(Log) Barrier methods

3 996

化回应 化硼化 化氯化 化氯化

Barrier Methods for Constrained Optimization

Consider a more general constrained optimization problem

$$\min_{\mathbf{x}\in\mathbf{R}^n} f(\mathbf{x})$$

s.t. $g_i(\mathbf{x}) \le 0 \ i = 1...m$
and $A\mathbf{x} = \mathbf{b}$

Possibly reformulations of this problem include:

$$\min_{x} f(x) + \lambda B(x)$$

where B is a **barrier function** like

- **9** $B(x) = \frac{\rho}{2} \|A\mathbf{x} \mathbf{b}\|^2$ (in Augmented Langragian for a specific type of strong convexity wrt $\|.\|^2$))
- **2** $B(x) = \sum I_{g_i}(\mathbf{x})$ (Projected Gradient Descent: built on this & a linear approximation to $f(\mathbf{x})$)
- 3 $B(\mathbf{x}) = \phi_{g_i}(\mathbf{x}) = -\frac{1}{t} \log \left(-g_i(\mathbf{x})\right)$
 - Here, $-\frac{1}{t}$ is used instead of λ . Lets discuss this in more details

Barrier Method: Example

As a very simple example, consider the following inequality constrained optimization problem.

minimize x^2 subject to x > 1

The logarithmic barrier formulation of this problem is

minimize $x^2 - \mu \ln (x-1)$

The unconstrained minimizer for this convex logarithmic barrier function is $\widehat{\mathbf{x}}(\mu) = \frac{1}{2} + \frac{1}{2}\sqrt{1+2\mu}$. As $\mu \to 0$, the optimal point of the logarithmic barrier problem approaches the actual point of optimality $\widehat{\mathbf{x}} = 1$ (which, as we can see, lies on the boundary of the feasible region). The generalized idea, that as $\mu \to 0$, $f(\hat{\mathbf{x}}) \to p^*$ (where p^* is the optimal for primal) will be proved next.

> November 9, 2018

341 / 429

Barrier Method and Linear Program

Recap:

Problem type	Objective Function	Constraints	$L^*(\lambda)$	Dual constraints	Strong duality
Linear Program	c'x	$A\mathbf{x} \leq \mathbf{b}$	$-\mathbf{b}'\lambda$	$A'\lambda + \mathbf{c} = 0$	Feasible primal

< 🗆

ж

November 9, 2018

200

342 / 429

What are necessary conditions at primal-dual optimality?

• ..

• ..

Log Barrier (Interior Point) Method

• The log barrier function is defined as

$$B(x) = \phi_{g_i}(\mathbf{x}) = -\frac{1}{t} \log \left(-g_i(\mathbf{x})\right)$$

- Approximates $\sum I_{g_i}(\mathbf{x})$ (better approximation as $t o \infty$)
- $f(\mathbf{x}) + \sum_i \phi_{g_i}(\mathbf{x})$ is convex if f and g_i are convex Why? $\phi_{g_i}(\mathbf{x})$ is negative of monotonically increasing concave function (log) of a concave function $-g_i(\mathbf{x})$
- Let λ_i be lagrange multiplier associated with inequality constraint $g_i(\mathbf{x}) \leq 0$
- We've taken care of the inequality constraints, lets also consider an equality constraint $A\mathbf{x} = \mathbf{b}$ with corresponding langrage multipler (vector) ν

Log Barrier Method (contd.) (KKT based intepretation)

• Our objective becomes

$$\min_{x} f(x) + \sum_{i} \left(-\frac{1}{t} \right) \log \left(-g_{i}(x) \right)$$

st $Ax = b$

200

344 / 429

November 9, 2018

- At different values of t, we get different $x^*(t)$
- Let $\lambda_i^*(t) =$
- First-order necessary conditions for optimality (and strong duality)¹⁷ at $x^*(t)$, $\lambda_i^*(t)$:
 - ...
 ...
 ...
 - ···
- ٩

¹⁷of original problem

★ ...

• Our objective becomes

$$\min_{x} f(x) + \sum_{i} \left(-\frac{1}{t} \right) \log \left(-g_{i}(x) \right)$$

s.t. $Ax = b$

- At different values of t, we get different x^*
- Let $\lambda_i^*(t) = \frac{-1}{t g_i(x^*(t))}$
- First-order necessary conditions for optimality (and strong duality)¹⁸ at $x^*(t)$, $\lambda_i^*(t)$:
 - g_i(x*(t)) ≤ 0
 Ax*(t) = b
 ∇f(x*(t)) + ∑_{i=1}^m λ_i*(t)∇g_i(x*(t)) + ν*(t)^TA = 0
 λ_i*(t) ≥ 0
 ★ Since g_i(x*(t)) ≤ 0 and t ≥ 0
- All above conditions hold at optimal solution $\mathbf{x}(t), \nu(t)$, of barrier problem $\Rightarrow (\lambda_i^*(t), \nu^*(t))$ are dual feasible. (onlt complementary slackness is violated) ¹⁸of original problem

Log Barrier Method & Duality Gap (KKT based intepretation)

• If necessary conditions are satisfied and if f and g_i 's are convex, and g_i 's strictly feasible, the conditions are also sufficient. Thus, $(x^*(t), \lambda_i^*(t), \nu^*(t))$ form a critical point for the Lagrangian

$$L(\mathbf{x}, \lambda, \nu) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \nu^{\top} (A\mathbf{x} - \mathbf{b})$$

• Lagrange dual function

$$L^*(\lambda, \nu) = \min_{\mathbf{x}} L(\mathbf{x}, \lambda, \nu)$$

$$L^* \left(\lambda^*(t), \nu^*(t) \right) = f \left(\mathbf{x}^*(t) \right) + \sum_{i=1}^m \lambda_i^*(t) g_i \left(\mathbf{x}^*(t) \right) + \nu^*(t)^\top \left(A \mathbf{x}^*(t) - \mathbf{b} \right)$$
$$= \mathbf{f} \left(\mathbf{x}^*(t) \right) - \mathbf{m}/t$$

200

346 / 429

November 9, 2018

- m/t... is the duality gap upperbound
- As $t \to \infty$, duality gap $\to .$

Log Barrier Method & Duality Gap (KKT based intepretation)

• If necessary conditions are satisfied and if f and g_i 's are convex, and g_i 's strictly feasible, the conditions are also sufficient. Thus, $(x^*(t), \lambda_i^*(t), \nu^*(t))$ form a critical point for the Lagrangian

$$L(\mathbf{x}, \lambda, \nu) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \nu^{\top} (A\mathbf{x} - \mathbf{b})$$

• Lagrange dual function

$$L^*(\lambda,\nu) = \min_{\mathbf{x}} L(\mathbf{x},\lambda,\nu)$$
$$L^*(\lambda^*(t),\nu^*(t)) = f(\mathbf{x}^*(t)) + \sum_{i=1}^m \lambda_i^*(t)g_i(\mathbf{x}^*(t)) + \nu^*(t)^\top (A\mathbf{x}^*(t) - \mathbf{b})$$
$$= f(\mathbf{x}^*(t)) - \frac{m}{t}$$

- $\frac{m}{t}$ here is called the *duality gap*
- ► As $t \to \infty$, duality gap $\to 0$, but computing optimal solution $\mathbf{x}(t)$ to barrier problem will be that harder

November 9, 2018

347 / 429

Log Barrier Method & Duality Gap (KKT based intepretation)

- At optimality, primal optimal = dual optimal *i.e.* $p^* = d^*$
- From weak duality,

$$egin{aligned} &fig(\mathbf{x}^*(t)ig)-rac{m}{t}\leq eta^* \ &\implies fig(\mathbf{x}^*(t)ig)-eta^*\leq rac{m}{t} \end{aligned}$$

- The duality gap is always $\leq \frac{m}{t}$
- ▶ The more we increase *t*, the smaller will be the duality gap

Log Barrier method: Start with small t (conservative about feasibility set Iteratively solve the barrier formulation (start with solution to prev iteration increase value of t

November 9, 2018

348 / 429

The Log Barrier Method

Also known as sequential unconstrained minimization technique (SUMT) & barrier method & path-following method

1 Start with $t = t^{(0)}$, $\mu > 1$, and consider ϵ tolerance 2 Repeat INNER ITERATION: (solved using Dual Ascent or Augment Lagrangian) Newton algo especially good for this Solve $\mathbf{x}^{*}(t) = \operatorname*{argmin}_{x} f(\mathbf{x}) + \sum_{i=1}^{m} \left(-\frac{1}{t}\right) \log\left(-g_{i}(x)\right)$ for solving for $x^{*}(t)$, initialize s.t. Ax = busing x*(t-1) 2 If $\frac{m}{t} < \epsilon$, Quit else, set $t = \frac{\mu}{t}$ Scale up the value of t multiplicatively in everv outer iteration

The Log Barrier Method

Also known as sequential unconstrained minimization technique (SUMT) & barrier method & path-following method

- **③** Start with $t = t^{(0)}$, $\mu > 1$, and consider ϵ tolerance
- 2 Repeat
 - Solve

$$\mathbf{x}^{*}(t) = \operatorname*{argmin}_{x} f(\mathbf{x}) + \sum_{i=1}^{m} \left(-\frac{1}{t}\right) \log\left(-g_{i}(x)\right)$$

s.t. $Ax = b$

2 If $\frac{m}{t} < \epsilon$, Quit else, set $t = \mu t$

Note: Computing $\mathbf{x}^*(t)$ exactly is not necessary since the central path has no significance other than that it leads to a solution of the original problem for $t \to \infty$; Also small $\mu \Rightarrow$ faster inner iterations. Large $\mu \Rightarrow$ faster outer iterations.

Since x*(t-1) will not be far from x*(t)

Upper bound on duality gap will shrink quickly one

November 9, 2018

349 / 429

Central path for an LP with n = 2 and m = 6. The dashed curves show three contour lines of the logarithmic barrier function φ . The central path converges to the optimal point x^* as t $\rightarrow \infty$. Also shown is the point on the central path with t = 10. [Figure source: Boyd & Vandenberghe]

- \bullet In the process, we can also obtain $\lambda^*(t)$ and $\nu^*(t)$
- Convergence of outer iterations:

We get
$$\epsilon$$
 accuracy after $\left(\frac{\log\left(\frac{m}{\epsilon t^{(0)}}\right)}{\log(\mu)}\right)$ updates of t

ж.

200

< 🗆 🕨

< **1**

• The inner optimization in the iterative algorithm using a barrier method,

$$\mathbf{x}^{*}(t) = \operatorname*{argmin}_{x} f(x) + \sum_{i} \left(-\frac{1}{t}\right) \log\left(-g_{i}(x)\right)$$

s.t.
$$A\mathbf{x} = b$$

200

351 / 429

November 9, 2018

can be solved using (sub)gradient descent starting from older value of x from previous iteration

• We must start with a strictly feasible \mathbf{x}_i otherwise $-\log(-g_i(\mathbf{x})) \to \infty$

How to find a strictly feasible $\mathbf{x}^{(0)}\boldsymbol{?}$

 $\mathbf{T} \rightarrow \mathbf{F}$ 352 / 429 November 9, 2018

A D > A B > A B

900

ж.

How to find a strictly feasible $\mathbf{x}^{(0)}$?

Basic Phase I method

$$\mathbf{x}^{(0)} = \operatorname*{argmin}_{\mathbf{x}} \Gamma$$

s.t. $g_i(\mathbf{x}) \leq \Gamma$

- We solve this using the barrier method, and thus will also need a strictly feasible starting $\hat{\mathbf{x}}^{(0)}$
- Here,

$$\Gamma = \max_{i=1\dots m} g_i(\hat{\mathbf{x}}^{(0)}) + \delta$$

200

353 / 429

November 9, 2018

where, $\delta > 0$

• *i.e.* Γ is slightly larger than the largest $g_i(\hat{\mathbf{x}}^{(0)})$

- On solving this optimization for finding $\mathbf{x}^{(0)}$,
 - If $\Gamma^* < 0$, $\mathbf{x}^{(0)}$ is strictly feasible
 - If $\Gamma^* = 0$, $\mathbf{x}^{(0)}$ is feasible (but not strictly) If $\Gamma^* > 0$, $\mathbf{x}^{(0)}$ is not feasible
- A slightly 'richer' problem can consider different Γ_i for each g_i , to improve numerical precision

$$\mathbf{x}^{(0)} = \underset{\mathbf{x}}{\operatorname{argmin}} \Gamma_{i}$$

s.t. $g_{i}(\mathbf{x}) \leq \Gamma_{i}$ min over i

200

354 / 429

November 9, 2018

Choice of a good $\hat{\bf x}^{(0)}$ or ${\bf x}^{(0)}$ depends on the nature/class of the problem, use domain knowledge to decide it

- We need not obtain $\mathbf{x}^*(t)$ exactly from each outer iteration
- If not solving for $\mathbf{x}^*(t)$ exactly, we will get ϵ accuracy after more than $\left(\frac{\log\left(\frac{m}{\epsilon t^{(0)}}\right)}{\log(\mu)}\right)$

updates of t

- However, solving the inner iteration exactly may take too much time
- Fewer inner loop iterations correspond to more outer loop iterations

TRADEOFFS

- We need not obtain $\mathbf{x}^*(t)$ exactly from each outer iteration
- If not solving for $\mathbf{x}^*(t)$ exactly, we will get ϵ accuracy after more than $\left(\frac{\log\left(\frac{m}{\epsilon t^{(0)}}\right)}{\log(\mu)}\right)$

updates of t

- However, solving the inner iteration exactly may take too much time
- Fewer inner loop iterations correspond to more outer loop iterations
- Second order descent algorithms (such as Newton Descent) found effective in such settings for following reasons:

November 9, 2018

200

356 / 429

- ${\ensuremath{\, \bullet }}$ We need not obtain ${\ensuremath{\mathbf x}}^*(t)$ exactly from each outer iteration
- If not solving for $\mathbf{x}^*(t)$ exactly, we will get ϵ accuracy after more than $\left(\frac{\log\left(\frac{m}{\epsilon t^{(0)}}\right)}{\log(\mu)}\right)$

- However, solving the inner iteration exactly may take too much time
- Fewer inner loop iterations correspond to more outer loop iterations
- Second order descent algorithms (such as Newton Descent) found effective in such settings for following reasons:
 Recall: Curvature naturally characterized by the Hessian
 - Accounts for curvature of the function; useful to converge to $\mathbf{x}(\mu t)$ quickly from $\mathbf{x}(t)$.
 - Quadratic convergence when close to $\mathbf{x}^*(t)$ Proved in Boyd
 - Less (or no) dependence on step size t^k
- Accouting for curvature reduces sensitivity to step size

November 9, 2018

200

356 / 429

Second Order Descent and Approximations Sections 4.5.2 - 4.5.6 of BasicsOfConvexOptimization.pdf

າງ

357 / 429

November 9, 2018

November 9, 2018 358 / 429

Newton's Algorithm as a Steepest Descent Method

- This choice of $\Delta \mathbf{x}^{k+1}$ corresponds to the direction of steepest descent under the matrix norm¹⁹ induced by the Hessian $\nabla^2 f(\mathbf{x}^k)$: $\Delta \mathbf{x}^{(k)} = \operatorname{argmin} \left\{ \nabla^T f(\mathbf{x}^{(k)}) \mathbf{v} \mid ||\mathbf{v}||_{\nabla^2 f(\mathbf{x}^k)} = 1 \right\}.$
- Equivalently, based on approximating a function around the current iterate $\mathbf{x}^{(k)}$ using a second degree Taylor expansion.

$$Q(\mathbf{x}) \approx \widetilde{f}(\mathbf{x}) = f(\mathbf{x}^{(k)}) + \nabla^T f(\mathbf{x}^{(k)})(\mathbf{x} - \mathbf{x}^{(k)}) + \frac{1}{2}(\mathbf{x} - \mathbf{x}^{(k)})^T \nabla^2 f(\mathbf{x}^{(k)})(\mathbf{x} - \mathbf{x}^{(k)})$$

200

358 / 429

November 9, 2018

• Convex $f \Rightarrow$ Hessian is positive semi-definite Q(x) will ALSO be convex

$$^{19} \left(\mathbf{v}^T \nabla^2 f(\mathbf{x}^k) \mathbf{v} \right)^{\frac{1}{2}}$$

Newton's Algorithm as a Steepest Descent Method

- This choice of $\Delta \mathbf{x}^{k+1}$ corresponds to the direction of steepest descent under the matrix norm¹⁹ induced by the Hessian $\nabla^2 f(\mathbf{x}^k)$: $\Delta \mathbf{x}^{(k)} = \operatorname{argmin} \left\{ \nabla^T f(\mathbf{x}^{(k)}) \mathbf{v} \mid ||\mathbf{v}||_{\nabla^2 f(\mathbf{x}^k)} = 1 \right\}.$
- Equivalently, based on approximating a function around the current iterate $\mathbf{x}^{(k)}$ using a second degree Taylor expansion.

$$Q(\mathbf{x}) \approx \widetilde{f}(\mathbf{x}) = f(\mathbf{x}^{(k)}) + \nabla^{T} f(\mathbf{x}^{(k)})(\mathbf{x} - \mathbf{x}^{(k)}) + \frac{1}{2}(\mathbf{x} - \mathbf{x}^{(k)})^{T} \nabla^{2} f(\mathbf{x}^{(k)})(\mathbf{x} - \mathbf{x}^{(k)})$$

- Convex $f \Rightarrow$ convex quadratic approximation. Newton's method is based on solving the approximation exactly
- Setting gradient of quadratic approximation (with respect to \mathbf{x}) to $\mathbf{0}$ gives

$$\nabla^{\mathsf{T}} f(\mathbf{x}^{(k)}) + \nabla^2 f(\mathbf{x}^{(k)})(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) = 0$$

November 9, 2018

358 / 429

Assuming $\nabla^2 f(\mathbf{x}^k)$ is invertible, next iterate is $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \left(\nabla^2 f(\mathbf{x}^{(k)})\right)^{-1} \nabla f(\mathbf{x}^{(k)})$ $\underbrace{\nabla^2 f(\mathbf{x}^k) \mathbf{v}}_{1} = \underbrace{\nabla^2 f(\mathbf{x}^k) \mathbf{v}}_{2} = \underbrace{\nabla^2 f(\mathbf{x}^k) \mathbf{v}}_{1} = \underbrace{\nabla^2 f(\mathbf{x}^k) \mathbf{v}}_{2} = \underbrace{\nabla^2 f(\mathbf{$

Newton's Algorithm as a Steepest Descent Method

Find a starting point $\mathbf{x}^{(0)} \in \mathcal{D}$. **Select** an appropriate tolerance $\epsilon > 0$. repeat 1. Set $\Delta \mathbf{x}^{(k)} = -\left(\nabla^2 f(\mathbf{x}^{(k)})\right)^{-1} \nabla f(\mathbf{x}).$ 2. Let $\lambda^2 = \nabla^T f(\mathbf{x}^{(k)}) \left(\nabla^2 f(\mathbf{x}^{(k)})\right)^{-1} \nabla f(\mathbf{x}^{(k)}) \Leftrightarrow$ Directional derivative in the Newton Direction 3. If $\frac{\lambda^2}{2} \leq \epsilon$, quit. 4. Set step size $\underline{t}^{(k)} = 1$. Obtain $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + t^{(k)} \Delta \mathbf{x}^{(k)}$. 5. Set k = k + 1. until

Figure 32: The Newton's method which typically uses a step size of 1. $\Delta \mathbf{x}^{(k)}$ can be shown to be always a Descent Direction (Theorem 83 of notes). For $\mathbf{x} \in \Re^n$, each Newton's step takes $O(n^3)$ time (without using any fast matrix multiplication methods). Most expensive step: Computing Hessian inverse

November 9, 2018 359 / 429

Variants of Newtons's Method

- Special Cases: When Objective function is a composition of two functions (such as Loss / over some Prediction function m): Gauss Newton Approximation (Section 4.5.4 of BasicsOfConvexOptimization.pdf) and Levenberg-Marquardt (Section 4.5.5)
- Quasi-Newton Algorithms: When Hessian inverse $\left(\nabla^2 f(\mathbf{x}^{k+1})\right)^{-1}$ is approximated by a matrix B^{k+1} such that
 - gradient of quadratic approximation $Q(\mathbf{x}^k)$ agrees at \mathbf{x}^k and \mathbf{x}^{k+1}
 - B^{k+1} is as close as possible to B^k in some norm (such as the Frobenius norm)

See BFGS (Section 4.5.6), LBFGS etc.

Cutting Plane Algorithm (Invoking Linear Programs for Non-linear constraints)

: ৩৭৫ 361 / 429

November 9, 2018

Cutting Plane Algorithm

Consider amother general formulation of convex optimization problems²⁰:

minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to $g_j(\mathbf{x}) \leq 0$ for $j = 1, 2, ..., m$

where
$$g_i(\mathbf{x})$$
 are convex functions.

• How can every convex optimization problem be presented in this form?

(92)

²⁰All convex optimization problems of the form discussed so far can be cast in this form.

Cutting Plane Algorithm

Consider amother general formulation of convex optimization problems²⁰:

minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to $g_j(\mathbf{x}) \leq 0$ for $j = 1, 2, ..., m$

where $g_j(\mathbf{x})$ are convex functions.

- How can every convex optimization problem be presented in this form? For objective function $f(\mathbf{x})$, translate it into a constraint $f(\mathbf{x}) c \leq 0$ and minimize c
- Let $s_j(x^i)$ be a subgradient for g_j at x^i . By definition of subgradient

(92)

²⁰All convex optimization problems of the form discussed so far can be cast in this form.

Cutting Plane Algorithm

Consider amother general formulation of convex optimization problems²⁰:

minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to $g_j(\mathbf{x}) \leq 0$ for $j = 1, 2, ..., m$

where $g_j(\mathbf{x})$ are convex functions.

- How can every convex optimization problem be presented in this form? For objective function $f(\mathbf{x})$, translate it into a constraint $f(\mathbf{x}) c \leq 0$ and minimize c
- Let $\mathbf{s}_j(\mathbf{x}^i)$ be a subgradient for g_j at \mathbf{x}^i . By definition of subgradient $g_j(\mathbf{x}) \ge g_j(\mathbf{x}^i) + \mathbf{s}_j^T(\mathbf{x}^i)(\mathbf{x} \mathbf{x}^i)$ for all $\mathbf{x} \in dom(g_j)$. [Eg: $\mathbf{s}_j(\mathbf{x}^i)$ could be $\nabla g_j(\mathbf{x}^i)$]

(92)

²⁰All convex optimization problems of the form discussed so far can be cast in this form.

Cutting Plane Algorithm (contd.)

• Since we are restricting the search to \mathbf{x} such that $g_j(\mathbf{x}) \leq 0$,

The tangent hyperplane lower bound to g_j shopuld necessarily be also <= 0

Cutting Plane Algorithm (contd.)

- Since we are restricting the search to \mathbf{x} such that $g_j(\mathbf{x}) \leq 0$, $0 \geq g_j(\mathbf{x}^i) + \mathbf{s}_j^T(\mathbf{x}^i)(\mathbf{x} \mathbf{x}^i)$ for all $\mathbf{x} \in dom(g_j)$
- When the last inequality is enumerated for all values of *i* and *j*, we get several linear constraints:

 $\mathbf{s}_j^T(\mathbf{x}^i)\mathbf{x} \leq \mathbf{s}_j^T(\mathbf{x}^i)\mathbf{x}^i - g_j(\mathbf{x}^i)$ for fixed *i* and all *j* and $\mathbf{x} \in dom(g_j) \equiv A_i\mathbf{x} \leq A_i\mathbf{x}^i - \mathbf{g}_i$

$$\mathcal{A}_{i} = \begin{bmatrix} \mathbf{s}_{1}(\mathbf{x}^{i}) \\ \mathbf{s}_{2}(\mathbf{x}^{i}) \\ \cdot \\ \cdot \\ \mathbf{s}_{m}(\mathbf{x}^{i}) \end{bmatrix} \quad \mathbf{g}_{i} = \begin{bmatrix} g_{1}(\mathbf{x}^{i}) \\ g_{2}(\mathbf{x}^{i}) \\ \cdot \\ \cdot \\ g_{m}(\mathbf{x}^{i}) \end{bmatrix}$$

(93)

200

363 / 429

November 9, 2018

Cutting Plane Algorithm (contd.) $x^{0} \rightarrow x^{1} \rightarrow x^{2} \dots \rightarrow x^{k}$

• Stacking all the A_i's and g_i's together

$$A^{k} = \begin{bmatrix} A_{0} \\ A_{1} \\ . \\ . \\ A_{k} \end{bmatrix} \quad \mathbf{b}^{k} = \begin{bmatrix} A_{0}\mathbf{x}^{0} - \mathbf{g}_{0} \\ A_{1}\mathbf{x}^{1} - \mathbf{g}_{1} \\ . \\ . \\ A_{k}\mathbf{x}^{k} - \mathbf{g}_{k} \end{bmatrix}$$

• With this, the necessary feasible conditions are: $A^k \mathbf{x} \leq \mathbf{b}^k$

• Idea: Solve the following LP iteratively, until all original constraints are respected:

As k increases, number $\mathbf{x}_*^k = \underset{\mathbf{x}}{\operatorname{argmin}} \mathbf{c}^T \mathbf{x}$ of constraints increases \mathbf{x} making it more and more likely subject to $A^k \mathbf{x} \leq \mathbf{b}^k$ that the original constraints are satisified (94)

Kelly's Cutting Plane Algorithm (contd.)

Step 1 Input an initial feasible point, \mathbf{x}^0 and set k = 0. **Step 2:** Evaluate A^k and \mathbf{b}^k Step 3 Solve the LP problem $\begin{aligned} \mathbf{x}^k_* = & \underset{\mathbf{x}}{\operatorname{argmin}} & \mathbf{c}^\mathsf{T}\mathbf{x} \\ & \underset{\text{subject to}}{\overset{\mathbf{x}}{\operatorname{b}}} & \mathcal{A}^k\mathbf{x} \leq \mathbf{b}^k \end{aligned}$ Step 4 If max $\{g_i(\mathbf{x}_*^k), 1 \leq j \leq m\} < \epsilon$ output $\mathbf{x}_* = \mathbf{x}_*^k$ as the point of optimality and stop. Otherwise, set k = k + 1, $\mathbf{x}^{k+1} = \mathbf{x}_{*}^{k}$, update A^{k} and \mathbf{b}^{k} from (94) using (93) and repeat from Step 3.

Figure 33: Optimization for the convex problem in (92) using Kelly's cutting plane algorithm.

200

365 / 429

November 9, 2018

Primal Active-Set Algorithm (Lazy Projection Methods)

Interior point algo forced feasibility at every step Projection methods force projection at every step Active set==> Keep track of set of active and inactive constraints and be lazy in projection

900

366 / 429

November 9, 2018

minimize
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T Q \mathbf{x} + \mathbf{c}^T \mathbf{x} + \beta$$

subject to $A\mathbf{x} \ge \mathbf{b}$

(95)

ж

200

367 / 429

< 🗆 🕨

- C 🗖

November 9, 2018

where $Q \succ 0$. The KKT conditions are:

minimize
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T Q \mathbf{x} + \mathbf{c}^T \mathbf{x} + \beta$$

subject to $A \mathbf{x} \ge \mathbf{b}$

(95)

ж.

November 9, 2018

200

367 / 429

< D > < m

where $Q \succ 0$. The KKT conditions are:

•
$$Q\widehat{\mathbf{x}} + c - \sum_{i=1}^{m} \widehat{\lambda}_i \mathbf{a}_i = 0$$

m

•
$$\widehat{\lambda}_i(\mathbf{a}_i^T \widehat{\mathbf{x}} - b_i) = 0$$
 for $i = 1..m$

•
$$\widehat{\lambda}_i \ge 0$$
 for $i = 1..m$

• $A\widehat{\mathbf{x}} \ge \mathbf{b}...$

minimize
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T Q \mathbf{x} + \mathbf{c}^T \mathbf{x} + \beta$$

subject to $A \mathbf{x} \ge \mathbf{b}$

where $Q \succ 0$. The KKT conditions are:

•
$$Q\widehat{\mathbf{x}} + c - \sum_{i=1}^{m} \widehat{\lambda}_i \mathbf{a}_i = 0$$

m

•
$$\widehat{\lambda}_i(\mathbf{a}_i^T \widehat{\mathbf{x}} - b_i) = 0$$
 for $i = 1..m$

• $\widehat{\lambda}_i \ge 0$ for i = 1..m

• $A\widehat{\mathbf{x}} \ge \mathbf{b}$... If $\widehat{\mathbf{x}}$ lies in interior of feasible region then corresponding lambdas should be 0

(95)

200

minimize
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T Q \mathbf{x} + \mathbf{c}^T \mathbf{x} + \beta$$

subject to $A\mathbf{x} \ge \mathbf{b}$

(95)

200

367 / 429

November 9, 2018

where $Q \succ 0$. The KKT conditions are:

• $Q\hat{\mathbf{x}} + c - \sum_{i=1}^{m} \hat{\mathbf{\lambda}}_i \mathbf{a}_i = 0$

•
$$\widehat{\lambda}_i(\mathbf{a}_i^T \widehat{\mathbf{x}} - b_i) = 0$$
 for $i = 1..m$

- $\widehat{\lambda}_i \ge 0$ for i = 1..m
- $A\widehat{\mathbf{x}} \geq \mathbf{b}...$ If $\widehat{\mathbf{x}}$ lies in interior of feasible region then
 - $\widehat{\boldsymbol{\lambda}} = 0$ $\widehat{\boldsymbol{x}} = -Q^{-1}\mathbf{c}$

minimize
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T Q \mathbf{x} + \mathbf{c}^T \mathbf{x} + \beta$$

subject to $A \mathbf{x} \ge \mathbf{b}$

200

where $Q \succ 0$. The KKT conditions are:

•
$$Q\widehat{\mathbf{x}} + \mathbf{c} - \sum_{i=1}^{\infty} \widehat{\lambda}_i \mathbf{a}_i = 0$$

m

•
$$\widehat{\lambda}_i(\mathbf{a}_i^T \widehat{\mathbf{x}} - b_i) = 0$$
 for $i = 1..m$

- $\widehat{\lambda}_i \ge 0$ for i = 1..m
- $A\widehat{\mathbf{x}} \geq \mathbf{b}$... If some $\mathbf{a}_i^T \mathbf{x}^* = b_i$ for some $i \in I^*$ (index set of active constraints) then

minimize
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T Q \mathbf{x} + \mathbf{c}^T \mathbf{x} + \beta$$

subject to $A \mathbf{x} \ge \mathbf{b}$

where $Q \succ 0$. The KKT conditions are:

•
$$Q\widehat{\mathbf{x}} + c - \sum_{i=1}^{m} \widehat{\lambda}_i \mathbf{a}_i = 0$$

m

•
$$\widehat{\lambda}_i(\mathbf{a}_i^T \widehat{\mathbf{x}} - b_i) = 0$$
 for $i = 1..m$

- $\widehat{\lambda}_i \ge 0$ for i = 1..m
- $A\widehat{\mathbf{x}} \ge \mathbf{b}$... If some $\mathbf{a}_i^T \mathbf{x}^* = b_i$ for some $\underline{i \in I}^*$ (index set of active constraints) then, one needs to iteratively solve \mathbf{x}^k and I_k Basic idea: Assume that the only tests one needs to prepare for are the tests happening tomorrow (that is, the index set I_k) and that tests thereafter

(that is, the index set I_k) and that tests thereafter I_k complement) will be dealt with when one gets to them!!

minimize
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T Q \mathbf{x} + \mathbf{c}^T \mathbf{x} + \beta$$

subject to $A \mathbf{x} \ge \mathbf{b}$

where $Q \succ 0$. The KKT conditions are:

•
$$Q\widehat{\mathbf{x}} + c - \sum_{i=1}^{m} \widehat{\lambda}_i \mathbf{a}_i = 0$$

m

•
$$\widehat{\lambda}_i(\mathbf{a}_i^T \widehat{\mathbf{x}} - b_i) = 0$$
 for $i = 1..m$

- $\widehat{\lambda}_i \ge 0$ for i = 1..m
- $A\widehat{\mathbf{x}} \ge \mathbf{b}$... If some $\mathbf{a}_i^T \mathbf{x}^* = b_i$ for some $i \in I^*$ (index set of active constraints) then, one needs to iteratively solve \mathbf{x}^k and I_k

 $\mathbf{3} \ \mathbf{x}^{k+1} = \mathbf{x}^k + \alpha_k \mathbf{d}^k$

Simplified objective: Find $\mathbf{d}^k = \arg\min_{\mathbf{d}} f_k(\mathbf{d})$

How much are we allowed to move so that the active constraints are not violated!

200

$$\mathbf{d}^{k} = \operatorname{argmin}_{\text{subject to}} \quad f_{k}(\mathbf{d}) = \frac{1}{2}\mathbf{d}^{T}Q\mathbf{d} + \mathbf{g}_{k}^{T}\mathbf{d} + c_{k}$$

subject to $\mathbf{a}_{i}\mathbf{d} = 0$ for all $i \in I_{k}$ (97)

where $\mathbf{g}_k = Q\mathbf{x}^k + \mathbf{c}$ and $\mathbf{c}_k = (\mathbf{x}^k)^T Q\mathbf{x}^k + \mathbf{c}^T \mathbf{x}^k$. The idea behind the active set algo is: • $\mathbf{d}^k = 0 \Rightarrow \mathbf{x}^k$ satisfies first order necessary conditions: • $\mathbf{g}^k - \sum_{i \in I_k} \lambda_i \mathbf{a}_i = 0$ which is the same as $rank[A_{\mathcal{I}^k}^T \ \mathbf{g}^k] = rank[A_{\mathcal{I}^k}^T]$

We already know that $\mathbf{a}_i^T \mathbf{x}^k - b_i > 0 \ \forall i \notin I_k$ and $\mathbf{a}_i^T \mathbf{x}^k - b_i = 0 \ \forall i \in I_k$. Set $\lambda_i = 0 \ \forall i \notin I_k$ **1** If $\lambda_i > 0 \ \forall i \in I_k$, by KKT sufficient conditions, \mathbf{x}^k will be point of global minimum.

Q If λ_i < 0 for some i ∈ I_k, then it can be shown that if i is dropped from I_k, the active set and (97) is solved then d^k will be a descent direction ∇^Tf(x^k)d^k < 0 and reduce objective
 Q d^k ≠ 0 ⇒ we need to further determine α_k such that x^{k+1} = x^k + α_kd^k remains

feasible:
$$\alpha_k = \min \left\{ 1, \min_{\substack{j \notin \mathcal{I}^k \\ \mathbf{a}^T \mathbf{d}^k < 0}} \frac{\mathbf{a}_j^T \mathbf{x}^k - b_j}{-\mathbf{a}_j^T \mathbf{d}^k} \right\}$$

Step 1

Input a feasible point, \mathbf{x}^0 , identify the active set \mathcal{I}^0 , form matrix $A_{\mathcal{I}^0}$, and set k = 0. **Step 2** Compute $\mathbf{g}^k = Q\mathbf{x}^k + \mathbf{c}$. Check the rank condition $rank[A_{\mathcal{I}^k}^T \ \mathbf{g}^k] = rank[A_{\mathcal{I}^k}^T]$. If it does not hold, go to **Step 4**. **Step 3** Solve the system $A_{\mathcal{I}^k}^T \hat{\lambda} = \mathbf{g}^k$. If $\hat{\lambda} \ge \mathbf{0}$, output \mathbf{x}^k as the solution and stop; otherwise, remove the index that is associated with the most negative Lagrange multiplier (some $\hat{\lambda}_t$) from \mathcal{I}^k .

Step 4

Compute the value of \mathbf{d}^k :

$$\mathbf{d}^{k} = \underset{\mathbf{d}}{\operatorname{argmin}} \qquad \frac{1}{2} \mathbf{d}^{T} Q \mathbf{d} + (\mathbf{g}^{k})^{T} \mathbf{d}$$
subject to
$$\mathbf{a}_{i}^{T} \mathbf{d} = 0 \qquad \text{for } i \in \mathcal{I}^{k}$$
(98)

Figure 34: Optimization for the quadratic problem in (96) using Primal Active-set Method.

200