
Euclidean balls and ellipsoids
Euclidean ball with center xc and radius r is given by:
B(xc, r) = {x | ∥x − xc∥2 ≤ r} = {xc + ru | ∥u∥2 ≤ 1 }
Ellipsoid is a set of form:
{x | (x − xc)TP−1(x − xc) ≤ 1 }, where P ∈ Sn

++ i.e. P is positive-definite matrix.
▶ Other representation: {xc + Au | ∥u∥2 ≤ 1} with A square and non-singular (i.e., A−1

exists).
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Supporting hyperplane theorem and Dual (H) Description
Supporting hyperplane to set C at boundary point xo:{

x|aTx = aTxo
}

where a ̸= 0 and aTx ≤ aTxo for all x ∈ C

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at
every boundary point of C.
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Recall Basic Prerequisite Concepts (in ℜn)

Definition
[Interior and Boundary points]: A point x is called an interior point of a set S if
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there exists an open ball around the point x
that lies completely within S



Recall Basic Prerequisite Concepts (in ℜn)

Definition
[Interior and Boundary points]: A point x is called an interior point of a set S if there

exists an ϵ > 0 such that B(x, ϵ) ⊆ S.

In other words, a point x ∈ S is called an interior point of a set S if there exists an open ball
of non-zero radius around x such that the ball is completely contained within S.

Definition
[Interior of a set]: Let S ⊆ ℜn. The set of all points
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that are interior points



Recall Basic Prerequisite Concepts (in ℜn)

Definition
[Interior and Boundary points]: A point x is called an interior point of a set S if there

exists an ϵ > 0 such that B(x, ϵ) ⊆ S.

In other words, a point x ∈ S is called an interior point of a set S if there exists an open ball
of non-zero radius around x such that the ball is completely contained within S.

Definition
[Interior of a set]: Let S ⊆ ℜn. The set of all points lying in the interior of S is denoted by

int(S) and is called the interior of S. That is,

int(S) =
{

x|∃ϵ > 0 s.t. B(x, ϵ) ⊂ S
}

In the 1−D case, the open interval obtained by excluding endpoints from an interval I is the
interior of I, denoted by int(I). For example, int([a, b]) = (a, b) and int([0,∞)) = (0,∞).
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Recall Basic Prerequisite Concepts (in ℜn)
Definition
[Boundary of a set]: Let S ⊆ ℜn. The boundary of S, denoted by ∂(S) is defined as
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Note: A set S may not contain its boundary
A ball around any boundary point should contain both points in the
interior of the set as well as points outside



Recall Basic Prerequisite Concepts (in ℜn)
Definition
[Boundary of a set]: Let S ⊆ ℜn. The boundary of S, denoted by ∂(S) is defined as

∂(S) =
{

y|∀ ϵ > 0, B(y, ϵ) ∩ S ̸= ∅ and B(y, ϵ) ∩ SC ̸= ∅
}

For example, ∂([a, b]) = {a, b}.
Definition
[Open Set]: Let S ⊆ ℜn. We say that S is an open set when,
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Boundary need not be contained in the set

S coincides with its
interior : int(S) = S



Recall Basic Prerequisite Concepts (in ℜn)
Definition
[Boundary of a set]: Let S ⊆ ℜn. The boundary of S, denoted by ∂(S) is defined as

∂(S) =
{

y|∀ ϵ > 0, B(y, ϵ) ∩ S ̸= ∅ and B(y, ϵ) ∩ SC ̸= ∅
}

For example, ∂([a, b]) = {a, b}.
Definition
[Open Set]: Let S ⊆ ℜn. We say that S is an open set when, for every x ∈ S, there exists

an ϵ > 0 such that B(x, ϵ) ⊂ S.

1 The simplest examples of an open set are the open ball, the empty set ∅ and ℜn.
2 Further, arbitrary union of opens sets is open. Also, finite intersection of open sets is

open.
3 The interior of any set is always open. It can be proved that a set S is open if and only if

int(S) = S.
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Recall Basic Prerequisite Concepts (in ℜn)

The complement of an open set is the closed set.

Definition
[Closed Set]: Let S ⊆ ℜn. We say that S is a closed set when
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bnd(S) is contained in
S



Recall Basic Prerequisite Concepts (in ℜn)

The complement of an open set is the closed set.

Definition
[Closed Set]: Let S ⊆ ℜn. We say that S is a closed set when SC (that is the complement

of S) is an open set. It can be proved that ∂S ⊆ S, that is, a closed set contains
its boundary.

The closed ball, the empty set ∅ and ℜn are three simple examples of closed sets. Arbitrary
intersection of closed sets is closed. Furthermore, finite union of closed sets is closed.

Definition
[Closure of a Set]: Let S ⊆ ℜn. The closure of S, denoted by closure(S) is given by
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Recall Basic Prerequisite Concepts (in ℜn)

The complement of an open set is the closed set.

Definition
[Closed Set]: Let S ⊆ ℜn. We say that S is a closed set when SC (that is the complement

of S) is an open set. It can be proved that ∂S ⊆ S, that is, a closed set contains
its boundary.

The closed ball, the empty set ∅ and ℜn are three simple examples of closed sets. Arbitrary
intersection of closed sets is closed. Furthermore, finite union of closed sets is closed.

Definition
[Closure of a Set]: Let S ⊆ ℜn. The closure of S, denoted by closure(S) is given by

closure(S) =
{

y ∈ ℜn|∀ ϵ > 0,B(y, ϵ) ∩ S ̸= ∅
}
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Homework: Separating and Supporting Hyperplane Theorems (Fill in the
Blanks)
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SHT: Separating hyperplane theorem (a fundamental theorem)

If C and D are disjoint convex sets, i.e., C ∩D = ϕ, then there exists a ̸= 0 and b ∈ ℜ such
that
aTx ≤ b for x ∈ C,
aTx ≥ b for x ∈ D.
That is, the hyperplane

{
x|aTx = b

}
separates C and D.

The seperating hyperplane need not be unique though.
Strict separation requires additional assumptions (e.g., C is closed, D is a singleton).
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Both separating and supporting hyperplane theorems become
trivial in the case of sets with empty interiors. Why?
1) Hyperplanes in R^n were defined as affine hulls of n affinely indepedent
points ==> Hyperplane has one dimension less than the space
2) If space is R^3, C and D are discs in R^2 lying on plane, trivial hyperplane (separating
or supporting) is the hyperplane containing C (and D) with equality everywhere



Proof of the Separating Hyperplane Theorem

We first note that the set S =
{

x − y|x ∈ C,y ∈ D
}
is convex, since it is the sum of two

convex sets. Since C and D are disjoint, 0 /∈ S. Consider two cases:
1 Suppose 0 /∈ closure(S). Let E = {0} and F = closure(S). Then, the euclidean distance

between E and F , defined as
dist(E ;F) = inf

{
||u − v||2|u ∈ E ,v ∈ F

}

is positive, and there exists a point f ∈ F that achieves the minimum distance, i.e.,
||f||2 = dist(E ,F). Define ____________________________________.
Then a ̸= 0 and the affine function f(x) = aTx − b = fT(x − 1

2 f) is nonpositive on E and
nonnegative on F , i.e., that the hyperplane

{
x|aTx = b

}
separates E and F . Thus,

aT(x − y) > 0 for all x − y ∈ S ⊆ closure(S), which implies that, aTx ≥ aTy for all
x ∈ C and y ∈ D.
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Sum/difference of any two convex sets is convex

a = f, b = 1/2 ||f||^2



Proof of the Separating Hyperplane Theorem

We first note that the set S =
{

x − y|x ∈ C,y ∈ D
}
is convex, since it is the sum6 of two

convex sets. Since C and D are disjoint, 0 /∈ S. Consider two cases:
1 Suppose 0 /∈ closure(S). Let E = {0} and F = closure(S). Then, the euclidean distance

between E and F , defined as
dist(E ;F) = inf

{
||u − v||2|u ∈ E ,v ∈ F

}

is positive, and there exists a point f ∈ F that achieves the minimum distance, i.e.,
||f||2 = dist(E ,F). Define a = f, b = 1/2||f||22.
Then a ̸= 0 and the affine function f(x) = aTx − b = fT(x − 1

2 f) is nonpositive on E and
nonnegative on F , i.e., that the hyperplane

{
x|aTx = b

}
separates E and F . Thus,

aT(x − y) > 0 for all x − y ∈ S ⊆ closure(S), which implies that, aTx ≥ aTy for all
x ∈ C and y ∈ D.

6Easy proof. Let us attempt.
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Nontrivial part, sketched on the board in class



Proof of the Separating Hyperplane Theorem

2 Suppose, 0 ∈ closure(S). Since 0 /∈ S, it must be in the boundary of S.
▶ If int(S) = ∅ (that is, if S has empty interior), it must lie in an affine set of dimension < n,

and any hyperplane containing that affine set contains S and is a hyperplane.
▶ In other words, S is contained in a hyperplane

{
z|aTz = b

}
, which must include the origin

and therefore b = 0. In other words, aTx = aTy for all x ∈ C and all y ∈ D gives us a trivial
separating hyperplane.
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C
D

That is, C and D are touching at a point...

Basically
the hyperplane
containing C and D
is the separating hyperplane
with a trivial equality everywhere on C and D



Proof of the Separating Hyperplane Theorem

2 Suppose, 0 ∈ closure(S). Since 0 /∈ S, it must be in the boundary of S.
▶ If S has a nonempty interior, consider the set

S−ϵ =
{

z|B(z, ϵ) ⊆ S
}

where B(z, ϵ) is the Euclidean ball with center z and radius ϵ > 0. S−ϵ is the set S, shrunk
by ϵ. closure (S−ϵ) is closed and convex, and does not contain 0, so as argued before, it is
separated from {0} by atleast one hyperplane with normal vector a(ϵ) such that
____________________________________________________________________________
Without loss of generality assume ||a(ϵ)||2 = 1. Let ϵk, for k = 1, 2, . . . be a sequence of
positive values of ϵk with lim

k→∞
ϵk = 0. Since ||a(ϵk)||2 = 1

for all k, the sequence a(ϵk) contains a convergent subsequence, and let a be its limit. We have
____________________________________________________________________________
which means aTx ≥ aTy for all x ∈ C, and y ∈ D.
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as in case 1
a(eps)^T x >=0 is a separating hyperplane



Proof of the Separating Hyperplane Theorem

2 Suppose, 0 ∈ closure(S). Since 0 /∈ S, it must be in the boundary of S.
▶ If S has a nonempty interior, consider the set

S−ϵ =
{

z|B(z, ϵ) ⊆ S
}

where B(z, ϵ) is the Euclidean ball with center z and radius ϵ > 0. S−ϵ is the set S, shrunk
by ϵ. closure (S−ϵ) is closed and convex, and does not contain 0, so as argued before, it is
separated from {0} by atleast one hyperplane with normal vector a(ϵ) such that
a(ϵ)Tz ≥ 0 for all z ∈ Sϵ

Without loss of generality assume ||a(ϵ)||2 = 1. Let ϵk, for k = 1, 2, . . . be a sequence of
positive values of ϵk with lim

k→∞
ϵk = 0. Since ||a(ϵk)||2 = 1 for all k, the sequence a(ϵk)

contains a convergent subsequence, and let a be its limit. We have
a(ϵk)Tz ≥ 0 for all z ∈ S−ϵk and therefore aTz ≥ 0 for all z ∈ interior(S), and aTz ≥ 0
for all z ∈ S,
which means aTx ≥ aTy for all x ∈ C, and y ∈ D.
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Supporting hyperplane theorem (consequence of separating hyperplane
theorem)
Supporting hyperplane to set C at boundary point xo:{

x|aTx = aTxo
}

where a ̸= 0 and aTx ≤ aTxo for all x ∈ C

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at
every boundary point x of C.
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HW: Proof of Supporting Hyperplane Theorem

The supporting hyperplane theorem is proved from the separating hyperplane theorem as
follows:

1 If int(C) ̸= ∅, the result follows by applying the separating hyperplane theorem to the sets
{x} and int(C).

2 If int(C) = ∅, then C must lie in an affine set of dimension < n, and any hyperplane
containing that affine set contains C and x, and is therefore a (trivial) supporting
hyperplane.
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Homework: Separating and Supporting Hyperplane Theorems (Fill in the
Blanks Concluded)
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Back to Euclidean balls and ellipsoids

Euclidean ball with center xc and radius r is given by:
B(xc, r) = {x | ∥x − xc∥2 ≤ r} = {xc + ru | ∥u∥2 ≤ 1 }
Ellipsoid is a set of form:
{x | (x − xc)TP−1(x − xc) ≤ 1 }, where P ∈ Sn

++ i.e. P is positive-definite matrix.
▶ Other representation: {xc + Au | ∥u∥2 ≤ 1} with A square and non-singular (i.e., A−1

exists).
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Back to Euclidean balls and ellipsoids

Euclidean ball with center xc and radius r is given by:
B(xc, r) = {x | ∥x − xc∥2 ≤ r} = {xc + ru | ∥u∥2 ≤ 1 }
Ellipsoid is a set of form:
{x | (x − xc)TP−1(x − xc) ≤ 1 }, where P ∈ Sn

++ i.e. P is positive-definite matrix.
▶ Other representation: {xc + Au | ∥u∥2 ≤ 1} with A square and non-singular (i.e., A−1

exists).

Dual (H) Description for such convex sets?
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Supporting hyperplane theorem and Dual (H) Description
Supporting hyperplane to set C at boundary point xo:{

x|aTx = aTxo
}

where a ̸= 0 and aTx ≤ aTxo for all x ∈ C

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at
every boundary point of C.
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Separating hyperplane and the Ellipsoid: Ellipsoid Algorithm

{x | (x − xc)TP−1(x − xc) ≤ 1 }
Given an ellipsoid (P(i),xc(i)) containing a set C
Ask a separating oracle to answer if xc(i) ∈ C or compute separating hyperplane a, b
between xc(i) and C.
If xc(i) /∈ C, update ellipsoid center xc(i+ 1) and ellipsoid shape P(i)
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Imagine C to be a polytope

Examples of separating hyperplanes: (1) Cutting plane (cutting plane algos)
   (2) Hyperplane based on gradient or subgradient

(we wil see 2 very soon)
   (3) Say C = {x | Ax <= d} as in Linear Programs

Implicit assumption on boundedness of set C is made



Norm balls
Recap Norm: A function7 ∥.∥ that satisfies:

1 ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0.
2 ∥αx∥ = |α|∥x∥ for any scalar α ∈ ℜ.
3 ∥x1 + x2∥ ≤ ∥x1∥+ ∥x2∥ for any vectors x1 and x2.

Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r} is a convex set. Why?
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Norm balls
Recap Norm: A function7 ∥.∥ that satisfies:

1 ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0.
2 ∥αx∥ = |α|∥x∥ for any scalar α ∈ ℜ.
3 ∥x1 + x2∥ ≤ ∥x1∥+ ∥x2∥ for any vectors x1 and x2.

Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r} is a convex set. Why?
▶ Eg 1: Ellipsoid is defined using ∥x∥2P = xTPx.
▶ Eg 2: Euclidean ball is defined using ∥x∥2.

Matrix Norm induced by vector norm N: MN(A) = sup
x̸=0

N(Ax)
N(x)

Here, sup
s∈S

f(s) =bf if bf is the minimum upper bound for f(s) over s ∈ S.
▶ Eg: MN(I) =
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matrix induced vector norm
L1, L infinity norm balls.

maximum norm of 
linear combination of 

columns of 
N subject to coefficients
of x being bounded by 
the same norm



Norm balls
Recap Norm: A function7 ∥.∥ that satisfies:

1 ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0.
2 ∥αx∥ = |α|∥x∥ for any scalar α ∈ ℜ.
3 ∥x1 + x2∥ ≤ ∥x1∥+ ∥x2∥ for any vectors x1 and x2.

Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r} is a convex set. Why?
▶ Eg 1: Ellipsoid is defined using ∥x∥2P = xTPx.
▶ Eg 2: Euclidean ball is defined using ∥x∥2.

Matrix Norm induced by vector norm N: MN(A) = sup
x̸=0

N(Ax)
N(x)

Here, sup
s∈S

f(s) =bf if bf is the minimum upper bound for f(s) over s ∈ S.
▶ Eg: MN(I) = MN(A) = 1 irrespective of N

▶ If N = ∥.∥1,
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Norm balls
Recap Norm: A function7 ∥.∥ that satisfies:

1 ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0.
2 ∥αx∥ = |α|∥x∥ for any scalar α ∈ ℜ.
3 ∥x1 + x2∥ ≤ ∥x1∥+ ∥x2∥ for any vectors x1 and x2.

Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r} is a convex set. Why?
▶ Eg 1: Ellipsoid is defined using ∥x∥2P = xTPx.
▶ Eg 2: Euclidean ball is defined using ∥x∥2.

Matrix Norm induced by vector norm N: MN(A) = sup
x̸=0

N(Ax)
N(x)

Here, sup
s∈S

f(s) =bf if bf is the minimum upper bound for f(s) over s ∈ S.
▶ Eg: MN(I) = MN(A) = 1 irrespective of N

▶ If N = ∥.∥1, MN(A) = max
j

n∑

i=1

|aij|

▶ If N = ∥.∥2,
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maximum column sum



Norm balls
Recap Norm: A function7 ∥.∥ that satisfies:

1 ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0.
2 ∥αx∥ = |α|∥x∥ for any scalar α ∈ ℜ.
3 ∥x1 + x2∥ ≤ ∥x1∥+ ∥x2∥ for any vectors x1 and x2.

Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r} is a convex set. Why?
▶ Eg 1: Ellipsoid is defined using ∥x∥2P = xTPx.
▶ Eg 2: Euclidean ball is defined using ∥x∥2.

Matrix Norm induced by vector norm N: MN(A) = sup
x̸=0

N(Ax)
N(x)

Here, sup
s∈S

f(s) =bf if bf is the minimum upper bound for f(s) over s ∈ S.
▶ Eg: MN(I) = MN(A) = 1 irrespective of N

▶ If N = ∥.∥1, MN(A) = max
j

n∑

i=1

|aij|

▶ If N = ∥.∥2, MN(A) =
√
σ1 , where σ1 is the dominant eigenvalue of ATA

▶ If N = ∥.∥∞,
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Norm balls
Recap Norm: A function7 ∥.∥ that satisfies:

1 ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0.
2 ∥αx∥ = |α|∥x∥ for any scalar α ∈ ℜ.
3 ∥x1 + x2∥ ≤ ∥x1∥+ ∥x2∥ for any vectors x1 and x2.

Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r} is a convex set. Why?
▶ Eg 1: Ellipsoid is defined using ∥x∥2P = xTPx.
▶ Eg 2: Euclidean ball is defined using ∥x∥2.

Matrix Norm induced by vector norm N: MN(A) = sup
x̸=0

N(Ax)
N(x)

Here, sup
s∈S

f(s) =bf if bf is the minimum upper bound for f(s) over s ∈ S.
▶ Eg: MN(I) = MN(A) = 1 irrespective of N

▶ If N = ∥.∥1, MN(A) = max
j

n∑

i=1

|aij|

▶ If N = ∥.∥2, MN(A) =
√
σ1 , where σ1 is the dominant eigenvalue of ATA

▶ If N = ∥.∥∞, MN(A) = max
i

m∑

j=1

|aij|
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