Euclidean balls and ellipsoids

- Euclidean ball with center \mathbf{x}_{c} and radius r is given by: $B\left(\mathbf{x}_{c}, r\right)=\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{c}\right\|_{2} \leq r\right\}=\left\{\mathbf{x}_{c}+r u \mid\|u\|_{2} \leq 1\right\}$
- Ellipsoid is a set of form:
$\left\{\mathbf{x} \mid\left(\mathbf{x}-\mathbf{x}_{c}\right)^{T} P^{-1}\left(\mathbf{x}-\mathbf{x}_{c}\right) \leq 1\right\}$, where $\mathrm{P} \in S_{++}^{n}$ i.e. P is positive-definite matrix.
- Other representation: $\left\{\mathbf{x}_{c}+A \mathbf{u} \mid\|\mathbf{u}\|_{2} \leq 1\right\}$ with A square and non-singular (i.e., A^{-1} exists).

Supporting hyperplane theorem and Dual (H) Description

Supporting hyperplane to set \mathcal{C} at boundary point \mathbf{x}_{o} :

- $\left\{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x}=\mathbf{a}^{T} \mathbf{x}_{o}\right\}$
- where $\mathbf{a} \neq 0$ and $\mathbf{a}^{T} \mathbf{x} \leq \mathbf{a}^{T} \mathbf{x}_{o}$ for all $\mathbf{x} \in \mathcal{C}$

Supporting hyperplane theorem: if \mathcal{C} is convex, then there exists a supporting hyperplane at every boundary point of C.

Recall Basic Prerequisite Concepts (in \Re^{n})

Definition

[Interior and Boundary points]: A point \mathbf{x} is called an interior point of a set \mathcal{S} if there exists an open ball around the point x that lies completely within S

Recall Basic Prerequisite Concepts (in \Re^{n})

Definition

[Interior and Boundary points]: A point \mathbf{x} is called an interior point of a set \mathcal{S} if there exists an $\epsilon>0$ such that $\mathcal{B}(\mathbf{x}, \epsilon) \subseteq \mathcal{S}$.

In other words, a point $\mathrm{x} \in \mathcal{S}$ is called an interior point of a set \mathcal{S} if there exists an open ball of non-zero radius around \mathbf{x} such that the ball is completely contained within \mathcal{S}.

Definition

[Interior of a set]: Let $\mathcal{S} \subseteq \Re^{n}$. The set of all points that are interior points

Recall Basic Prerequisite Concepts (in \Re^{n})

Definition

[Interior and Boundary points]: A point \mathbf{x} is called an interior point of a set \mathcal{S} if there exists an $\epsilon>0$ such that $\mathcal{B}(\mathbf{x}, \epsilon) \subseteq \mathcal{S}$.

In other words, a point $\mathrm{x} \in \mathcal{S}$ is called an interior point of a set \mathcal{S} if there exists an open ball of non-zero radius around \mathbf{x} such that the ball is completely contained within \mathcal{S}.

Definition

[Interior of a set]: Let $\mathcal{S} \subseteq \Re^{n}$. The set of all points lying in the interior of \mathcal{S} is denoted by $\operatorname{int}(\mathcal{S})$ and is called the interior of \mathcal{S}. That is,

$$
\operatorname{int}(\mathcal{S})=\{\mathbf{x} \mid \exists \epsilon>0 \text { s.t. } \mathcal{B}(\mathbf{x}, \epsilon) \subset \mathcal{S}\}
$$

In the $1-\mathrm{D}$ case, the open interval obtained by excluding endpoints from an interval \mathcal{I} is the interior of \mathcal{I}, denoted by $\operatorname{int}(\mathcal{I})$. For example, $\operatorname{int}([a, b])=(a, b)$ and $\operatorname{int}([0, \infty))=(0, \infty)$.

Recall Basic Prerequisite Concepts (in \Re^{n})

Definition

[Boundary of a set]: Let $\mathcal{S} \subseteq \Re^{n}$. The boundary of \mathcal{S}, denoted by $\partial(\mathcal{S})$ is defined as

Note: A set S may not contain its boundary
A ball around any boundary point should contain both points in the interior of the set as well as points outside

Recall Basic Prerequisite Concepts (in \Re^{n})

Definition

[Boundary of a set]: Let $\mathcal{S} \subseteq \Re^{n}$. The boundary of \mathcal{S}, denoted by $\partial(\mathcal{S})$ is defined as

$$
\partial(\mathcal{S})=\left\{\mathbf{y} \mid \forall \epsilon>0, \mathcal{B}(\mathbf{y}, \epsilon) \cap \mathcal{S} \neq \emptyset \text { and } \mathcal{B}(\mathbf{y}, \epsilon) \cap \mathcal{S}^{C} \neq \emptyset\right\}
$$

For example, $\partial([a, b])=\{a, b\}$. Boundary need not be contained in the set

Definition

[Open Set]: Let $\mathcal{S} \subseteq \Re^{n}$. We say that \mathcal{S} is an open set when, S coincides with its interior : int(S) $=\mathrm{S}$

Recall Basic Prerequisite Concepts (in \Re^{n})

Definition

[Boundary of a set]: Let $\mathcal{S} \subseteq \Re^{n}$. The boundary of \mathcal{S}, denoted by $\partial(\mathcal{S})$ is defined as

$$
\partial(\mathcal{S})=\left\{\mathbf{y} \mid \forall \epsilon>0, \mathcal{B}(\mathbf{y}, \epsilon) \cap \mathcal{S} \neq \emptyset \text { and } \mathcal{B}(\mathbf{y}, \epsilon) \cap \mathcal{S}^{C} \neq \emptyset\right\}
$$

For example, $\partial([a, b])=\{a, b\}$.

Definition

[Open Set]: Let $\mathcal{S} \subseteq \Re^{n}$. We say that \mathcal{S} is an open set when, for every $\mathrm{x} \in \mathcal{S}$, there exists an $\epsilon>0$ such that $\mathcal{B}(\mathbf{x}, \epsilon) \subset \mathcal{S}$.
(1) The simplest examples of an open set are the open ball, the empty set \emptyset and \Re^{n}.
(2) Further, arbitrary union of opens sets is open. Also, finite intersection of open sets is open.
(3) The interior of any set is always open. It can be proved that a set \mathcal{S} is open if and only if $\operatorname{int}(\mathcal{S})=\mathcal{S}$.

Recall Basic Prerequisite Concepts (in \Re^{n})

The complement of an open set is the closed set.
Definition
[Closed Set]: Let $\mathcal{S} \subseteq \Re^{n}$. We say that \mathcal{S} is a closed set when bnd(S) is contained in S

Recall Basic Prerequisite Concepts (in \Re^{n})

The complement of an open set is the closed set.

Definition

[Closed Set]: Let $\mathcal{S} \subseteq \Re^{n}$. We say that \mathcal{S} is a closed set when \mathcal{S}^{C} (that is the complement of \mathcal{S}) is an open set. It can be proved that $\partial \mathcal{S} \subseteq \mathcal{S}$, that is, a closed set contains its boundary.

The closed ball, the empty set \emptyset and \Re^{n} are three simple examples of closed sets. Arbitrary intersection of closed sets is closed. Furthermore, finite union of closed sets is closed.

Definition

[Closure of a Set]: Let $\mathcal{S} \subseteq \Re^{n}$. The closure of \mathcal{S}, denoted by closure (\mathcal{S}) is given by union of the set and bnd(S)

Recall Basic Prerequisite Concepts (in \Re^{n})

The complement of an open set is the closed set.

Definition

[Closed Set]: Let $\mathcal{S} \subseteq \Re^{n}$. We say that \mathcal{S} is a closed set when \mathcal{S}^{C} (that is the complement of \mathcal{S}) is an open set. It can be proved that $\partial \mathcal{S} \subseteq \mathcal{S}$, that is, a closed set contains its boundary.

The closed ball, the empty set \emptyset and \Re^{n} are three simple examples of closed sets. Arbitrary intersection of closed sets is closed. Furthermore, finite union of closed sets is closed.

Definition

[Closure of a Set]: Let $\mathcal{S} \subseteq \Re^{n}$. The closure of \mathcal{S}, denoted by closure (\mathcal{S}) is given by

$$
\operatorname{closure}(\mathcal{S})=\left\{\mathbf{y} \in \Re^{n} \mid \forall \epsilon>0, \mathcal{B}(\mathbf{y}, \epsilon) \cap \mathcal{S} \neq \emptyset\right\}
$$

Homework: Separating and Supporting Hyperplane Theorems (Fill in the Blanks)

SHT: Separating hyperplane theorem (a fundamental theorem)

If \mathcal{C} and \mathcal{D} are disjoint convex sets, i.e., $\mathcal{C} \cap \mathcal{D}=\phi$, then there exists $\mathbf{a} \neq \mathbf{0}$ and $b \in \Re$ such that
$\mathbf{a}^{T} \mathbf{x} \leq b$ for $\mathbf{x} \in \mathcal{C}$,
$\mathbf{a}^{T} \mathbf{x} \geq b$ for $\mathbf{x} \in \mathcal{D}$.
That is, the hyperplane $\left\{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x}=b\right\}$ separates \mathcal{C} and \mathcal{D}.

- The seperating hyperplane need not be unique though.
- Strict separation requires additional assumptions (e.g., C is closed, D is a singleton).

Both separating and supporting hyperplane theorems become trivial in the case of sets with empty interiors. Why?

1) Hyperplanes in $R^{\wedge} n$ were defined as affine hulls of n affinely indepedent points $==>$ Hyperplane has one dimension less than the space
2) If space is $R^{\wedge} 3, C$ and D are discs in $R^{\wedge} 2$ lying on plane, trivial hyperplane (separating or supporting) is the hyperplane containing C (and D) with equality everywhere

Proof of the Separating Hyperplane Theorem

Sum/difference of any two convex sets is convex

We first note that the set $\mathcal{S}=\{\mathrm{x}-\mathrm{y} \mid \mathrm{x} \in \mathcal{C}, \mathrm{y} \in \mathcal{D}\}$ is convex, since it is the sum of two convex sets. Since \mathcal{C} and \mathcal{D} are disjoint, $\mathbf{0} \notin \mathcal{S}$. Consider two cases:
(1) Suppose $\mathbf{0} \notin \operatorname{closure}(\mathcal{S})$. Let $\mathcal{E}=\{0\}$ and $\mathcal{F}=\operatorname{closure}(\mathbf{S})$. Then, the euclidean distance between \mathcal{E} and \mathcal{F}, defined as $\operatorname{dist}(\mathcal{E} ; \mathcal{F})=\inf \left\{\|\mathbf{u}-\mathbf{v}\|_{2} \mid \mathbf{u} \in \mathcal{E}, \mathbf{v} \in \mathcal{F}\right\}$ is positive, and there exists a point $\mathrm{f} \in \mathcal{F}$ that achieves the minimum distance, i.e., $\|\mathbf{f}\|_{2}=\operatorname{dist}(\mathcal{E}, \mathcal{F})$. Define \qquad
Then $\mathbf{a} \neq \mathbf{0}$ and the affine function $f(\mathbf{x})=\mathbf{a}^{T} \mathbf{x}-b=\mathbf{f}^{T}\left(\mathbf{x}-\frac{1}{2} \mathbf{f}\right)$ is nonpositive on \mathcal{E} and nonnegative on \mathcal{F}, i.e., that the hyperplane $\left\{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x}=b\right\}$ separates \mathcal{E} and \mathcal{F}. Thus, $\mathbf{a}^{T}(\mathbf{x}-\mathbf{y})>0$ for all $\mathbf{x}-\mathbf{y} \in \mathcal{S} \subseteq \operatorname{closure}(\mathcal{S})$, which implies that, $\mathbf{a}^{T} \mathbf{x} \geq \mathbf{a}^{T} \mathbf{y}$ for all $\mathbf{x} \in \mathcal{C}$ and $\mathbf{y} \in \mathcal{D}$.

Proof of the Separating Hyperplane Theorem

We first note that the set $\mathcal{S}=\{\mathbf{x}-\mathbf{y} \mid \mathbf{x} \in \mathcal{C}, \mathbf{y} \in \mathcal{D}\}$ is convex, since it is the sum ${ }^{6}$ of two convex sets. Since \mathcal{C} and \mathcal{D} are disjoint, $\mathbf{0} \notin \mathcal{S}$. Consider two cases:
(1) Suppose $\mathbf{0} \notin \operatorname{closure}(\mathcal{S})$. Let $\mathcal{E}=\{0\}$ and $\mathcal{F}=\operatorname{closure}(\mathbf{S})$. Then, the euclidean distance between \mathcal{E} and \mathcal{F}, defined as

$$
\operatorname{dist}(\mathcal{E} ; \mathcal{F})=\inf \left\{\|\mathbf{u}-\mathbf{v}\|_{2} \mid \mathbf{u} \in \mathcal{E}, \mathbf{v} \in \mathcal{F}\right\}
$$

is positive, and there exists a point $\mathbf{f} \in \mathcal{F}$ that achieves the minimum distance, i.e., $\|\mathbf{f}\|_{2}=\operatorname{dist}(\mathcal{E}, \mathcal{F})$. Define $\mathbf{a}=\mathbf{f}, \boldsymbol{b}=1 / 2| | \mathbf{f} \|_{2}^{2}$.
Then $\mathbf{a} \neq \mathbf{0}$ and the affine function $f(\mathbf{x})=\mathbf{a}^{T} \mathbf{x}-b=\mathbf{f}^{T}\left(\mathbf{x}-\frac{1}{2} \mathbf{f}\right)$ is nonpositive on \mathcal{E} and nonnegative on \mathcal{F}, i.e., that the hyperplane $\left\{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x}=b\right\}$ separates \mathcal{E} and \mathcal{F}. Thus, $\mathbf{a}^{\top}(\mathbf{x}-\mathbf{y})>0$ for all $\mathbf{x}-\mathbf{y} \in \mathcal{S} \subseteq \operatorname{closure}(\mathcal{S})$, which implies that, $\mathbf{a}^{\top} \mathbf{x} \geq \mathbf{a}^{\top} \mathbf{y}$ for all $\mathbf{x} \in \mathcal{C}$ and $\mathbf{y} \in \mathcal{D}$.

Nontrivial part, sketched on the board in class

[^0]
Proof of the Separating Hyperplane Theorem

That is, C and D are touching at a point...
(2) Suppose, $0 \in \operatorname{closure}(\mathcal{S})$. Since $0 \notin \mathcal{S}$, it must be in the boundary of \mathcal{S}.

- If $\operatorname{int}(\mathcal{S})=\emptyset$ (that is, if \mathcal{S} has empty interior), it must lie in an affine set of dimension $<n$, and any hyperplane containing that affine set contains \mathcal{S} and is a hyperplane.
- In other words, \mathcal{S} is contained in a hyperplane $\left\{\mathbf{z} \mid \mathbf{a}^{\top} \mathbf{z}=b\right\}$, which must include the origin and therefore $b=0$. In other words, $\mathbf{a}^{\top} \mathbf{x}=\mathbf{a}^{\top} \mathbf{y}$ for all $\mathbf{x} \in \mathcal{C}$ and all $\mathbf{y} \in \mathcal{D}$ gives us a trivial separating hyperplane.

is the separating hyperplane

Proof of the Separating Hyperplane Theorem

(2) Suppose, $0 \in \operatorname{closure}(\mathcal{S})$. Since $0 \notin \mathcal{S}$, it must be in the boundary of \mathcal{S}.

- If \mathcal{S} has a nonempty interior, consider the set
$\mathcal{S}_{-\epsilon}=\{\mathbf{z} \mid B(\mathbf{z}, \epsilon) \subseteq \mathcal{S}\}$
where $B(\mathbf{z}, \epsilon)$ is the Euclidean ball with center \mathbf{z} and radius $\epsilon>0 . \mathcal{S}_{-\epsilon}$ is the set \mathcal{S}, shrunk by ϵ. closure $\left(\mathcal{S}_{-\epsilon}\right)$ is closed and convex, and does not contain $\mathbf{0}$, so as argued betore, it is separated from $\{\mathbf{0}\}$ by atleast one hyperplane with normal vector $\mathbf{a}(\epsilon)$ such that as in case 1 a(eps)^ $T x>=0$ is a separating hyperplane
Without loss of generality assume $\|\mathbf{a}(\epsilon)\|_{2}=1$. Let ϵ_{k}, for $k=1,2, \ldots$ be a sequence of positive values of ϵ_{k} with $\lim _{k \rightarrow \infty} \epsilon_{k}=0$. Since $\left\|\mathbf{a}\left(\epsilon_{k}\right)\right\|_{2}=1$
for all k, the sequence $\mathbf{a}\left(\epsilon_{k}\right)$ contains a convergent subsequence, and let $\overline{\mathbf{a}}$ be its limit. We have
which means $\overline{\mathbf{a}}^{T} \mathbf{x} \geq \overline{\mathbf{a}}^{T} \mathbf{y}$ for all $\mathbf{x} \in \mathcal{C}$, and $\mathbf{y} \in \mathcal{D}$.

Proof of the Separating Hyperplane Theorem

(2) Suppose, $0 \in \operatorname{closure}(\mathcal{S})$. Since $0 \notin \mathcal{S}$, it must be in the boundary of \mathcal{S}.

- If \mathcal{S} has a nonempty interior, consider the set
$\mathcal{S}_{-\epsilon}=\{\mathbf{z} \mid B(\mathbf{z}, \epsilon) \subseteq \mathcal{S}\}$
where $B(\mathbf{z}, \epsilon)$ is the Euclidean ball with center \mathbf{z} and radius $\epsilon>0 . \mathcal{S}_{-\epsilon}$ is the set \mathcal{S}, shrunk by ϵ. closure $\left(\mathcal{S}_{-\epsilon}\right)$ is closed and convex, and does not contain $\mathbf{0}$, so as argued before, it is separated from $\{\mathbf{0}\}$ by atleast one hyperplane with normal vector $\mathbf{a}(\epsilon)$ such that $\mathbf{a}(\epsilon)^{T} \mathbf{z} \geq 0$ for all $\mathbf{z} \in \mathcal{S}_{\epsilon}$
Without loss of generality assume $\|\mathbf{a}(\epsilon)\|_{2}=1$. Let ϵ_{k}, for $k=1,2, \ldots$ be a sequence of positive values of ϵ_{k} with $\lim _{k \rightarrow \infty} \epsilon_{k}=0$. Since $\left\|\mathbf{a}\left(\epsilon_{k}\right)\right\|_{2}=1$ for all k, the sequence $\mathbf{a}\left(\epsilon_{k}\right)$ contains a convergent subsequence, and let $\overline{\mathbf{a}}$ be its limit. We have $\mathbf{a}\left(\epsilon_{k}\right)^{T} \mathbf{z} \geq 0$ for all $\mathbf{z} \in \mathcal{S}_{-\epsilon_{k}}$ and therefore $\overline{\mathbf{a}}^{T} \mathbf{z} \geq 0$ for all $\mathbf{z} \in \operatorname{interior}(\mathcal{S})$, and $\overline{\mathbf{a}}^{T} \mathbf{z} \geq 0$ for all $\mathrm{z} \in \mathcal{S}$,
which means $\overline{\mathbf{a}}^{T} \mathbf{x} \geq \overline{\mathbf{a}}^{T} \mathbf{y}$ for all $\mathbf{x} \in \mathcal{C}$, and $\mathbf{y} \in \mathcal{D}$.

Supporting hyperplane theorem (consequence of separating hyperplane theorem)
Supporting hyperplane to set \mathcal{C} at boundary point \mathbf{x}_{o} :

- $\left\{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x}=\mathbf{a}^{T} \mathbf{x}_{o}\right\}$
- where $\mathbf{a} \neq 0$ and $\mathbf{a}^{T} \mathbf{x} \leq \mathbf{a}^{T} \mathbf{x}_{o}$ for all $\mathbf{x} \in \mathcal{C}$

Supporting hyperplane theorem: if \mathcal{C} is convex, then there exists a supporting hyperplane at every boundary point x of C .

HW: Proof of Supporting Hyperplane Theorem

The supporting hyperplane theorem is proved from the separating hyperplane theorem as follows:
(1) If $\operatorname{int}(C) \neq \emptyset$, the result follows by applying the separating hyperplane theorem to the sets $\{\mathbf{x}\}$ and $\operatorname{int}(C)$.
(2) If $\operatorname{int}(C)=\emptyset$, then C must lie in an affine set of dimension $<n$, and any hyperplane containing that affine set contains C and \mathbf{x}, and is therefore a (trivial) supporting hyperplane.

Homework: Separating and Supporting Hyperplane Theorems (Fill in the Blanks Concluded)

Back to Euclidean balls and ellipsoids

- Euclidean ball with center \mathbf{x}_{c} and radius r is given by: $B\left(\mathbf{x}_{c}, r\right)=\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{c}\right\|_{2} \leq r\right\}=\left\{\mathbf{x}_{c}+r u \mid\|u\|_{2} \leq 1\right\}$
- Ellipsoid is a set of form:
$\left\{\mathbf{x} \mid\left(\mathbf{x}-\mathbf{x}_{c}\right)^{T} P^{-1}\left(\mathbf{x}-\mathbf{x}_{c}\right) \leq 1\right\}$, where $\mathrm{P} \in S_{++}^{n}$ i.e. P is positive-definite matrix.
- Other representation: $\left\{\mathbf{x}_{c}+A \mathbf{u} \mid\|\mathbf{u}\|_{2} \leq 1\right\}$ with A square and non-singular (i.e., A^{-1} exists).

Back to Euclidean balls and ellipsoids

- Euclidean ball with center \mathbf{x}_{c} and radius r is given by: $B\left(\mathbf{x}_{c}, r\right)=\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{c}\right\|_{2} \leq r\right\}=\left\{\mathbf{x}_{c}+r u \mid\|u\|_{2} \leq 1\right\}$
- Ellipsoid is a set of form:
$\left\{\mathbf{x} \mid\left(\mathbf{x}-\mathbf{x}_{c}\right)^{T} P^{-1}\left(\mathbf{x}-\mathbf{x}_{c}\right) \leq 1\right\}$, where $\mathrm{P} \in S_{++}^{n}$ i.e. P is positive-definite matrix.
- Other representation: $\left\{\mathbf{x}_{c}+A \mathbf{u} \mid\|\mathbf{u}\|_{2} \leq 1\right\}$ with A square and non-singular (i.e., A^{-1} exists).

Dual (H) Description for such convex sets?

Supporting hyperplane theorem and Dual (H) Description

Supporting hyperplane to set \mathcal{C} at boundary point \mathbf{x}_{o} :

- $\left\{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x}=\mathbf{a}^{T} \mathbf{x}_{o}\right\}$
- where $\mathbf{a} \neq 0$ and $\mathbf{a}^{T} \mathbf{x} \leq \mathbf{a}^{T} \mathbf{x}_{o}$ for all $\mathbf{x} \in \mathcal{C}$

Supporting hyperplane theorem: if \mathcal{C} is convex, then there exists a supporting hyperplane at every boundary point of C.

Separating hyperplane and the Ellipsoid: Ellipsoid Algorithm

Implicit assumption on boundedness of set C is made
$\left\{\mathbf{x} \mid\left(\mathbf{x}-\mathrm{x}_{c}\right)^{\top} P^{-1}\left(\mathbf{x}-\mathrm{x}_{c}\right) \leq 1\right\}$

- Given an ellipsoid $\left(P(i), \mathbf{x}_{c}(i)\right)$ containing a set C Imagine C to be a polytope
- Ask a separating oracle to answer if $\mathbf{x}_{c}(i) \in C$ or compute separating hyperplane \mathbf{a}, b between $\mathbf{x}_{C}(i)$ and C.
- If $\mathbf{x}_{c}(i) \notin C$, update ellipsoid center $\mathbf{x}_{c}(i+1)$ and ellipsoid shape $P(i)$

Examples of separating hyperplanes: (1) Cutting plane (cutting plane algos)
(2) Hyperplane based on gradient or subgradier (we wil see 2 very soon)
(3) Say $C=\{x \mid A x<=d\}$ as in Linear Program!

Norm balls

- Recap Norm: A function ${ }^{7}| | .| |$ that satisfies:
(1) $\|x\| \geq 0$, and $\|x\|=0$ iff $x=0$.
(2) $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ for any scalar $\alpha \in \Re$.
(3) $\left\|\mathbf{x}_{1}+\mathbf{x}_{2}\right\| \leq\left\|\mathrm{x}_{1}\right\|+\left\|\mathrm{x}_{2}\right\|$ for any vectors x_{1} and x_{2}.
- Norm ball with center \mathbf{x}_{c} and radius $r:\left\{\mathbf{x}\| \| \mathbf{x}-\mathbf{x}_{x} \| \leq r\right\}$ is a convex set. Why?

Norm balls

- Recap Norm: A function ${ }^{7}\|$.$\| that satisfies:$
(1) $\|x\| \geq 0$, and $\|x\|=0$ iff $x=0$.
(2) $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ for any scalar $\alpha \in \Re$.
(3) $\left\|\mathrm{x}_{1}+\mathrm{x}_{2}\right\| \leq\left\|\mathrm{x}_{1}\right\|+\left\|\mathrm{x}_{2}\right\|$ for any vectors x_{1} and x_{2}.
- Norm ball with center \mathbf{x}_{c} and radius $r:\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{x}\right\| \leq r\right\}$ is a convex set. Why?
- Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_{P}^{2}=\mathbf{x}^{\top} P \mathbf{x}$. matrix induced vector norm
- Eg 2: Euclidean ball is defined using $\|\mathrm{x}\|_{2}$. L1, L infinity norm balls.
- Matrix Norm induced by vector norm $N: M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$ maximum norm of $\mathrm{x} \neq 0 \quad$ linear combination of
Here, sup $f(s)=\widehat{f}$ if \widehat{f} is the minimum upper bound for $f(s)$ over $s \in S$. columns of
$s \in S$
- Eg: $M_{N}(I)=$

N subject to coefficients of x being bounded by the same norm

Norm balls

- Recap Norm: A function ${ }^{7}\|\cdot\|$ that satisfies:
(1) $\|x\| \geq 0$, and $\|x\|=0$ iff $x=0$.
(2) $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ for any scalar $\alpha \in \Re$.
(3) $\left\|\mathrm{x}_{1}+\mathrm{x}_{2}\right\| \leq\left\|\mathrm{x}_{1}\right\|+\left\|\mathrm{x}_{2}\right\|$ for any vectors x_{1} and x_{2}.
- Norm ball with center \mathbf{x}_{c} and radius $r:\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{x}\right\| \leq r\right\}$ is a convex set. Why?
- Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_{P}^{2}=\mathbf{x}^{\top} P \mathbf{x}$.
- Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_{2}$.
- Matrix Norm induced by vector norm $N: M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$

Here, sup $f(s)=\widehat{f}$ if \widehat{f} is the minimum upper bound for $f(s)$ over $s \in S$.
$s \in S$

- Eg: $M_{N}(I)=M_{N}(A)=1$ irrespective of N
- If $N=\|.\|_{1}$,

Norm balls

- Recap Norm: A function ${ }^{7}\|$.$\| that satisfies:$
(1) $\|x\| \geq 0$, and $\|x\|=0$ iff $x=0$.
(2) $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ for any scalar $\alpha \in \Re$.
(3) $\left\|\mathrm{x}_{1}+\mathrm{x}_{2}\right\| \leq\left\|\mathrm{x}_{1}\right\|+\left\|\mathrm{x}_{2}\right\|$ for any vectors x_{1} and x_{2}.
- Norm ball with center \mathbf{x}_{c} and radius $r:\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{x}\right\| \leq r\right\}$ is a convex set. Why?
- Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_{P}^{2}=\mathbf{x}^{\top} P \mathbf{x}$.
- Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_{2}$.
- Matrix Norm induced by vector norm $N: M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$

Here, sup $f(s)=\widehat{f}$ if \widehat{f} is the minimum upper bound for $f(s)$ over $s \in S$.

$$
s \in S
$$

- Eg: $M_{N}(I)=M_{N}(A)=1$ irrespective of N
- If $N=\|\cdot\|_{1}, M_{N}(A)=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|$ maximum column sum
- If $N=\|\cdot\|_{2}$,

Norm balls

- Recap Norm: A function ${ }^{7}| | .| |$ that satisfies:
(1) $\|x\| \geq 0$, and $\|x\|=0$ iff $x=0$.
(2) $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ for any scalar $\alpha \in \Re$.
(3) $\left\|\mathrm{x}_{1}+\mathrm{x}_{2}\right\| \leq\left\|\mathrm{x}_{1}\right\|+\left\|\mathrm{x}_{2}\right\|$ for any vectors x_{1} and x_{2}.
- Norm ball with center \mathbf{x}_{c} and radius $r:\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{x}\right\| \leq r\right\}$ is a convex set. Why?
- Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_{P}^{2}=\mathbf{x}^{\top} P \mathbf{x}$.
- Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_{2}$.
- Matrix Norm induced by vector norm $N: M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$

Here, sup $f(s)=\widehat{f}$ if \widehat{f} is the minimum upper bound for $f(s)$ over $s \in S$.

$$
s \in S
$$

- Eg: $M_{N}(I)=M_{N}(A)=1$ irrespective of N
- If $N=\|\cdot\|_{1}, M_{N}(A)=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|$
- If $N=\|\cdot\|_{2}, M_{N}(A)=\sqrt{\sigma_{1}}$, where σ_{1} is the dominant eigenvalue of $A^{T} A$
- If $N=\|\cdot\|_{\infty}$,

Norm balls

- Recap Norm: A function ${ }^{7}| | .| |$ that satisfies:
(1) $\|x\| \geq 0$, and $\|x\|=0$ iff $x=0$.
(2) $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ for any scalar $\alpha \in \Re$.
(3) $\left\|\mathrm{x}_{1}+\mathrm{x}_{2}\right\| \leq\left\|\mathrm{x}_{1}\right\|+\left\|\mathrm{x}_{2}\right\|$ for any vectors x_{1} and x_{2}.
- Norm ball with center \mathbf{x}_{c} and radius $r:\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{x}\right\| \leq r\right\}$ is a convex set. Why?
- Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_{P}^{2}=\mathbf{x}^{\top} P \mathbf{x}$.
- Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_{2}$.
- Matrix Norm induced by vector norm $N: M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$

Here, sup $f(s)=\widehat{f}$ if \widehat{f} is the minimum upper bound for $f(s)$ over $s \in S$.

$$
s \in S
$$

- Eg: $M_{N}(I)=M_{N}(A)=1$ irrespective of N
- If $N=\|\cdot\|_{1}, M_{N}(A)=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|$
- If $N=\|\cdot\|_{2}, M_{N}(A)=\sqrt{\sigma_{1}}$, where σ_{1} is the dominant eigenvalue of $A^{T} A$
- If $N=\|.\|_{\infty}, M_{N}(A)=\max _{i} \sum_{j=1}^{m}\left|a_{i j}\right|$

[^0]: ${ }^{6}$ Easy proof. Let us attempt.

