
Closure under Affine transform (contd.)
In the finite-dimensional case each affine transformation is given by a matrix A and a vector b.
The image and pre-image of convex sets under an affine transformation defined as

f(x) =
n∑

i
xiai + b

yield convex sets9. Here ai is the ith row of A. The following are examples of convex sets that
are either images or inverse images of convex sets under affine transformations:

1 the solution set of linear matrix inequality (Ai,B ∈ Sm)
{

x ∈ ℜn | x1A1 + . . .+ xnAn ⪯ B
}

is a convex set. Here A ⪯ B means B− A is positive semi-definite10. This set is the
inverse image under an affine mapping of the

9Exercise: Prove.
10The inequality induced by positive semi-definiteness corresponds to a generalized inequality ⪯K with

K = Sn
+.
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Closure under Affine transform (contd.)
In the finite-dimensional case each affine transformation is given by a matrix A and a vector b.
The image and pre-image of convex sets under an affine transformation defined as

f(x) =
n∑

i
xiai + b

yield convex sets9. Here ai is the ith row of A. The following are examples of convex sets that
are either images or inverse images of convex sets under affine transformations:

1 the solution set of linear matrix inequality (Ai,B ∈ Sm)
{

x ∈ ℜn | x1A1 + . . .+ xnAn ⪯ B
}

is a convex set. Here A ⪯ B means B− A is positive semi-definite10. This set is the
inverse image under an affine mapping of the positive semi-definite cone. That is,
f−1 (cone) =

{
x ∈ ℜn |B− (x1A1 + . . .+ xnAn) ∈ Sm

+

}
={

x ∈ ℜn|B ⪰ (x1A1 + . . .+ xnAn)
}
.

9Exercise: Prove.
10The inequality induced by positive semi-definiteness corresponds to a generalized inequality ⪯K with

K = Sn
+.
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Closure under Affine transform (contd.)

2 hyperbolic cone which is the inverse image of the norm cone
Cm+1 =

{
(z, u)|||z|| ≤ u, u ≥ 0, z ∈ ℜm} =

{
(z, u)|zTz − u2 ≤ 0, u ≥ 0, z ∈ ℜm

}
is a

convex set. The inverse image is given by
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Closure under Affine transform (contd.)

2 hyperbolic cone which is the inverse image of the norm cone
Cm+1 =

{
(z, u)|||z|| ≤ u, u ≥ 0, z ∈ ℜm} =

{
(z, u)|zTz − u2 ≤ 0, u ≥ 0, z ∈ ℜm

}
is a

convex set. The inverse image is given by
f−1 (Cm+1) =

{
x ∈ ℜn |

(
Ax, cTx

)
∈ Cm+1

}
=

{
x ∈ ℜn|xTATAx − (cTx)2 ≤ 0

}
.

Setting P = ATA ∈ Sn
+, we get the equation of the hyperbolic cone
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Closure under Affine transform (contd.)

2 hyperbolic cone which is the inverse image of the norm cone
Cm+1 =

{
(z, u)|||z|| ≤ u, u ≥ 0, z ∈ ℜm} =

{
(z, u)|zTz − u2 ≤ 0, u ≥ 0, z ∈ ℜm

}
is a

convex set. The inverse image is given by
f−1 (Cm+1) =

{
x ∈ ℜn |

(
Ax, cTx

)
∈ Cm+1

}
=

{
x ∈ ℜn|xTATAx − (cTx)2 ≤ 0

}
.

Setting P = ATA ∈ Sn
+, we get the equation of the hyperbolic cone (constraining

P ∈ Sn
+): {

x | xTPx ≤ (cTx)2, cTx ≥ 0
}
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Closure under Perspective and linear-fractional functions
The perspective function P : ℜn+1 → ℜn is defined as follows:

P : ℜn+1 → ℜn such that
P(x, t) = x/t dom P = {(x, t) | t > 0} (40)

The linear-fractional function f is a generalization of the perspective function and is defined as:
ℜn → ℜm:

f : ℜn → ℜm such that
f(x) = Ax+b

cTx+d dom f = {x | cTx + d > 0} (41)

The images and inverse images of convex sets under perspective and linear-fractional functions
are convex11.

11Exercise: Prove.
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An affine transform in num/denom and then 
a perspective



Closure under Perspective (contd)
The Figure below shows an example perspective transform (3-D to 2-D effect)
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Closure under linear-fractional functions (contd)

The Figure below shows an example set.
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A set in R^2==> Apply affine transform to take it
   to R^3 ==> Apply perspective to 

get back to R^2



Closure under linear-fractional functions (contd)
Consider the linear-fractional function f = 1

x1+x2+1x. The following Figure shows the image of
the set (from the prevous slide) under the linear-fractional function f.
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HW: N = ∥.∥∞, MN(A) = sup
x̸=0

N(Ax)
N(x) = sup

∥x∥=1

N(Ax)

1 If N(x) = max
i

|xi| then N(Ax) = max
i

|
m∑

j=1

aijxj| ≤ max
i

m∑

j=1

|aij||xj| ≤≤ max
i

m∑

j=1

|aij|

where the last inequality is attained by considering a x = [1, 1..1, 1...1] which has 1 in all
positions. Then ∥x∥∞ = 1 and for such an x, the upper bounded on the supremum in
indeed attained.

2 Therefore, it must be that ∥Ax∥1 = maxi
∑m

j=1 |aij| (the maximum absolute row sum)
3 That is,

MN(A) = ∥Ax∥1 = max
i

m∑

j=1

|aij|
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Max absolute row sum...



Another note Positive semidefinite cone & Primal Description

Consider symmetrix positive semi-definite matrix S ∈ ℜ2. Then S must be
of the form

S =

[
x y
y z

]
(42)

We can represent the space of matrices S2
+ in ℜ3 with non-negative x and z coordinates

and a non-negative determinant: Why?
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Non-negative eigenvalues

sum of eigenvalues = trace product of eigenvalues = determinant



Another note Positive semidefinite cone & Primal Description

Consider symmetrix positive semi-definite matrix S ∈ ℜ2. Then S must be
of the form

S =

[
x y
y z

]
(42)

We can represent the space of matrices S2
+ in ℜ3 with non-negative x and z coordinates

and a non-negative determinant: Why?
Sum of eigenvalues of a matrix is trace of matrix and product of its eigenvalues is its
determinant.
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Example Optimization Problem posed using Positive semidefinite Cone

Consider the Max-Cut problem: Given a graph G = (V,E) consisting of vertices V and
edges E, partition V into subsets P and Q such that the cut-set (edges with one end-point
in each set of the partition) has the maximum size.
This can be posed as the following optimization problem:

maximize
∑

(u,v)∈E

1− xuxv
2

subject to x2u = 1 for each u ∈ V
(43)
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Size of cut

Ensures that each x_u is +1 or -1



Example Optimization Problem posed using Positive semidefinite Cone
Again consider the optimization problem in (43) slightly rewritten in (44):

maximize
∑

(u,v)∈E

1− ρuv
2

subject to ρuv = ⟨xu,xv⟩ for all u, v ∈ V and u ̸= v
ρuu = ⟨xu,xu⟩ = 1

(44)

Here, x∗ could be a scalar as in (43) or could be a vector in ℜn as well.
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The problem in the second case
is no longer exactly equal to the 
previous setting in (43)
It is an approximation
it turns out to be a best approximation



Example Optimization Problem posed using Positive semidefinite Cone
Again consider the optimization problem in (43) slightly rewritten in (44):

maximize
∑

(u,v)∈E

1− ρuv
2

subject to ρuv = ⟨xu,xv⟩ for all u, v ∈ V and u ̸= v
ρuu = ⟨xu,xu⟩ = 1

(44)

Here, x∗ could be a scalar as in (43) or could be a vector in ℜn as well.
Consider the matrix ρ ∈ ℜ|V|×|V|.

ρ =




⟨x1,x1⟩ ⟨x1,x2⟩ ... ⟨x1,x|V|⟩
⟨x2,x1⟩ ⟨x2,x2⟩ ... ⟨x2,x|V|⟩

.... .... .... ....
⟨x|V|,x1⟩ ⟨x|V|,x2⟩ ... ⟨x|V|,x|V|⟩




This matrix is
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Example Optimization Problem posed using Positive semidefinite Cone
Again consider the optimization problem in (43) slightly rewritten in (44):

maximize
∑

(u,v)∈E

1− ρuv
2

subject to ρuv = ⟨xu,xv⟩ for all u, v ∈ V and u ̸= v
ρuu = ⟨xu,xu⟩ = 1

(44)

Here, x∗ could be a scalar as in (43) or could be a vector in ℜn as well.
Consider the matrix ρ ∈ ℜ|V|×|V|.

ρ =




⟨x1,x1⟩ ⟨x1,x2⟩ ... ⟨x1,x|V|⟩
⟨x2,x1⟩ ⟨x2,x2⟩ ... ⟨x2,x|V|⟩

.... .... .... ....
⟨x|V|,x1⟩ ⟨x|V|,x2⟩ ... ⟨x|V|,x|V|⟩




This matrix is symmetric and positive semi-definite.
The ellipsoid algorithm (outlined in a previous lecture) can solve SDP in polytime and
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Convex Functions, Epigraphs, Sublevel sets, Separating and Supporting
Hyperplane Theorems and required tools
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Convex Functions: Extending Slopeless Definition from ℜ :→ ℜ
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Convex Functions: Extending Slopeless Definition from ℜ :→ ℜ
A function f : D → ℜ is convex if
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D is convex
and 
f is such that the line segment connecting two

points on the function curve always lies 
above the function curve itself



Convex Functions: Extending Slopeless Definition from ℜ :→ ℜ
A function f : D → ℜ is convex if D is a convex set and

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y) ∀ x,y ∈ D 0 ≤ θ ≤ 1 (45)
A function f : D → ℜ is strictly convex if D is convex and

f(θx + (1− θ)y) < θf(x) + (1− θ)f(y)) ∀ x,y ∈ D 0 < θ < 1 (46)
A function f : D → ℜ is strongly convex if D is convex and for some constant c > 0

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y))− 1
2cθ(1− θ)||x − y||2 ∀ x,y ∈ D 0 ≤ θ ≤ 1

A function f : D → ℜ is uniformly convex wrt function d(x) ≥ 0 (vanishing only at 0) if
D is convex and

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y))− d(∥x − y∥)θ(1− θ) ∀ x,y ∈ D 0 ≤ θ ≤ 1 (48)
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convex (not strict) (strictly/strongly) convex

strictly convex

non-strong convexity

strictly convex
strongly convex only in
some specified interval



Figure 13: Example of convex function.
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Strong convexity is about characterizing 
gap as a function of ||x-y||



Examples of Convex Functions

Examples of convex functions on the set of reals ℜ as well as on ℜn and ℜm×n are shown
below.

Function type Domain Additional Constraints
The affine function: ax+ b ℜ Any a, b ∈ ℜ
The exponential function: eax ℜ Any a ∈ ℜ
Powers: xα ℜ++ α ≥ 1 or α ≤ 1

Powers of absolute value: |x|p ℜ p ≥ 1

Negative entropy: x log x ℜ++

Affine functions of vectors: aTx + b ℜn

p-norms of vectors: ||x||p =




n∑

i=1

|xi|p



1/p

ℜn p ≥ 1

inf norms of vectors: ||x||∞ = maxk |xk| ℜn

Affine functions of matrices: tr(ATX) + b =

m∑

i=1

n∑

j=1

AijXij + b ℜm×n

Spectral (maximum singular value) matrix norm: ||X||2 = σmax(X) = (λmax(XTX))1/2 ℜm×n

Table 1: Examples of convex functions on ℜ, ℜn and ℜm×n.
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You could prove these convexities from first principles.. 
OR develop tools for convex functions (like for convex sets) and

use them to prove convexity?



Strict, Strong and Uniform Convexity for f : ℜ → ℜ

Strictly, Strongly Convex Function:
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General quadratic functions



Strict, Strong and Uniform Convexity for f : ℜ → ℜ

Strictly, Strongly Convex Function:
▶ f(x) = x2
▶ f(x) = x2 − cos(x)
▶ For f : ℜn → ℜ,
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Strict, Strong and Uniform Convexity for f : ℜ → ℜ

Strictly, Strongly Convex Function:
▶ f(x) = x2
▶ f(x) = x2 − cos(x)
▶ For f : ℜn → ℜ, f(x) = xTAx + bTx + c

Strictly Convex but not Strongly Convex:
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x^4, x^6...x raised to even powers?



Strict, Strong and Uniform Convexity for f : ℜ → ℜ

Strictly, Strongly Convex Function:
▶ f(x) = x2
▶ f(x) = x2 − cos(x)
▶ For f : ℜn → ℜ, f(x) = xTAx + bTx + c

Strictly Convex but not Strongly Convex:
▶ f(x) = x4
▶ f(x) = x8

Convex but not Strictly Convex:
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Strict, Strong and Uniform Convexity for f : ℜ → ℜ

Strictly, Strongly Convex Function:
▶ f(x) = x2
▶ f(x) = x2 − cos(x)
▶ For f : ℜn → ℜ, f(x) = xTAx + bTx + c

Strictly Convex but not Strongly Convex:
▶ f(x) = x4
▶ f(x) = x8

Convex but not Strictly Convex:
▶ f(x) = |x|
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A function f : ℜn → ℜ is said to be concave if the function −f is convex. Examples of concave
functions on the set of reals ℜ are shown below. If a function is both convex and concave, it
must be affine, as can be seen in the two tables.

Function type Domain Additional Constraints
The affine function: ax+ b ℜ Any a, b ∈ ℜ
Powers: xα ℜ++ 0 ≤ α ≤ 1

logarithm: log x ℜ++

Table 2: Examples of concave functions on ℜ.
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Convexity and Global Minimum

Fundamental chracteristics:
1 Any point of local minimum point is also a point of global minimum.
2 For any stricly convex function, the point corresponding to the gobal minimum is also

unique.
To discuss these further, we need to extend the defitions of Local Minima/Maxima to arbitrary
sets D
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we have already seen that a strongly convex function is strictly

convex



Illustrating Local Extrema for f : ℜ2 → ℜ
These definitions are exactly analogous to the definitions for a function of single variable.
Figure below shows the plot of f(x1, x2) = 3x21 − x31 − 2x22 + x42. As can be seen in the plot, the
function has several local maxima and minima.

Figure 14:
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Local Extrema in Normed Spaces: Extending from ℜ → ℜ
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Local Extrema in Normed Spaces: Extending from ℜ → ℜ
Definition
[Local maximum]: A function f of n variables has a local maximum at x0 ∈ D in a normed

space D if ∃ϵ > 0 such that ∀ ||x − x0|| < ϵ. f(x) ≤ f(x0). In other words,
f(x) ≤ f(x0) whenever x lies in the interior of some norm ball around x0.

Definition
[Local minimum]: A function f of n variables has a local minimum at x0 ∈ D in a normed

space D if ∃ϵ > 0 such that ∀ ||x − x0|| < ϵ. f(x) ≥ f(x0). In other words,
f(x) ≥ f(x0) whenever x lies in the interior of some norm ball around x0.

1 These definitions can be easily extended to metric spaces or topological spaces. But we
need recall definitions of open sets and interior in those spaces (and in fact some other
foundations will also help).

2 We will first provide these defintions in ℜn and then provide the idea for extending them
to more abstract topological/metric/normed spaces.

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 182 / 223



Positive Semidefinite Cone, Generalized Inequality and Convex Analysis
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More on Convex Sets and Advanced Material on Convex Analysis

Positive Semi-definite cone.
Positive Semi-definite cone: Example and Notes.
Linear program and dual of LP.
Properties of dual cones.
Conic Program.
Generalized Inequalities.
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Positive semidefinite cone: Notes

1 Claim : (Sn+)∗ = (Sn+)
2 i.e. <X,Y> = tr(XTY) = tr(XY) ≥ 0 ∀ X ∈ (Sn+) iff Y ∈ (Sn+)

Proof:
1 1 Let us say Y /∈ Sn

+. That is ∃ z ∈ ℜn s.t. zTYz = tr(zzTY) < 0
2 i.e. ∃ X = zzT ∈ Sn

+ s.t. <X,Y> < 0
3 =⇒ Y /∈ (Sn

+)
∗

2 1 Suppose Y,X ∈ Sn
+. Any X ∈ Sn

+ can be written in terms of eignvalue decomposition as:
2 X =

∑
i=1:n λiuiuTi (λi ≥ 0)

3 ∴ <Y,X> = tr(YX) = tr(Y
∑

i=1:n λiuiuTi ) =
∑

i=1:n λitr(YuiuTi ) =
∑

i=1:n λiuTi Yui ≥ 0.
4 Since (λi ≥ 0) and (uTi Yui ≥ 0 as Y ∈ Sn

+)
5 =⇒ Y ∈ (Sn

+)
∗
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Positive semidefinite cone: Questions

1 Q) Is there some connection between Y = yyT used for Sn+ = {X ∈ Sn | <yyT,X> ≥ 0}
and (Sn+)∗ = (Sn+).
- (To be revisited as H/W)

2 Q) (Sn++)
∗ = ?, int(Sn+) = (Sn++)

- Ans: (Sn++)
∗ = (Sn+), (will be done formally for general case of convex cones)

- C = convex cone, C∗∗ = cl(C)
3 Q) Consider an application of psd cone for optimization. (thru LP)

1 We will first see (weak) duality in a linear optimization problem (LP).
2 Next we look at generalized (conic) inequalities and the properties that the cone must satisfy

for the inequality to be a valid inequality.
3 Next, we generalize LP to conic program (CP) using generalized inequality and realize weak

duality for CP thru dual cones.
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Linear program (LP) & dual of LP.
We will first see (weak) duality in a linear optimization problem (LP).

1 LP: minx∈ℜn cTx (Affine Objective)
subjected to −Ax + b ≤ 0

▶ Let λ ≥ 0 (i.e. λ ∈ Rn
+)

▶ Then λT(−Ax + b) ≤ 0
▶ =⇒ cTx ≥ cTx + λT(−Ax + b)
▶ =⇒ cTx ≥ λTb+ (c− ATλ)Tx
▶ So, cTx ≥ minx λTb+ (c− ATλ)Tx
▶ Thus,

cTx ≥
{
λTb, if ATλ = c
−∞, otherwise

▶ Note: LHS (cTx) is independent of λ and R.H.S (λTb) is independent of x.

2 Weak duality theorem for Linear Program:
Primal LP (lower bounded) ≥ Dual LP (upper bounded):
(minx∈ℜn cTx, s.t. Ax ≥ b) ≥ (maxλ≥0bTλ, s.t. ATλ = c)
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Conic program

We will motivate through linear programming (LP), generalized inequalities:
1 LP: minx∈ℜn cTx (Affine Objective)

subjected to −Ax + b ≤ 0
▶ Note: −Ax + b ≤ 0 can be rewritten as Ax ≥ 0.
▶ So, constraint is Ax − b ∈ Rn

+
▶ Note: Rn

+ is a CONE. How about defining generalized inequality for a cone K as:
c ≥K d iff c− d ∈ K

2 So, a generalized conic program can be defined as:
minx∈ℜn cTx
subjected to −Ax + b ≤K 0

▶ That is, constraint is Ax − b ∈ K.
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Properties of dual cones
1 If X is a Hilbert space & C ⊆ X then C∗ is a closed convex cone.

▶ We have already proven that C∗ is a closed convex cone.
▶ C∗ = intersection of infinite topological half spaces.
▶ C∗ = ∩x∈C {y|y ∈ X, < y,x >≥ 0}
▶ =⇒ C∗ is closed.

2 C1 ⊆ C2 =⇒ C∗
2 ⊆ C∗

1.
3 interior(C∗) = {y ∈ X| < y,x >> 0}
4 If C is cone and has int(C) ̸= ∅ then C∗ is pointed.

▶ Since; if y ∈ C∗ & −y ∈ C∗, then y = 0.
5 If C is cone then closure(C) = C∗*

▶ If C = open half space, then C∗* = closed half space.
6 If closure of C is pointed, then interior(C∗) ̸= ϕ.

S is called conically spanning set of cone K iff conic(S) = K.
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Generalized Inequalities
a convex cone K ⊆ ℜn is a proper cone (or regular cone) if:
(Some restrictions on K that we will require, H/W Why?)

K is closed (contains its boundary)
K is solid (has nonempty interior)
K is pointed (contains no line)

▶ i.e. K has no straight lines passing through O.
▶ i.e. if −a, a ∈ K, then a = 0

examples
non-negative orthant K = Rn

+ = {x ∈ ℜn|xi ≥ 0, i = 1, ..., n}
positive semidefinite cone K = Sn+
nonnegative polynomials on [0,1]:
K = {x ∈ ℜn|x1 + x2t+ x3t2 + ....+ xntn−1 ≥ 0 for t ∈ [0, 1]}
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Valid Inequality and Partial Order

To prove that K being closed, solid and pointed are necessary & sufficient conditions for ≥K to
be a valid inequality, reall that any partial order ≥ should satisfy the following properties:(refer
page 51 of www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf):

1 Reflexivity: a ≥ a;
2 Anti-symmetry: if both a ≥ b and b ≥ a, then a = b;
3 Transitivity: if both a ≥ b and b ≥ c, then a ≥ c;
4 Compatibility with linear operations:

1 Homogeneity: If a ≥ b and λ is a nonnegative real, then λa ≥ λb, i.e. one can multiply both
sides of an inequaility by a nonnegative real.

2 Addititvity: if both a ≥ b abd c ≥ d, then a+ c ≥ b+ d, i.e. One can add two inequalities of
the same sign.

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 191 / 223



Example of Partial Order

Example of Partial Order ⊆ over sets
The Hasse diagram of the set of all subsets of a three-element set {x, y, z}, ordered by
inclusion(Inclusion, i.e. the Partial Order ⊆):

(source http://en.wikipedia.org/wiki/Partially_ordered_set)
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Dual Cones and Generalized Inequalities
Instructor: Prof. Ganesh Ramakrishnan
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Contents: Vector Spaces beyond ℜn

Recap: Linear program (LP) & dual of LP.
Recap: Conic program.
Recap: Linear program (LP) & dual of LP.
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Linear program (LP) & dual of LP.
We will first see (weak) duality in a linear optimization problem (LP).

1 LP: minx∈ℜn cTx (Affine Objective)
subjected to −Ax + b ≤ 0

▶ Let λ ≥ 0 (i.e. λ ∈ ℜn
+)

▶ Then λT(−Ax + b) ≤ 0
▶ =⇒ cTx ≥ cTx + λT(−Ax + b)
▶ =⇒ cTx ≥ λTb+ (c− ATλ)Tx
▶ So, cTx ≥ minx λTb + (c − ATλ)Tx
▶ Thus,

cTx ≥
{
λTb, if ATλ = c
−∞, otherwise

▶ Note: LHS (cTx) is independent of λ and R.H.S (λTb) is independent of x.

2 Weak duality theorem for Linear Program:
Primal LP (lower bounded by dual) ≥ Dual LP (upper bounded by primal):
(minx∈ℜn cTx, s.t.Ax ≥ b) ≥ (maxλ≥0bTλ, s.t.ATλ = c)
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Conic program

We will motivate through linear programming (LP), generalized inequalities:
1 A generalized conic program can be defined as:

minx∈ℜn cTx
subjected to −Ax + b ≤K 0

▶ That is, constraint is Ax − b ∈ K.
2 Q: Has to generalize −Ax + b ≤ 0 to −Ax + b ≤K 0 s.t. ≤K is a generalized inequality &

K some set?
3 What properties should K satisfy so that ≤K satisfies properties of generalized

inequalities?

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 196 / 223



Valid Inequality and Partial Order

To prove that K being closed, solid and pointed are necessary & sufficient conditions for ≥K to
be a valid inequality, reall that any partial order ≥ should satisfy the following properties:(refer
page 51 of www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf):

1 Reflexivity: a ≥ a;
2 Anti-symmetry: if both a ≥ b and b ≥ a, then a = b;
3 Transitivity: if both a ≥ b and b ≥ c, then a ≥ c;
4 Compatibility with linear operations:

1 Homogeneity: If a ≥ b and λ is a nonnegative real, then λa ≥ λb, i.e. one can multiply both
sides of an inequaility by a nonnegative real.

2 Addititvity: if both a ≥ b abd c ≥ d, then a+ c ≥ b+ d, i.e. One can add two inequalities of
the same sign.
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Example of Partial Order

Example of Partial Order ⊆ over sets
The Hasse diagram of the set of all subsets of a three-element set {x, y, z}, ordered by
inclusion(Inclusion, i.e. the Partial Order ⊆):

(source http://en.wikipedia.org/wiki/Partially_ordered_set)
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Proof of generalized inequality

To prove that K being closed, solid and pointed are necessary & sufficient conditions for ≥K to
be a valid inequality.
Proof:

1 K being pointed convex cone =⇒ ≥K is a partial order
1 Reflexivity: a ≥K a, since a− a = 0 ∈ K (∵ K is cone)
2 Anti-symmetry: If a ≥K b & b ≥K a then a = b, since a - b ∈ K & b -a ∈ K =⇒ a - b = 0

(∵ K is pointed)
3 Transitivity: If both a ≥K b & b ≥K c then a ≥K c, since a - b ∈ K & b -c ∈ K =⇒ (a - b)

+ (b - c) ∈ K (∵ K is a convex cone i.e. contain all conic combinations of points in the set)
4 Homogeneity: If both a ≥K b & λ ≥ 0 then λa ≥K λb, since a - b ∈ K & λ ≥ 0 =⇒ λ(a -

b) ∈ K (∵ K is a cone)
5 Additivity: If a ≥K b & c ≥K d then a + c ≥K b + d, since a - b ∈ K & c -d ∈ K =⇒ (a +

c) - (b + d) ∈ K (∵ K is a convex cone)
2 ≥K is a partial order =⇒ K being pointed convex cone
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Proof of generalized inequality

To prove that K being closed, solid and pointed are necessary & sufficient conditions for ≥K to
be a valid inequality.
Proof:

1 ≥K is a partial order =⇒ K being pointed convex cone
1 K is convex cone: If x,y ∈ K then θ1x + θ2y ∈ K∀ θ1, θ2 ≥ 0, since x ≥K 0 & y ≥K 0 =⇒

θ1x ≥K 0 & θ2y ≥K 0 ∀ θ1, θ2 ≥ 0 (Homogeneity of ≥K) and thus θ1x + θ2y ≥ 0 (Additivity
of ≥K)

2 K is pointed: If x ∈ K & −x ∈ K then x = 0, since x ≥K x & −x ≥K 0 =⇒ 0 ≥K x
(reflectivity x ≥K x, and adding x ≥K x&−x ≥K 0 by additivity) and −x ≥K x (additivity
on −x ≥K 0 & 0 ≥K x) and similarly x ≥K −x, and by applying anti-symmetry on −x ≥K x
& x ≥K −x we get x = −x i.e. x = 0.
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Additional properties over & above K being pointed convex cone

1 Que: Suppose ai ≥K bi ∀ i & ai → a & bi → b, then for a ≥K b what more is required of
K?

2 Ans: Necessary condition is that ai - bi → a− b ∈ K. i.e. K is closed(Also happens to be
a sufficient condition).

3 Que: What is required so that ∃ a >K b (i.e. b ≱K a)?
4 Ans: Sufficient condition is that a− b ∈ int(K) i.e. int(K) ̸= ϕ OR K has non-empty

interior.
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Linear program (LP) & Conic program.

We will first see (weak) duality in a linear optimization problem (LP).
1 LP: minx∈ℜn cTx (Affine Objective)

subjected to −Ax + b ≤ 0

−Ax + b ≤ 0 can be rewritten as Ax ≥ b or Ax − b ∈ ℜn
+ Note: ℜn

+ is a CONE. How about
defining generalized inequality for a cone C as c >K d iff c− d ∈ K and a generl conic program
as:

1 minx∈ℜn cTx
subjected to −Ax + b ≤K 0

That is, constraint is Ax − b ∈ K.
K is a proper cone.
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Generalized Inequalities
a convex cone K ⊆ ℜn is a proper cone (or regular cone) if:
(Some restrictions on K that we will require, H/W Why?)

K is closed (contains its boundary)
K is solid (has nonempty interior)
K is pointed (contains no line)

▶ i.e. K has no straight lines passing through O.
▶ i.e. if −a, a ∈ K, then a = 0

examples
non-negative orthant K = Rn

+ = {x ∈ ℜn|xi ≥ 0, i = 1, ..., n}
psitive semidefinite cone K = Sn+
nonnegative polynomials on [0,1]:
K = {x ∈ ℜn|x1 + x2t+ x3t2 + ....+ xntn−1 ≥ 0 for t ∈ [0, 1]}
Que: What if n → ∞, can you get proper cones under additional constraints?
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Linear program & its dual To Conic program and its dual.
Consider LP and its dual:

1 LP: minx∈ℜn cTx (Affine Objective)
subjected to −Ax + b ≤ 0

▶ Let λ ≥ 0 (i.e. λ ∈ Rn
+)

▶ Then λT(−Ax + b) ≤ 0
▶ =⇒ cTx ≥ cTx + λT(−Ax + b)
▶ =⇒ cTx ≥ λTb+ (c− ATλ)Tx
▶ So, cTx ≥ minx λTb+ (c− ATλ)Tx
▶ Thus,

cTx ≥
{
λTb, if ATλ = c
−∞, otherwise

▶ Note: LHS (cTx) is independent of λ and R.H.S (λTb) is independent of x.

2 Weak duality theorem for Linear Program:
Primal LP (lower bounded by dual) ≥ Dual LP (upper bounded by primal):
(minx∈ℜn cTx, s.t.Ax ≥ b) ≥ (maxλ≥0bTλ, s.t.ATλ = c)
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Conic program
Refer page 5 of http://www2.isye.gatech.edu/~nemirovs/ICMNemirovski.pdf:

1 Conic program:
minx∈ℜn cTx
subjected to −Ax + b ≤K 0

2 Generalized conic program:
minx∈V < c,x >V
subjected to Ax − b ∈ K

3 K is a regular/proper cone.
4 We need an equivalent λ ∈ D ⊇ K∗ s.t.

<λ,Ax − b >≥ 0.
5 This K∗ s.t.

D = {λ| < λ,Ax − b >≥ 0, λ ∈ V ∀ Ax − b ∈ K}
& D ⊇ K∗ is dual cone of K
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Dual of Conic program

1 Refer page 7 of http://www2.isye.gatech.edu/~nemirovs/ICMNemirovski.pdf:
K∗ = {λ : λTξ ≥ 0 ∀ξ ∈ K} is the cone dual to K.

2 With this follows weak duality theorem for CONIC PROGRAM:
Primal CP (lower bounded by dual) ≥ Dual CP (upper bounded by primal):
(minx∈V < c,x >V, s.t. < λ,Ax − b >≥ 0.) ≥ (maxλ∈K∗ < b,λ >, s.t.ATλ = c)
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Notes: LP and CP

1 Both LP and CP dealt with affine objectives.
2 CP dealt with the generalized conic inequalities.
3 Later, in convex optimization, we will deal with the more general convex functions in the

objective.
Some Generalizations:

1 If K = Rn
+, the CP is an LP.

2 If K = Sn+ (Set of all nXn SPD matrices), the CP is an SDP (Semi-definite program).
3 Any generic convex program can be expressed as a cone program (CP).
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Dual of dual

1 If K is a closed convex cone then K∗∗ = K.
2 More generally, if K is just a convex cone, K∗∗ = closure(K) (abbreviated as Cl(K))

We will prove that if K is closed, then K∗∗ = K:
1 K ⊆ K∗∗, since x ∈ K =⇒ < x,y >≥ 0 ∀ y ∈ K∗ =⇒ x ∈ K∗∗.
2 K∗∗ ⊆ K, we will prove by contradiction. Suppose x ∈ K∗∗ but x /∈ K:

1 K∗∗ is closed since any dual cone is intersection of half spaces that are closed.
2 {x} is a singleton set.
3 =⇒ by ”strict hyperplane theorem” (on next page and proved later):

∃a ∈ V & b ∈ ℜ s.t. < a,x >< b& < a,y >≥ b∀ y ∈ K.
4 =⇒ < a,x >< 0 ≤< a,y > ∀y ∈ K. (Since y = 0 ∈ K∗∗, Claim: b = 0 if V is a closed

convex cone)
5 =⇒ a ∈ K∗ & x /∈ K∗∗ [contradiction]
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