname{argmin}} \tag{97}\\
& f_{k}(\mathbf{d})=\frac{1}{2} \mathbf{d}^{T} Q \mathbf{d}+\mathbf{g}_{k}^{T} \mathbf{d}+c_{k} \\
\text { subject to } & \mathbf{a}_{i} \mathbf{d}=0 \text { for all } i \in I_{k}
\end{array}
$$

where $\mathbf{g}_{k}=Q \mathbf{x}^{k}+\mathbf{c}$ and $c_{k}=\left(\mathrm{x}^{k}\right)^{T} Q \mathrm{x}^{k}+\mathbf{c}^{T} \mathbf{x}^{k}$. The idea behind the active set algo is:
(1) $\mathrm{d}^{k}=0 \Rightarrow \mathrm{x}^{k}$ satisfies first order necessary conditions:

- $\mathrm{g}^{k}-\sum_{i \in I_{k}} \lambda_{i} \mathbf{a}_{i}=0$ which is the same as $\operatorname{rank}\left[A_{I^{k}}^{T} \mathrm{~g}^{k}\right]=\operatorname{rank}\left[A_{\mathcal{I}^{k}}^{T}\right]$

We already know that $\mathbf{a}_{i}^{T} \mathbf{x}^{k}-b_{i}>0 \forall i \notin I_{k}$ and $\mathbf{a}_{i}^{T} \mathbf{x}^{k}-b_{i}=0 \forall i \in I_{k}$. Set $\lambda_{i}=0 \forall i \notin I_{k}$
(1) If $\lambda_{i} \geq 0 \forall i \in I_{k}$, by KKT sufficient conditions, x^{k} will be point of global minimum.
(2) If $\lambda_{i}<0$ for some $i \in I_{k}$, then it can be shown that if i is dropped from I_{k}, the active set and (97) is solved then \mathbf{d}^{k} will be a descent direction $\nabla^{T} f\left(\mathbf{x}^{k}\right) \mathbf{d}^{k}<0$ and reduce objective
(2) $\mathrm{d}^{k} \neq 0 \Rightarrow$ we need to further determine α_{k} such that $\mathrm{x}^{k+1}=\mathrm{x}^{k}+\alpha_{k} \mathbf{d}^{k}$ remains
feasible: $\alpha_{k}=\min \left\{1, \min _{\substack{j \notin \mathcal{I}^{k} \\ a^{T} T^{k}<0}} \frac{\mathbf{a}_{j}^{T} x^{k}-b_{j}}{-\mathbf{a}_{j}^{T} d^{k}}\right\}$

Quadratic Optimization: Primal Active-Set Algorithm

Step 1

Input a feasible point, \mathbf{x}^{0}, identify the active set \mathcal{I}^{0}, form matrix $A_{\mathcal{I}^{0}}$, and set $k=0$.
Step 2
Compute $\mathrm{g}^{k}=Q \mathrm{x}^{k}+\mathbf{c}$.
Check the rank condition $\operatorname{rank}\left[A_{\mathcal{I}^{k}}^{T} \mathrm{~g}^{k}\right]=\operatorname{rank}\left[A_{\mathcal{I}^{k}}^{T}\right]$. If it does not hold, go to Step 4.
Step 3
Solve the system $A_{\mathcal{I}^{k}}^{T} \widehat{\lambda}=\mathrm{g}^{k}$. If $\widehat{\lambda} \geq \mathbf{0}$, output x^{k} as the solution and stop; otherwise, remove the index that is associated with the most negative Lagrange multiplier (some $\widehat{\lambda}_{t}$) from \mathcal{I}^{k}.

Step 4

Compute the value of \mathbf{d}^{k} :

$$
\begin{array}{rll}
\mathbf{d}^{k}=\underset{\mathbf{d}}{\operatorname{argmin}} & \frac{1}{2} \mathbf{d}^{T} Q \mathbf{d}+\left(\mathbf{g}^{k}\right)^{T} \mathbf{d} \\
& \text { subject to } & \mathbf{a}_{i}^{T} \mathbf{d}=0 \tag{98}
\end{array} \quad \text { for } i \in \mathcal{I}^{k}
$$

Quadratic Optimization: Primal Active-Set Algorithm

Step 5

$$
\begin{equation*}
\alpha_{k}=\min \left\{1, \min _{\substack{j \neq \mathcal{I}^{k} \\ \mathbf{a}_{j}^{T} \mathbf{d}^{k}<0}} \frac{\mathbf{a}_{j}^{T} \mathbf{x}^{k}-b_{j}}{-\mathbf{a}_{j}^{T} \mathbf{d}^{k}}\right\} \tag{99}
\end{equation*}
$$

Set $\mathbf{x}^{k+1}=\mathbf{x}^{k}+\alpha_{k} \mathbf{d}^{k}$.
Step 6
If $\alpha_{k}<1$, construct \mathcal{I}^{k+1} by adding the index that yields the minimum value of α_{k} in (99). Otherwise, let $\mathcal{I}^{k+1}=\mathcal{I}^{k}$.
Step 7
Set $k=k+1$ and repeat from Step 2.
Figure 34: Optimization for the quadratic problem in (96) using Primal Active-set Method.

[^0]: ${ }^{17}$ of original problem

[^1]: ${ }^{18}$ of original problem

[^2]: ${ }^{20}$ All convex optimization problems of the form discussed so far can be cast in this form.

[^3]: ${ }^{20}$ All convex optimization problems of the form discussed so far can be cast in this form.

