Euclidean balls and ellipsoids

• Euclidean ball with center \mathbf{x}_c and radius r is given by:

$$\begin{split} & B(\mathbf{x}_c, r) = \{\mathbf{x} \mid \|\mathbf{x} - \mathbf{x}_c\|_2 \le r\} = \{\mathbf{x}_c + ru \mid \|u\|_2 \le 1 \} \\ & \bullet \text{ Ellipsoid is a set of form:} \\ & \{\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T P^{-1}(\mathbf{x} - \mathbf{x}_c) \le 1 \}, \text{ where } \mathsf{P} \in S^n_{++} \text{ i.e. } P \text{ is positive-definite matrix.} \\ & \bullet \text{ Other representation: } \{\mathbf{x}_c + A\mathbf{u} \mid \|\mathbf{u}\|_2 \le 1\} \text{ with } A \text{ square and non-singular } (i.e., A^{-1} \text{ exists}). \end{split}$$

Supporting hyperplane theorem and **Dual (H) Description**

Supporting hyperplane to set C at boundary point \mathbf{x}_o :

•
$$\left\{ \mathbf{x} | \mathbf{a}^T \mathbf{x} = \mathbf{a}^T \mathbf{x}_o \right\}$$

• where $\mathbf{a} \neq 0$ and $\mathbf{a}^T \mathbf{x} \leq \mathbf{a}^T \mathbf{x}_o$ for all $\mathbf{x} \in \mathcal{C}$

A 12

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C.

Definition

[Interior and Boundary points]: A point x is called an *interior point* of a set S if there exists an open ball around the point x that lies completely within S

Definition

[Interior and Boundary points]: A point \mathbf{x} is called an *interior point* of a set S if there exists an $\epsilon > 0$ such that $\mathcal{B}(\mathbf{x}, \epsilon) \subseteq S$.

In other words, a point $x \in S$ is called an interior point of a set S if there exists an open ball of non-zero radius around x such that the ball is completely contained within S.

Definition

[Interior of a set]: Let $S \subseteq \Re^n$. The set of all points that are interior points

Definition

[Interior and Boundary points]: A point \mathbf{x} is called an *interior point* of a set S if there exists an $\epsilon > 0$ such that $\mathcal{B}(\mathbf{x}, \epsilon) \subseteq S$.

In other words, a point $x \in S$ is called an interior point of a set S if there exists an open ball of non-zero radius around x such that the ball is completely contained within S.

Definition

[Interior of a set]: Let $S \subseteq \Re^n$. The set of all points lying in the interior of S is denoted by int(S) and is called the *interior* of S. That is,

$$int(\mathcal{S}) = \left\{ \mathbf{x} | \exists \epsilon > 0 \text{ s.t. } \mathcal{B}(\mathbf{x}, \epsilon) \subset \mathcal{S} \right\}$$

In the 1–D case, the open interval obtained by excluding endpoints from an interval \mathcal{I} is the interior of \mathcal{I} , denoted by $int(\mathcal{I})$. For example, int([a, b]) = (a, b) and $int([0, \infty)) = (0, \infty)$.

Definition

[Boundary of a set]: Let $S \subseteq \Re^n$. The boundary of S, denoted by $\partial(S)$ is defined as

Note: A set S may not contain its boundary A ball around any boundary point should contain both points in the interior of the set as well as points outside

Definition

[Boundary of a set]: Let $S \subseteq \Re^n$. The boundary of S, denoted by $\partial(S)$ is defined as

$$\partial(\mathcal{S}) = \left\{ \mathbf{y} | \forall \ \epsilon > 0, \ \mathcal{B}(\mathbf{y}, \epsilon) \cap \mathcal{S} \neq \emptyset \text{ and } \mathcal{B}(\mathbf{y}, \epsilon) \cap \mathcal{S}^{\mathsf{C}} \neq \emptyset \right\}$$

For example, $\partial([a, b]) = \{a, b\}$. Boundary need not be contained in the set

Definition

[Open Set]: Let $S \subseteq \Re^n$. We say that S is an *open set* when, S coincides with its interior : int(S) = S

Definition

[Boundary of a set]: Let $S \subseteq \Re^n$. The boundary of S, denoted by $\partial(S)$ is defined as

$$\partial(\mathcal{S}) = \left\{ \mathbf{y} | \forall \ \epsilon > 0, \ \mathcal{B}(\mathbf{y}, \epsilon) \cap \mathcal{S} \neq \emptyset \text{ and } \mathcal{B}(\mathbf{y}, \epsilon) \cap \mathcal{S}^{\mathsf{C}} \neq \emptyset \right\}$$

For example, $\partial([a, b]) = \{a, b\}$.

Definition

[Open Set]: Let $S \subseteq \Re^n$. We say that S is an *open set* when, for every $\mathbf{x} \in S$, there exists an $\epsilon > 0$ such that $\mathcal{B}(\mathbf{x}, \epsilon) \subset S$.

- **①** The simplest examples of an open set are the open ball, the empty set \emptyset and \Re^n .
- Further, arbitrary union of opens sets is open. Also, finite intersection of open sets is open.
- The interior of any set is always open. It can be proved that a set S is open if and only if int(S) = S.

Prof. Ganesh Ramakrishnan (IIT Bombay)

The complement of an open set is the closed set.

The complement of an open set is the closed set.

Definition

[Closed Set]: Let $S \subseteq \Re^n$. We say that S is a *closed set* when S^C (that is the complement of S) is an open set. It can be proved that $\partial S \subseteq S$, that is, a closed set contains its boundary.

The closed ball, the empty set \emptyset and \Re^n are three simple examples of closed sets. Arbitrary intersection of closed sets is closed. Furthermore, finite union of closed sets is closed.

Definition

[Closure of a Set]: Let $S \subseteq \Re^n$. The closure of S, denoted by closure(S) is given by union of the set and bnd(S)

The complement of an open set is the closed set.

Definition

[Closed Set]: Let $S \subseteq \Re^n$. We say that S is a *closed set* when S^C (that is the complement of S) is an open set. It can be proved that $\partial S \subseteq S$, that is, a closed set contains its boundary.

The closed ball, the empty set \emptyset and \Re^n are three simple examples of closed sets. Arbitrary intersection of closed sets is closed. Furthermore, finite union of closed sets is closed.

Definition

[Closure of a Set]: Let $S \subseteq \Re^n$. The closure of S, denoted by closure(S) is given by

$$closure(\mathcal{S}) = \left\{ \mathbf{y} \in \Re^n | \forall \ \epsilon > 0, \mathcal{B}(\mathbf{y}, \epsilon) \cap \mathcal{S} \neq \emptyset \right\}$$

Homework: Separating and Supporting Hyperplane Theorems (Fill in the Blanks)

SHT: Separating hyperplane theorem (a fundamental theorem)

If C and D are disjoint convex sets, *i.e.*, $C \cap D = \phi$, then there exists $\mathbf{a} \neq \mathbf{0}$ and $b \in \Re$ such that

 $\mathbf{a}^T \mathbf{x} \leq b$ for $\mathbf{x} \in \mathcal{C}$,

 $\mathbf{a}^T \mathbf{x} \geq b$ for $\mathbf{x} \in \mathcal{D}$.

That is, the hyperplane $\left\{ \mathbf{x} | \mathbf{a}^T \mathbf{x} = b \right\}$ separates C and D.

• The seperating hyperplane need not be unique though.

Strict separation requires additional assumptions (e.g., C is closed, D is a singleton).
Both separating and supporting hyperplane theorems become trivial in the case of sets with empty interiors. Why?
1) Hyperplanes in R^n were defined as affine hulls of n affinely indepedent points ==> Hyperplane has one dimension less than the space
2) If space is R^3, C and D are discs in R^2 lying on plane, trivial hyperplane (separating or supporting) is the hyperplane containing C (and D) with equality everywhere

Prof. Ganesh Ramakrishnan (IIT Bombay)

Proof of the Separating Hyperplane Theorem Sum/difference of any two convex sets is convex

We first note that the set $S = \{x - y | x \in C, y \in D\}$ is convex, since it is the sum of two convex sets. Since C and D are disjoint, $0 \notin S$. Consider two cases:

O Suppose $\mathbf{0} \notin closure(\mathcal{S})$. Let $\mathcal{E} = \{0\}$ and $\mathcal{F} = closure(\mathbf{S})$. Then, the euclidean distance between \mathcal{E} and \mathcal{F} , defined as $dist(\mathcal{E}; \mathcal{F}) = inf\{||\mathbf{u} - \mathbf{v}||_2 | \mathbf{u} \in \mathcal{E}, \mathbf{v} \in \mathcal{F}\}$ is positive, and there exists a point $f \in \mathcal{F}$ that achieves the minimum distance, i.e., $||\mathbf{f}||_2 = dist(\mathcal{E}, \mathcal{F})$. Define _____ a = f, b = 1/2 ||f||^2 Then $\mathbf{a} \neq \mathbf{0}$ and the affine function $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} - b = \mathbf{f}^T (\mathbf{x} - \frac{1}{2}\mathbf{f})$ is nonpositive on \mathcal{E} and nonnegative on \mathcal{F} , *i.e.*, that the hyperplane $\left\{\mathbf{x}|\mathbf{a}^{\mathsf{T}}\mathbf{x}=b\right\}$ separates \mathcal{E} and \mathcal{F} . Thus, $\mathbf{a}^{T}(\mathbf{x} - \mathbf{y}) > 0$ for all $\mathbf{x} - \mathbf{y} \in S \subseteq closure(S)$, which implies that, $\mathbf{a}^{T}\mathbf{x} \geq \mathbf{a}^{T}\mathbf{y}$ for all $\mathbf{x} \in \mathcal{C}$ and $\mathbf{v} \in \mathcal{D}$.

We first note that the set $S = \{x - y | x \in C, y \in D\}$ is convex, since it is the sum⁶ of two convex sets. Since C and D are disjoint, $0 \notin S$. Consider two cases:

• Suppose $\mathbf{0} \notin closure(\mathcal{S})$. Let $\mathcal{E} = \{0\}$ and $\mathcal{F} = closure(\mathbf{S})$. Then, the euclidean distance between \mathcal{E} and \mathcal{F} , defined as $dist(\mathcal{E};\mathcal{F}) = inf\{||\mathbf{u} - \mathbf{v}||_2 | \mathbf{u} \in \mathcal{E}, \mathbf{v} \in \mathcal{F}\}$ is positive, and there exists a point $\mathbf{f} \in \mathcal{F}$ that achieves the minimum distance, i.e., $||\mathbf{f}||_2 = dist(\mathcal{E}, \mathcal{F})$. Define $\mathbf{a} = \mathbf{f}, \ b = 1/2||\mathbf{f}||_2^2$. Then $\mathbf{a} \neq \mathbf{0}$ and the affine function $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} - b = \mathbf{f}^T (\mathbf{x} - \frac{1}{2}\mathbf{f})$ is nonpositive on \mathcal{E} and nonnegative on \mathcal{F} , *i.e.*, that the hyperplane $\left\{\mathbf{x}|\mathbf{a}^{T}\mathbf{x}=b
ight\}$ separates $\mathcal E$ and $\mathcal F$. Thus, $\mathbf{a}^T(\mathbf{x} - \mathbf{y}) > 0$ for all $\mathbf{x} - \mathbf{y} \in S \subseteq closure(S)$, which implies that, $\mathbf{a}^T \mathbf{x} \ge \mathbf{a}^T \mathbf{y}$ for all $\mathbf{x} \in C$ and $\mathbf{y} \in D$.

ightarrow Nontrivial part, sketched on the board in class

Prof. Ganesh Ramakrishnan (IIT Bombay)

⁶Easy proof. Let us attempt.

That is, C and D are touching at a point...

Suppose, $0 \in closure(S)$. Since $0 \notin S$, it must be in the boundary of S.

- ▶ If $int(S) = \emptyset$ (that is, if S has empty interior), it must lie in an affine set of dimension < n, and any hyperplane containing that affine set contains S and is a hyperplane.
- ▶ In other words, S is contained in a hyperplane $\{\mathbf{z} | \mathbf{a}^T \mathbf{z} = b\}$, which must include the origin and therefore b = 0. In other words, $\mathbf{a}^T \mathbf{x} = \mathbf{a}^T \mathbf{y}$ for all $\mathbf{x} \in C$ and all $\mathbf{y} \in D$ gives us a trivial separating hyperplane.

Basically the hyperplane containing C and D is the separating hyperplane with a trivial equality everywhere on C and D Prof. Ganesh Ramakrishnan (IIT Bombay) From R to Rⁿ: CS709

2 Suppose, $0 \in closure(S)$. Since $0 \notin S$, it must be in the boundary of S.

• If S has a nonempty interior, consider the set

 $S_{-\epsilon} = \{ \mathbf{z} | B(\mathbf{z}, \epsilon) \subseteq S \}$ where $B(\mathbf{z}, \epsilon)$ is the Euclidean ball with center \mathbf{z} and radius $\epsilon > 0$. $S_{-\epsilon}$ is the set S, shrunk by ϵ . $closure(S_{-\epsilon})$ is closed and convex, and does not contain $\mathbf{0}$, so as argued before, it is separated from $\{\mathbf{0}\}$ by atleast one hyperplane with normal vector $\mathbf{a}(\epsilon)$ such that as in case 1 $\underline{\mathbf{a}(eps) \wedge T \times \geq 0}$ is a separating hyperplane Without loss of superplicity example $||\mathbf{a}(\epsilon)||$

Without loss of generality assume $||\mathbf{a}(\epsilon)||_2 = 1$. Let ϵ_k , for k = 1, 2, ... be a sequence of positive values of ϵ_k with $\lim_{k \to \infty} \epsilon_k = 0$. Since $||\mathbf{a}(\epsilon_k)||_2 = 1$

for all k, the sequence $\mathbf{a}(\epsilon_k)$ contains a convergent subsequence, and let $\mathbf{\overline{a}}$ be its limit. We have

which means $\overline{\mathbf{a}}^T \mathbf{x} \geq \overline{\mathbf{a}}^T \mathbf{y}$ for all $\mathbf{x} \in \mathcal{C}$, and $\mathbf{y} \in \mathcal{D}$.

Suppose, $0 \in closure(S)$. Since $0 \notin S$, it must be in the boundary of S.

 \blacktriangleright If ${\mathcal S}$ has a nonempty interior, consider the set

$$\mathcal{S}_{-\epsilon} = \left\{ \mathbf{z} | B(\mathbf{z}, \epsilon) \subseteq \mathcal{S} \right\}$$

where $\hat{B}(\mathbf{z},\epsilon)$ is the Euclidean ball with center \mathbf{z} and radius $\epsilon > 0$. $S_{-\epsilon}$ is the set S, shrunk by ϵ . closure $(S_{-\epsilon})$ is closed and convex, and does not contain $\mathbf{0}$, so as argued before, it is separated from $\{\mathbf{0}\}$ by atleast one hyperplane with normal vector $\mathbf{a}(\epsilon)$ such that $\mathbf{a}(\epsilon)^T \mathbf{z} \geq 0$ for all $\mathbf{z} \in S_{\epsilon}$

Without loss of generality assume $||\mathbf{a}(\epsilon)||_2 = 1$. Let ϵ_k , for k = 1, 2, ... be a sequence of positive values of ϵ_k with $\lim_{k\to\infty} \epsilon_k = 0$. Since $||\mathbf{a}(\epsilon_k)||_2 = 1$ for all k, the sequence $\mathbf{a}(\epsilon_k)$ contains a convergent subsequence, and let $\overline{\mathbf{a}}$ be its limit. We have $\mathbf{a}(\epsilon_k)^T \mathbf{z} \ge 0$ for all $\mathbf{z} \in S_{-\epsilon_k}$ and therefore $\overline{\mathbf{a}}^T \mathbf{z} \ge 0$ for all $\mathbf{z} \in interior(S)$, and $\overline{\mathbf{a}}^T \mathbf{z} \ge 0$ for all $\mathbf{z} \in S$, which means $\overline{\mathbf{a}}^T \mathbf{x} \ge \overline{\mathbf{a}}^T \mathbf{y}$ for all $\mathbf{x} \in C$, and $\mathbf{y} \in D$.

Supporting hyperplane theorem (consequence of separating hyperplane theorem)

Supporting hyperplane to set C at boundary point \mathbf{x}_o :

- $\left\{ \mathbf{x} | \mathbf{a}^T \mathbf{x} = \mathbf{a}^T \mathbf{x}_o \right\}$
- where $\mathbf{a} \neq 0$ and $\mathbf{a}^T \mathbf{x} \leq \mathbf{a}^T \mathbf{x}_o$ for all $\mathbf{x} \in \mathcal{C}$

1.12

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point x of C.

Prof. Ganesh Ramakrishnan (IIT Bombay)

HW: Proof of Supporting Hyperplane Theorem

The supporting hyperplane theorem is proved from the separating hyperplane theorem as follows:

- If $int(C) \neq \emptyset$, the result follows by applying the separating hyperplane theorem to the sets $\{\mathbf{x}\}$ and int(C).
- If $int(C) = \emptyset$, then C must lie in an affine set of dimension < n, and any hyperplane containing that affine set contains C and x, and is therefore a (trivial) supporting hyperplane.

Homework: Separating and Supporting Hyperplane Theorems (Fill in the Blanks Concluded)

Back to Euclidean balls and ellipsoids

- Euclidean ball with center \mathbf{x}_c and radius r is given by: $B(\mathbf{x}_c, r) = \{\mathbf{x} \mid ||\mathbf{x} - \mathbf{x}_c||_2 \le r\} = \{\mathbf{x}_c + ru \mid ||u||_2 \le 1\}$
- Ellipsoid is a set of form: $\{\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T P^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1\}$, where $P \in S_{++}^n$ i.e. P is positive-definite matrix.
 - Other representation: $\{\mathbf{x}_c + A\mathbf{u} \mid ||\mathbf{u}||_2 \le 1\}$ with A square and non-singular (*i.e.*, A^{-1} exists).

Back to Euclidean balls and ellipsoids

- Euclidean ball with center \mathbf{x}_c and radius r is given by: $B(\mathbf{x}_c, r) = \{\mathbf{x} \mid ||\mathbf{x} - \mathbf{x}_c||_2 \le r\} = \{\mathbf{x}_c + ru \mid ||u||_2 \le 1\}$
- Ellipsoid is a set of form: $\{\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T P^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1\}$, where $P \in S_{++}^n$ i.e. P is positive-definite matrix.
 - Other representation: $\{\mathbf{x}_c + A\mathbf{u} \mid ||\mathbf{u}||_2 \le 1\}$ with A square and non-singular (*i.e.*, A^{-1} exists).

Dual (H) Description for such convex sets?

Supporting hyperplane theorem and **Dual (H) Description**

Supporting hyperplane to set C at boundary point \mathbf{x}_o :

•
$$\left\{ \mathbf{x} | \mathbf{a}^T \mathbf{x} = \mathbf{a}^T \mathbf{x}_o \right\}$$

• where $\mathbf{a} \neq 0$ and $\mathbf{a}^T \mathbf{x} \leq \mathbf{a}^T \mathbf{x}_o$ for all $\mathbf{x} \in \mathcal{C}$

A 12

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C.

Separating hyperplane and the Ellipsoid: Ellipsoid Algorithm

Implicit assumption on boundedness of set C is made

 $\{\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T P^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1 \}$

- Given an ellipsoid $(P(i), \mathbf{x}_c(i))$ containing a set C Imagine C to be a polytope
- Ask a separating oracle to answer if $\mathbf{x}_c(i) \in C$ or compute separating hyperplane \mathbf{a}, b between $\mathbf{x}_c(i)$ and C.
- If $\mathbf{x}_c(i) \notin C$, update ellipsoid center $\mathbf{x}_c(i+1)$ and ellipsoid shape P(i)

Examples of separating hyperplanes: (1) Cutting plane (cutting plane algos) (2) Hyperplane based on gradient or subgradien (we wil see 2 very soon) (3) Say C = {x | Ax <= d} as in Linear Programs

• Recap Norm: A function⁷ $\|.\|$ that satisfies:

1
$$\|\mathbf{x}\| \ge 0$$
, and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = 0$.

- **2** $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for any scalar $\alpha \in \Re$.
- $\|\mathbf{x}_1 + \mathbf{x}_2\| \le \|\mathbf{x}_1\| + \|\mathbf{x}_2\| for any vectors \mathbf{x}_1 and \mathbf{x}_2.$
- Norm ball with center \mathbf{x}_c and radius r: $\{\mathbf{x} | ||\mathbf{x} \mathbf{x}_x|| \le r\}$ is a convex set. Why?

• Recap Norm: A function⁷ $\|.\|$ that satisfies:

1
$$\|\mathbf{x}\| \ge 0$$
, and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = 0$.

2
$$\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$$
 for any scalar $\alpha \in \Re$.

 $\textbf{ () } \|\mathbf{x}_1 + \mathbf{x}_2\| \leq \|\mathbf{x}_1\| + \|\mathbf{x}_2\| \text{ for any vectors } \mathbf{x}_1 \text{ and } \mathbf{x}_2.$

- Norm ball with center \mathbf{x}_c and radius r: $\{\mathbf{x} | ||\mathbf{x} \mathbf{x}_x|| \le r\}$ is a convex set. Why?
 - Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_{P}^{2} = \mathbf{x}^{T} P \mathbf{x}$. matrix induced vector norm
 - Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_2$. L1, L infinity norm balls.
- Matrix Norm induced by vector norm N: M_N(A) = sup M(Ax)/N(x) maximum norm of linear combination of linear combination of s∈S
 Eg: M_N(I) = N_N(I) = N_N(A) = Sup M(A)/N(x) maximum norm of linear combination of f(s) over s∈S. Columns of N subject to coefficients of x being bounded by the same norm

• Recap Norm: A function⁷ $\|.\|$ that satisfies:

1
$$\|\mathbf{x}\| \ge 0$$
, and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = 0$.

2
$$\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$$
 for any scalar $\alpha \in \Re$.

- $\ \, \textbf{\textbf{()}} \ \, \|\mathbf{x}_1+\mathbf{x}_2\|\leq \|\mathbf{x}_1\|+\|\mathbf{x}_2\| \text{ for any vectors } \mathbf{x}_1 \text{ and } \mathbf{x}_2.$
- Norm ball with center \mathbf{x}_c and radius r: $\{\mathbf{x} | \|\mathbf{x} \mathbf{x}_x\| \le r\}$ is a convex set. Why?
 - Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_P^2 = \mathbf{x}^T P \mathbf{x}$.
 - Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_2$.
- Matrix Norm induced by vector norm N: $M_N(A) = \sup_{\mathbf{x} \neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

Here, $\sup_{s \in S} f(s) = \widehat{f}$ if \widehat{f} is the minimum upper bound for f(s) over $s \in S$.

• Eg:
$$M_N(I) = M_N(A) = 1$$
 irrespective of N

• If $N = \|.\|_1$,

• **Recap Norm:** A function⁷ ||.|| that satisfies:

1
$$\|\mathbf{x}\| \ge 0$$
, and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = 0$.

2
$$\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$$
 for any scalar $\alpha \in \Re$.

- $\textbf{ () } \|\mathbf{x}_1 + \mathbf{x}_2\| \leq \|\mathbf{x}_1\| + \|\mathbf{x}_2\| \text{ for any vectors } \mathbf{x}_1 \text{ and } \mathbf{x}_2.$
- Norm ball with center \mathbf{x}_c and radius r: $\{\mathbf{x} | \|\mathbf{x} \mathbf{x}_x\| \le r\}$ is a convex set. Why?
 - Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_P^2 = \mathbf{x}^T P \mathbf{x}$.
 - Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_2$.
- Matrix Norm induced by vector norm N: $M_N(A) = \sup_{\mathbf{x}\neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

Here, $\sup_{s \in S} f(s) = \widehat{f}$ if \widehat{f} is the minimum upper bound for f(s) over $s \in S$.

• Eg:
$$M_N(I) = M_N(A) = 1$$
 irrespective of N

▶ If
$$N = \|.\|_1$$
, $M_N(A) = \max_j \sum_{i=1}^n |a_{ij}|$ maximum column sum
▶ If $N = \|.\|_2$,

• **Recap Norm:** A function⁷ ||.|| that satisfies:

1
$$\|\mathbf{x}\| \ge 0$$
, and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = 0$.

2
$$\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$$
 for any scalar $\alpha \in \Re$.

- $\textbf{ () } \|\mathbf{x}_1 + \mathbf{x}_2\| \leq \|\mathbf{x}_1\| + \|\mathbf{x}_2\| \text{ for any vectors } \mathbf{x}_1 \text{ and } \mathbf{x}_2.$
- Norm ball with center \mathbf{x}_c and radius r: $\{\mathbf{x} | \|\mathbf{x} \mathbf{x}_x\| \le r\}$ is a convex set. Why?
 - Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_P^2 = \mathbf{x}^T P \mathbf{x}$.
 - Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_2$.
- Matrix Norm induced by vector norm N: $M_N(A) = \sup_{\mathbf{x}\neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

Here, $\sup_{s \in S} f(s) = \widehat{f}$ if \widehat{f} is the minimum upper bound for f(s) over $s \in S$.

• Eg:
$$M_N(I) = M_N(A) = 1$$
 irrespective of N

• If
$$N = \|.\|_1$$
, $M_N(A) = \max_j \sum_{i=1}^n |a_{ij}|$

• If $N = \|.\|_2$, $M_N(A) = \sqrt{\sigma_1}$, where σ_1 is the dominant eigenvalue of $A^T A$

• If $N = \|.\|_{\infty}$,

• Recap Norm: A function $\| \| \|$ that satisfies:

1
$$\|\mathbf{x}\| \ge 0$$
, and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = 0$.

2
$$\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$$
 for any scalar $\alpha \in \Re$.

- $\textbf{ () } \|\mathbf{x}_1 + \mathbf{x}_2\| \leq \|\mathbf{x}_1\| + \|\mathbf{x}_2\| \text{ for any vectors } \mathbf{x}_1 \text{ and } \mathbf{x}_2.$
- Norm ball with center \mathbf{x}_c and radius r: $\{\mathbf{x} | \|\mathbf{x} \mathbf{x}_x\| \le r\}$ is a convex set. Why?
 - Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_P^2 = \mathbf{x}^T P \mathbf{x}$.
 - Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_2$.
- Matrix Norm induced by vector norm N: $M_N(A) = \sup_{\mathbf{x}\neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

Here, $\sup_{s \in S} f(s) = \widehat{f}$ if \widehat{f} is the minimum upper bound for f(s) over $s \in S$.

• Eg:
$$M_N(I) = M_N(A) = 1$$
 irrespective of N

• If
$$N = \|.\|_1$$
, $M_N(A) = \max_j \sum_{i=1}^n |a_{ij}|$

▶ If $N = \|.\|_2$, $M_N(A) = \sqrt{\sigma_1}$, where σ_1 is the dominant eigenvalue of $A^T A$

• If
$$N = \|.\|_{\infty}$$
, $M_N(A) = \max_i \sum_{i=1}^{N} |a_{ij}|$