HW1: Construct a Topological space that does not have metric

HW1: Construct a Topological space that does not have metric

Consider $X=\{0,1\}$ and $\mathcal{N}=\{\emptyset,\{0\},\{0,1\}\}, N$ is a proper subset of the poweset Consider some metric $d(.,$.$) which is 0$ if both its arguments are the same and 1 otherwise. If d would be such a metric, a neighborhood (ball) of radius 0.5 around 1 , that is $B(1,0.5)$ would equal $\{1\}$, which should have been open. However, $\{1\} \notin \mathcal{N}$. Contradiction!

HW1: Construct a Topological space that does not have metric

Consider $X=\{0,1\}$ and $\mathcal{N}=\{\emptyset,\{0\},\{0,1\}\}$,
Consider some metric $d(.,$.$) which is 0$ if both its arguments are the same and 1 otherwise. If d would be such a metric, a neighborhood (ball) of radius 0.5 around 1 , that is $B(1,0.5$) would equal $\{1\}$, which should have been open. However, $\{1\} \notin \mathcal{N}$. Contradiction! This was a not a proof. To prove formally, you need to show that any metric will have associated open sets that will not belong to this chosen Topology

HW2: Construct a metric space that does not have norm

Consider (again) the discrete metric $d(.,$.$) over a vector space V$. We define $d(.,$.$) to be 0$ if both its arguments are the same and 1 otherwise. While one can verify that this metric satisifies the triangle inequality. What one requires from an equivalent norm $\|\cdot\|_{n}$ is that

HW2: Construct a metric space that does not have norm

Consider (again) the discrete metric $d(.,$.$) over a vector space V$. We define $d(.,$.$) to be 0$ if both its arguments are the same and 1 otherwise. While one can verify that this metric satisifies the triangle inequality. What one requires from an equivalent norm $\|.\|_{n}$ is that for any $\mathbf{x}, \mathbf{y} \in V$, with $\mathbf{x} \neq \mathbf{y}$, for any scalar $\alpha \neq 0$, we must have $\|\alpha \mathbf{x}-\alpha \mathbf{y}\|_{n}=\alpha\|\mathbf{x}-\mathbf{y}\|_{n}$. This measure using the norm can clearly not correspond to the discrete distance metric.

Every Inner product space is a normed vector space: Optional Elaborate Proof

By conjugate symmetry, we have $\langle\mathbf{x}, \mathbf{x}\rangle=\overline{\langle\mathbf{x}, \mathbf{x}\rangle}$. So $\langle\mathbf{x}, \mathbf{x}\rangle$ must be real.
So, we can define $\|\mathrm{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$.
We need to prove that $\|\mathbf{x}\|$ is a valid norm:-
(1) By positive definiteness: $\langle\mathbf{x}, \mathbf{x}>\geq 0$, with equality iff $\mathbf{x}=0$. So $\|\mathrm{x}\| \geq 0(=$ iff $\mathrm{x}=0)$.
(2) For any complex $\mathrm{t},\|t \mathrm{x}\|=\sqrt{ } \overline{<t \mathrm{x}, \mathrm{tx}>}=\sqrt{t * \bar{t}\langle\mathbf{x}, \mathbf{x}\rangle}=|t| \sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$ (as

$$
|t|=\sqrt{t * \bar{t}}) \text { So }\|t \mathrm{x}\|==|t|\|\mathrm{x}\|
$$

(3) $\left\|\mathrm{x}_{1}+\mathrm{x}_{2}\right\|=\sqrt{<\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{x}_{1}+\mathrm{x}_{2}>}=$
$\sqrt{<\mathbf{x}_{1}, \mathbf{x}_{1}>+<\mathbf{x}_{2}, \mathbf{x}_{2}>+<\mathbf{x}_{1}, \mathbf{x}_{2}>+<\mathbf{x}_{2}, \mathbf{x}_{1}>}$
$\leq \sqrt{<\mathbf{x}_{1}, \mathbf{x}_{1}>+<\mathbf{x}_{2}, \mathbf{x}_{2}>+2 \sqrt{<\mathbf{x}_{1}, \mathbf{x}_{1}><\mathbf{x}_{2}, \mathbf{x}_{2}>}}$ (by Cauchy Schwartz inequality)

$$
=\left\|\mathbf{x}_{1}\right\|+\left\|\mathbf{x}_{2}\right\|
$$

Cauchy Shwarz Inequality: $|<\mathbf{u}, \mathbf{v}>| \leq\|\mathbf{u}\|\left\|_{2}\right\| \mathbf{v} \|_{2}$

Proof:

- If $\mathbf{u}=0$ or $\mathbf{v}=0$, then L.H.S. $=$ R.H.S $=0$. Hence the equality holds.
- Assume $\mathbf{u}, \mathbf{v} \neq 0$. Let $\mathbf{z}=\mathbf{u}-\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v}$. the projection of \mathbf{u} on v measured
- By linearity of inner product in first argument, we have: along v $\langle\mathbf{z}, \mathbf{v}\rangle=\left\langle\mathbf{u}-\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v}, \mathbf{v}\right\rangle=\langle\mathbf{u}, \mathbf{v}\rangle-\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle}\langle\mathbf{v}, \mathbf{v}\rangle=0 \mathrm{z}$ is orthogonal to v
- Therefore, $\left\langle\overline{\mathbf{u}, \mathbf{u}\rangle=\langle\mathbf{z}}+\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v}, \mathbf{z}+\underset{\left.\langle\underline{\mathbf{u}, \mathbf{v}\rangle} \mathbf{\langle \mathbf { v } , \mathbf { v } \rangle} \mathbf{v}\rangle=\langle\mathbf{z}, \mathbf{z}\rangle+\left(\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle}\right)^{2}<\mathbf{v}, \mathbf{v}\right\rangle+0}{ }\right.$
- So $\langle\mathbf{u}, \mathbf{u}\rangle \geq \frac{|\langle\mathbf{u}, \mathbf{v}\rangle|^{2}}{\langle\mathbf{v}, \mathbf{v}\rangle}$

Since $<z, z \gg=0$

HW3: Example of normed vector space that is not an inner product space.
infinity norm: $|x|=$ max over i of $\left|x _i\right|$

HW3: Example of normed vector space that is not an inner product space.
$\|\mathbf{x}\|_{p}=\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{\frac{1}{p}}$ for $p \neq 2$. For example, $\mathrm{p}=$ infinty gives infinity norm

HW3: Example of normed vector space that is not an inner product space.

$$
\|\mathbf{x}\|_{p}=\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{\frac{1}{p}} \text { for } p \neq 2 \text {. }
$$

- If $p=2$, we get the (Eucledian) dot product: $\|\mathbf{x}\|_{2}=\left[\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right]^{\frac{1}{2}}=\left[\sum_{i=1}^{n} x_{i} x_{i}\right]^{\frac{1}{2}}=\sqrt{\mathbf{x}^{T} \mathbf{x}}=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle E}$
- Further, any inner product over a finite dimensional space over \Re^{n} (or even \mathbb{C}) can be proved to have a representation in terms of the Eucledian dot product $<\mathbf{x}, \mathbf{y}>_{E}$

HW3: Speciality of Eucledian inner product $<\mathbf{x}, \mathbf{y}>_{E}\left(\right.$ and of $\left.\|\mathbf{x}\|_{2}\right)$ in \Re^{n} Motivation:

- Consider the following inner product on \Re^{2} : For any $\mathbf{x}, \mathbf{y} \in \Re^{2}$, let $\langle\mathrm{x}, \mathrm{y}\rangle=2 x_{1} y_{1}-x_{1} y_{2}-x_{2} y_{1}+4 x_{2} y_{2}$. It can be easily verified that this in an inner product (by checking for linearity, symmetry and positive definiteness by expressing it as a sum of squares). H/w
- This inner product is certainly different from the conventional (Eucledian) dot product $\langle\mathbf{x}, \mathbf{y}\rangle_{E}=x_{1} y_{1}+x_{2} y_{2}$ which corredponds to the $\|.\|_{2}$ norm.
- Is it possible that the $\langle\mathbf{x}, \mathbf{y}\rangle$ defined in step 1 (or some other such inner product) corresponds to $\|\cdot\|_{p}$ norm for $p \neq 2$?

HW3: Speciality of Eucledian inner product $<\mathbf{x}, \mathbf{y}>_{E}$ (and of $\|\mathrm{x}\|_{2}$) in \Re^{n} Motivation:

- Consider the following inner product on \Re^{2} : For any $\mathbf{x}, \mathbf{y} \in \Re^{2}$, let $<\mathbf{x}, \mathbf{y}\rangle=2 x_{1} y_{1}-x_{1} y_{2}-x_{2} y_{1}+4 x_{2} y_{2}$. It can be easily verified that this in an inner product (by checking for linearity, symmetry and positive definiteness by expressing it as a sum of squares).
- This inner product is certainly different from the conventional (Eucledian) dot product $<\mathbf{x}, \mathbf{y}>_{E}=x_{1} y_{1}+x_{2} y_{2}$ which corredponds to the $\|\cdot\|_{2}$ norm.
- Is it possible that the $\langle\mathbf{x}, \mathbf{y}\rangle$ defined in step 1 (or some other such inner product) corresponds to $\|\cdot\|_{p}$ norm for $p \neq 2$?
In \Re^{n}, it can be proved that for any inner product vector space $(\mathcal{V},<,,>)$, the inner product $<., .>$ (including the Eucledian one) can be represented using the basis $\mathbf{e}_{1} . . \mathbf{e}_{i} . . \mathbf{e}_{n}$ as:
$<\mathbf{u}, \mathbf{v}>=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} b_{j}<\mathbf{e}_{i}, \mathbf{e}_{j}>=\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{a}^{T} E \mathbf{b}=<\mathbf{a}^{T}, \mathbf{b}>_{E}$ where $\mathbf{u}=\sum_{i=1}^{n} a_{j} \mathbf{e}_{i}$ and

HW3: Speciality of Eucledian inner product $<\mathbf{x}, \mathbf{y}>_{E}\left(\right.$ and of $\left.\|\mathbf{x}\|_{2}\right)$ in \Re^{n} Proof:

- In \Re^{n}, it can be proved that for any inner product vector space $(\mathcal{V},<., .>)$, the inner product $<., .>$ (including the Eucledian one) can be represented as $<\mathbf{u}, \mathbf{v}>=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} b_{j}<\mathbf{e}_{i}, \mathbf{e}_{j}>=\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{a}^{T} E \mathbf{b}=<\mathbf{a}^{T}, \mathbf{b}>_{E} \quad$ In terms of
- Here, $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ is a basis for the inner product vector space.
- The inner product $<,,.\rangle_{E}$ is the eucledian inner product. That is, $<., .>_{E}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} b_{j}$.

The (symmetric positive definite) matrix E is defined as

E is defined in terms
of the new
inner product

\cdot \& \& \\
\left.<\mathbf{e}_{n}, \mathbf{e}_{1}\right\rangle \& \left.<\mathbf{e}_{n}, \mathbf{e}_{2}\right\rangle \& ··· ··· \& \left.<\mathbf{e}_{n}, \mathbf{e}_{n}\right\rangle\end{array}\right]\)

- Note that in \Re^{n}, any inner product vector space $\left.(\mathcal{V},<\ldots\rangle.\right)$ will have a basis of size at most n.

HW3: Speciality of Eucledian inner product $<\mathbf{x}, \mathbf{y}>_{E}\left(\right.$ and of $\left.\|\mathbf{x}\|_{2}\right)$ in \Re^{n}

Thus, any inner product $<., .>$ in \Re^{n} can be expressed as a Eucledian inner product $<, .,>_{E}$, with possible rotation using a matrix R where $E=R R^{\top}$ is a symmetric positive definite matrix ${ }^{5}$

[^0]HW3: Speciality of Eucledian inner product $<\mathbf{x}, \mathbf{y}>_{E}\left(\right.$ and of $\left.\|\mathbf{x}\|_{2}\right)$ in \Re^{n}

Proof:

- And here is how you can create an (orthogonal) basis B for $S,<,,$.$\rangle where$ $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2} \ldots \mathbf{v}_{k}\right\}$
- $\mathbf{e}_{1}=\mathbf{v}_{1}$
- $\mathbf{e}_{2}=\mathbf{v}_{2}-\frac{\left\langle\mathbf{e}_{1}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{e}_{1}, \mathbf{e}_{1}\right\rangle} \mathbf{e}_{1}$.
- $\mathbf{e}_{3}=\mathbf{v}_{3}-\frac{\left\langle\mathbf{e}_{1}, \mathbf{v}_{3}\right\rangle}{\left\langle\mathbf{e}_{1}, \mathbf{e}_{1}\right\rangle} \mathbf{e}_{1}-\frac{\left\langle\mathbf{e}_{2}, \mathbf{v}_{3}\right\rangle}{\left\langle\mathbf{e}_{2}, \mathbf{e}_{2}\right\rangle} \mathbf{e}_{2}$.
- And so on.... discarding e_{i} 's that turn out to be 0

HW3: Speciality of Eucledian inner product $<\mathbf{x}, \mathbf{y}>_{E}\left(\right.$ and of $\left.\|\mathbf{x}\|_{2}\right)$ in \Re^{n}

Proof:

- And here is how you can create an (orthogonal) basis B for $S,<,,$.$\rangle where$

$$
S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2} \ldots \mathbf{v}_{k}\right\}
$$

- $\mathbf{e}_{1}=\mathbf{v}_{1}$
- $\mathbf{e}_{2}=\mathbf{v}_{2}-\frac{\left\langle\mathbf{e}_{1}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{e}_{1}, \mathbf{e}_{1}\right\rangle} \mathbf{e}_{1}$.
- $\mathbf{e}_{3}=\mathbf{v}_{3}-\frac{\left\langle\mathbf{e}_{1}, \mathbf{v}_{3}\right\rangle}{\left\langle\mathbf{e}_{1}, \mathbf{e}_{1}\right\rangle} \mathbf{e}_{1}-\frac{\left\langle\mathbf{e}_{2}, \mathbf{v}_{3}\right\rangle}{\left\langle\mathbf{e}_{2}, \mathbf{e}_{2}\right\rangle} \mathbf{e}_{2}$.
- And so on..., discarding \mathbf{e}_{i}^{\prime} 's that turn out to be 0 (implying that \mathbf{v}_{i} was linearly dependent on the preceding vectors)
$-\mathbf{e}_{k}=\mathbf{v}_{k}-\frac{\left\langle\mathbf{e}_{1}, \mathbf{v}_{k}\right\rangle}{\left\langle\mathbf{e}_{1}, \mathbf{e}_{1}\right\rangle} \mathbf{e}_{1}-\frac{\left\langle\mathbf{e}_{2}, \mathbf{v}_{k}\right\rangle}{\left\langle\mathbf{e}_{2}, \mathbf{e}_{2}\right\rangle} \mathbf{e}_{2} \ldots-\frac{\left\langle\mathbf{e}_{k-1}, \mathbf{v}_{k}\right\rangle}{\left\langle\mathbf{e}_{k-1}, \mathbf{e}_{k-1}\right\rangle} \mathbf{e}_{k-1}$.
We expect not more than $m \leq n$ of the $k \mathbf{e}_{i}$'s to be $\neq 0$.

Compact representation of Inner Product Space

- Let the linear subspace $S \subseteq V$ be associated with an inner product $<.,$.
- Let $B=\operatorname{basis}(S)$ with respect to the arbitrary inner product $<., .>$ (extending results from the eucledian inner product)
- Let $\operatorname{dim}(V)=n$, and $\operatorname{dim}(S)=m \leq n . \quad S=\operatorname{span}(B a s i s)$ [Primal]
- Define S^{\perp}; the orthogonal complement $\left(S^{\perp} \in V\right)$ of S as:
$S^{\perp}=\{v \in V \mid<v, u>=0 \forall u \in S\}$
This implies:-
- Both S and S^{\perp} are linear subspaces of V.
- $S \cap S^{\perp}=\{0\}, \operatorname{dim}(S)+\operatorname{dim}\left(S^{\perp}\right)=n$
- $\left(S^{\perp}\right)^{\perp}=S . \quad S=$ complement of its complement [Dual]
- If B^{\perp} is the basis for S^{\perp}, then $B \cup B^{\perp}$ is the basis for V.
- $S=\left\{\mathbf{v} \in V<\mathbf{v}, \mathbf{u}>=0, \forall \mathbf{u} \in B^{\perp}\right\}$
- $S^{\perp}=\{\mathbf{v} \in V \mid<\mathbf{v}, \mathbf{u}>=0 \forall \mathbf{u} \in B\}$
$\operatorname{dim}\left(S^{\perp}\right)=k-m=r$

Dual Representation: Explained with Analogy

Primal

If $S \subseteq \Re^{n}$ and $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{r}\right\}$ is finite spanning set in S^{\perp}, then:-

- $S=\left(S^{\perp}\right)^{\perp}=\left\{\mathbf{x} \mid \mathbf{a}_{i}^{T} \mathbf{x}=0 ; i=1, \ldots, r\right\}$
- A dual representation of linear subspace $S\left(\right.$ in $\left.\Re^{n}\right):\left\{\mathbf{x} \mid A \mathbf{x}=0 ; \mathbf{a}_{i}^{T}\right.$ is the $i^{\text {th }}$ row of $\left.A\right\}$

Dual

Affine set

- In 2D, a line through any two distinct points $\mathbf{x}_{1}, \mathbf{x}_{2}$: That is, all points \mathbf{x} s.t.

- In general, A is affine iff $\forall \mathbf{u}, \mathbf{v} \in A: \theta \mathbf{u}+(1-\theta) \mathbf{v} \in A, \forall \theta \in \Re$.

Affine combination

Set A is affine iff it is closed under affine combinations of pairs of points in A

Affine set

- In 2D, a line through any two distinct points $\mathbf{x}_{1}, \mathbf{x}_{2}$: That is, all points \mathbf{x} s.t.
$\mathbf{x}=\alpha \mathbf{x}_{1}+\beta \mathbf{x}_{2}$ where $\alpha+\beta=1$
- In general, A is affine iff $\forall \mathbf{u}, \mathbf{v} \in A: \theta \mathbf{u}+(1-\theta) \mathbf{v} \in A, \forall \theta \in \Re$.
- What will $S_{\mathbf{u}}=\{\underline{\mathbf{x}-\mathbf{u}} \| \underline{\mathbf{x} \in A}\}$ for some fixed $\mathbf{u} \in A$ be?

Affine set

- In 2D, a line through any two distinct points $\mathbf{x}_{1}, \mathrm{x}_{2}$: That is, all points x s.t.
$\mathbf{x}=\alpha \mathbf{x}_{1}+\beta \mathbf{x}_{2}$ where $\alpha+\beta=1$
- In general, A is affine iff $\forall \mathbf{u}, \mathbf{v} \in A: \theta \mathbf{u}+(1-\theta) \mathbf{v} \in A, \forall \theta \in \Re$.
- What will $S_{\mathbf{u}}=\{\mathbf{x}-\mathbf{u} \| \mathbf{x} \in A\}$ for some fixed $\mathbf{u} \in A$ be? Ans: Vector sub-space!
- Thus, A is affine iff for some vector sub-space S, $A(=S$ shifted by $\mathbf{u})=\{\mathbf{u}+\mathbf{v} \mid \mathbf{u}$ is fixed and $\mathbf{v} \in S\}$.
(conversely every affine set can be expressed as solution set of system of linear equations)

Affine sets: Dual Description

- Dual Description for Affine Sets: A is affine iff,

Affine sets: Dual Description

- Dual Description for Affine Sets: A is affine iff, $A=\{\mathbf{x} \mid P \mathbf{x}=b\}$ i.e. solution set of linear equations represented by $P \mathbf{x}=\mathbf{b}$ for some matrix P with rank $=n-\operatorname{dim}(S)$ and b
- No Solution: $\mathbf{x}=\phi$. Is that affine? when b does not lie in the column space of P
- Unique Solution: \mathbf{x} is a point. when b lies in the column space of P and P is full rank
- Infinitely Many Solutions: \mathbf{x} is a line, or a plane, etc. when blies in the column space of P and P is NOT full rank
(conversely every affine set can be expressed as solution set of system of linear equations)

When P has rank $=1$, then A is a hyperplane

Convex Sets

Convex sets

- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

Convex set

- In 2D, a line segment between distinct points $\mathbf{x}_{1}, \mathrm{x}_{2}$: That is, all points x s.t.

$$
\begin{array}{ll}
\mathrm{x}= & \alpha x_{1}+\beta x_{2} \\
\text { where } & \alpha+\beta=1,0 \leq \alpha \leq 1(\text { also, } 0 \leq \beta \leq 1) . \text { Convex combination }
\end{array}
$$

- Convex set : $\mathbf{x}_{1}, \mathbf{x}_{2} \in C, 0 \leq \alpha \leq 1 \Rightarrow \alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2} \in C$

- Convex set is connected. Convex set can but not necessarily contains 'O'

Is every affine set convex? Is the reverse true?

> YES

NO

[^0]: ${ }^{5}$ Recall from slides 25 to 27 that $\mathbf{x}^{P} \mathbf{x}$ is a norm if P is positive definite

