
A Structure-sensitive Framework for Text Categorization

Ganesh Ramakrishnan
∗

IBM India Research Lab
New Delhi, India

ganramkr@in.ibm.com

Deepa Paranjpe
†

IBM India Research Lab
New Delhi, India

dparanjp@in.ibm.com

Byron Dom
Yahoo! Inc.

Sunnyvale, CA

bdom@yahoo-inc.com

ABSTRACT
This paper presents a framework called Structure Sensitive
CATegorization(SSCAT), that exploits document structure
for improved categorizaton. There are two parts to this
framework, viz. (1) Documents often have layout structure,
such that logically coherent text is grouped together into
fields using some mark-up language. We present a log-linear
model, which associates one or more features with each field.
Weights associated with the field features are learnt from
training data and these weights quantify the importance of
the field features in determining the category for the doc-
ument. (2) We present a method that associates weights
with words in phrasal constructs and exploits natural lan-
guage structure of these constructs to boost weights of im-
portant words called focus words. These weights are learnt
from example instances of phrasal constructs, marked with
the corresponding focus words. The learning is accomplished
by training a classifier that uses linguistic features obtained
from the text’s parse structure. The weighted words, in
fields with phrasal constructs, are used in obtaining features
for the corresponding fields. SSCAT was tested on the su-
pervised categorization task of over one million products
from Yahoo!’s online shopping data. With an accuracy of
over 90%, our classifier outperforms Naive Bayes and Sup-
port Vector Machines. This not only shows the effectiveness
of SSCAT but also strengthens our belief that linguistic fea-
tures based on natural language structure can improve tasks
such as text categorization.

Categories and Subject Descriptors
H.3.0 [Information Storage and Retrieval]: Indexing

General Terms
Framework, Algorithms, Experiments

∗Work done while interning at Yahoo!, Bangalore.
†Contact Author.Work done while interning at Yahoo!, Ban-
galore.

Keywords
Text Categorization, Log-linear Model, Naive Bayes, Con-
ditional Random Fields, Natural Language Processing

1. INTRODUCTION
Categorization is defined as the task of assigning a category,
chosen from a pre-defined set or hierarchy of categories, to
an instance under consideration. Most state-of-the-art cat-
egorizers use a supervised learning approach; a classifier is
trained on manually categorized text documents. The fea-
ture space in most of these is obtained using simple word
counts in the documents and this is typically referred to as a
bag of words representation for the documents. However, the
documents to be categorized, often come with some “semi-
structure”, rendered by use of a markup language. Huge
text datasets are marked up with standardized languages
such as SGML, HTML and XML. Application specific, ad
hoc markup languages are used in several cases, to group
together logically coherent parts of the text. Emails, news-
group postings and newspaper articles contain a certain lay-
out due to their application specific markup.

As an example, consider product offers from Yahoo! Shop-
ping1 where an ad hoc markup language is used to point
out the attributes of a product. An example document for
a Yahoo! product, with all its details, is presented in figure
1. In this, the layout segregates the title, price, description,
mid (merchant id), merchantCategory and a ManualCate-
gory i.e. the manually assigned category picked from Ya-
hoo!’s taxonomy. Figure 2 lists some product categories to
which these semi-structured product documents need to be
assigned. The title carries the key information about the
product while the description helps a buyer know details
about it. Fields such as merchant category display corre-
lations with product categories; products tagged with cer-
tain merchant categories tend to be assigned only certain
specific categories. Each merchant has a unique identifier
called mid. On an average, a particular merchant can be
expected to be dealing only with a subset of product types.
This leads to a correlation between the mid of a product
and its category. Also, a product with very high price is
likely to fall in the category of Jewelery. A manual catego-
rizer considers all these fields while choosing the appropriate
category for a product. An automatic categorizer could ben-
efit from simulating the behaviour of a manual categorizer.
This simulation could be achieved by supervised learning on
manually categorized products.

1http://shopping.yahoo.com

<title:Bernese Mountain Dog Notecards>
<price:9.95>
<merchantCategory:Dogs Bernese Mountain Dog
Notecards>
<ppath:Home Garden Garage/Arts Antiques Collectibles/>
<mid:1013203>
<description:These full-color, high quality notecards, by
portrait artist Ruth Maystead, capture the true essence of
the animal. They come in a box of 6 cards with envelopes
and measure 5 1/2”x4 1/4”.>

Figure 1: Example product

Flowers Gifts Registry/Flowers
Flowers Gifts Registry
Flowers Gifts Registry/Party Supplies
Home Garden Garage/Arts Antiques Collectibles
Home Garden Garage/PETS
Electronics
Apparel/Shoes
Jewelry Watches

Figure 2: List of example categories

1.1 Our Goal
We outline two goals based on our observations from several
example products, one of which is exemplified in figure 1.

1. The document is semi-structured and each field in the
document carries information with specific relevance
to its category. Values in the “Merchant Category”
field exhibit preferential association with certain prod-
uct categories. Products belonging to the “Jewelry
Watches” or “Electronics” categories tend to have nu-
merically higher values in the “price” field than those
belonging to the “Flowers Gifts Registry” or “Home
Garden Garage” categories. In its own way, each field
exhibits similarity with the category. Moreover, fields
can have different levels of importance in character-
izing the category. Any categorizer built by pooling
together all the tokens across all the fields in every
product document, obviously misses out the informa-
tion embedded in the fact that the document has a
segregation between certain groups of tokens, in the
form of fields. We seek a categorizer that exploits the
explicit information present in the documents’ layout
structure. Rather than exploiting this structural in-
formation by fiat, our goal is to learn to do so on the
basis of training data.

2. The title field of the product has some words which are
key to determining its correct category. For example,
in the product shown in figure 1, the word “Notecard”
is more important for determining the category than
say, “Dog”. Further, fields such as title and description
of the product have natural language structure. A
plain word-count based feature space cannot capture
the inherent structure due to natural language. Our
goal is to exploit the the implicit information carried
in the natural language structure of phrase structured
titles.

1.2 Our Contribution
This paper has two main contributions, viz.

• We present a generic, structure-sensitive algorithm for
categorization of documents whose fields are demara-
cated. The algorithm provides for one or more features
to be associated with each field. It also has a learn-
ing mechanism by virtue of which, importance, in the
form of weights, for each of the field features for cat-
egorization, can be learnt from a set of categorized
documents.

• We present an algorithm that exploits the syntactic
parse structure of phrasal constructs. Our algorithm
associates weights with words in such constructs and
exploits their natural language structure to boost weights
of important words called focus words. In the par-
ticular case of product documents, we identify two
instances of focus words in product titles viz. brand
names and product names, that tend to have high cor-
relation with the respective product categories. The
weights associated with the words in a phrasal con-
struct are learnt from example instances of phrasal
constructs, marked with the corresponding focus words.
The learning is accomplished by training a classifier
that uses several linguistic features obtained from the
text’s parse structure.

Our categorization framework comprises the two algorithms
mentioned above. We refer to this framework as SSCAT.
Emails, newspaper articles, newsgroup postings, products’
data and advertisements are example documents that fall
under the class of documents addressed by SSCAT. Catego-
rization of these documents into specified categories carries
immense commercial and scientific value.

1.3 Related Work
Existing methods for automatic text categorization[1, 4, 5,
11] do not use the layout and natural language structure
information of semi-structure documents for their catego-
rization. In [8], the authors use the structural information
such as layout and look and feel of web pages for cluster-
ing structurally similar pages. Toward better information
extraction, [3] presents a method for automatic extraction
of entities from a document based on its visual character-
istics and relative positions of the entities in the document
layout. The class of documents that we address have a lay-
out structure that is more ad hoc, while the existing meth-
ods have mainly addressed documents written in standard
mark-up languages. In [14], the authors have used a bag-
of-concepts model for improving the performance of SVMs
in text categorization. These concepts are obtained from
the co-occurence of words with contexts and documents (as
in LSI). There have also been attempts [2, 6] at using nat-
ural language processing for improving the information re-
trieval task. Unlike these approaches, we use natural lan-
guage structure for identifying important words in sentences,
leveraging the recent advances made in natural language
parsing techniques [9, 10]. The lingustically motivated in-
dexing methods [15], use phrases instead of words for IR.
In our approach, however, we identify features for catego-
rization based on the natural language phrase structure. In
[13], the authors draw a conclusion that the use of linguis-
tic features do no good for text categorization tasks. Unlike
their results, we observe that the use of right kind of linguis-
tic features obtained from the syntactic parse of the phrasal

constructs, significantly improves the categorization accura-
cies.

2. EXPLOITING DOCUMENT LAYOUT
We associate one or more features fix with each field i in the
document. Thus, ∀i we have only fi1 , which we represent
simply as fi. There are two arguments for each feature viz.
the product prodj and a category catk. Thus, fi(prodj , catk)
is any real-valued characteristic of the tuple < ith field of
prodj , catk >. For instance, fi can be any measure of simi-
larity between the ith field of prodj and the collection of all
ith fields of the products in catk from training dataset. De-
tails of the specific features we used can be found in section
2.4. Our goal is to learn the relative importance of the differ-
ent field features of the product for determining the correct
product category. This amounts to learning a weight factor
λi for each feature fi().

2.1 The Classification Model
We define two classes; C+ is the class of (product, correct
category) pairs and C− is a class of (product, incorrect cat-
egory) pairs. Given a (product, category) pair, we wish to
assign it to one of the two classes. We use the Bayes rule
and calculate the relevant posterior probability

P (C+|prodj , catk) =
P (prodj , catk|C+)P (C+)

P (prodj , catk)
(1)

=
1

1 + e−ξ

where

ξ = log[
P (prodj , catk|C+)

P (prodj , catk|C−)
] + log[

P (C+)

P (C−)
] (2)

The first expression on the right hand side of equation 2 is
the likelihood ratio while the second expression is the prior
ratio. Next we have to choose a particular form for the class
conditional density P (prodj , catk|C1).

2.2 Exponential model for class conditional
distribution of product-category pairs

We model the joint distribution of prodj and catk given each
class C∗, as an exponential distribution given by equation
3.

p(prodj , catk|C∗) =
1

Z
p0(prodj , catk|C∗) (3)

∗ exp(
X

i

λ∗ifi(prodj , catk))

where the λ∗i’s are the parameters of the model for class C∗,
Z is a universal normalization constant, and the fi(prodj , catk)’s
are arbitrary computable properties, or features, of the product-
category pair (prodj , catk) - in this case the similarity mea-
sures over various fields. p0(prodj , catk|C∗) is any arbi-
trary initial distribution, sometimes loosely referred to as
the “prior”. For instance, we may model p0(prodj , catk|Cj)
as a uniform distribution. It might also be derived (using
the chain rule) from a conditional distribution. Substitut-
ing from equation 3 for ∗ = +,− into equation 1, we get the
equation 4 for logistic regression.

p(C+|(prodj , catk) =
1

1 + e(−λfT +b)
(4)

= σ(λfT + b)

where f is a vector of the features and λ is a vector of dif-
ferences between the class parameters corresponding to re-
spective features (fi’s). b is a scalar and is given in equation
5.

b = log[
P (C+)

P (C−)
] + log[

P0((product, category)|C+)

P0((product, category)|C−)
] (5)

To use the class conditional exponential model to estimate
the probability that a given (product,category) pair belongs
to class C+, one need only calculate p0(product, category|C+)
and the values of the various features fi(product, category),
and use equation 4. Thus using the model is straightfor-
ward. In particular, the most probable category cat(prodj)
for a product prodj is determined by equation 6.

cat(prodj) = argmaxk∈[1,|CAT |]P (C+|prodj , catk) (6)

We have cast this n-class classification problem into a binary
classification problem because logistic regression internally
would solve the n-class classification problem using binary
regressors.

2.3 Estimating parameters
The problem is of predicting a binary output y ∈ C+, C−
from inputs (product, category). Consider N random sam-
ples (yt, prodt, catt), t = 1, 2....N (these random samples
correspond to training instances), where yt = C+ iff catt

is the correct category for prodt. . Else yt = C−. The
likelihood function is given as

L =

NX

t=1

logp(yt|prodt, catt)

=

NX

t=1

logp(yt|f t)

=

NX

t=1

(ytlogσ(λf tT
)

+ (1− yt)log[1− σ(λf tT
)]) (7)

Equation 7 can be rewritten as equation 8.

L =

NX

t=1

(ytlogσ(λf tT
) + (1− yt)logσ(−λf tT

)) (8)

This is a non-linear function of λ whose maximum cannot be
computed in a closed form. Two simple iterative algorithms
for computing these would be the gradient descent and the
Newton’s method.

2.4 Feature Engineering
We identify features for broadly two types of fields in mak-
ing an appropriate choice for fi(prodj , catk); (1) the price
field which has numerical values and (2) text fields viz., ti-
tle, description, mid and merchantCategory, each of which
comprises one or more tokens.

Consider a product prodj that needs to be categorized. For
the price field, we get the value of the fprice(prodj , catk)
feature using the following steps:
(1) For each category catk, we concatenate the price fields of

all the documents in the training set, that have been asso-
ciated with category catk. We call this concatenated entity
as pricek. (2) Using lucene[7], we build an index on the
numeric values of pricek for all categories k. (3) Based on
the value price(prodj) in the price field of prodj , we frame a
lucene query QPRICE = [pricej×0.9 TO pricej×1.1]. Note
that for fields such as price, a range of values is considered
instead of individual values. Our observations mentioned
in section 1 showed that range of prices are correlated with
the product categories. (4) QPRICE, fired on the index
of pricek retrieves categories that have some documents in
their training set with price values falling in that range. Fur-
ther, these categories are ranked. (5) For each test product
prodj , we obtain fprice(prodj , catk) as the reciprocal of the
rank of catk in the above retrieved set. If a particular catk

did not figure in the retrieved set (which can happen if catk

had no product in the training set with price in the range
specified by QPRICE), fprice(prodj , catk) is set to 0.

For every other field i, we get the value of fi(prodj , catk) in
the following manner:
(1) We generate instances using the ith field of each prod-
uct in the training dataset and associate the category of
that product with this instance. (2) Using these instances
for training, we build a multinomial naive bayes classifier
with Lidstone smoothing. (3) For each test product in-
stance prodj , fi(prodj , catk) is obtained as the probability
of catk given the ith field of product prodj . That is, ∀prodj ,
fi(prodj , catk) = Pr(catk|fieldi(prodj)).

In section 3, we present a feature for the title field, which
is sensitive to the natural language structure of the title.
The method for obtaining that feature, selectively boosts
the weights of certain tokens in the product field to obtain
weighted word counts for the multinomial naive bayes clas-
sifier.

3. FEATURE ENGINEERING FOR PROD-
UCT TITLE

The example product shown in figure 1 is a “notecard” with
an inscribed image of the bernese mountain dog. This is ap-
parent from the product title. However, a naive bayes clas-
sifier that is built using a bag-of-words model gets misled
by the presence of words such as “dog” and assigns the in-
correct category, “Home Garden Garage/Pets”, to the prod-
uct. Categorization of a document solely driven by global
statistics of its consituent words and oblivious of their lo-
cal importance in the context of the product, is prone to
such errors. However, the fact that “notecard” is more im-
portant in determining the product category than “dog” or
“bernese” is revealed to a human reader by virtue of the
natural language structure of the title. We emulate this
behaviour by analyzing the syntactic parse of the title and
associating levels of importance, in the form of weights, with
the different words in the title.

3.1 Focus words of text units
We introduce the notion of focus of a well structured phrase
or a simple sentence. Given a task involving a natural lan-
guage construct, we define the focus of the construct as,
words in the construct that are key to accomplishing that
task. For the task of detecting the answer entity to a factoid

question, the focus are those keywords that specialize to an
answer in an answer passage. The question, What is the
capital of Japan? has “capital” as its focus word. Given the
task of categorizing products, the focus of the product ti-
tle, “Bobby Pins with Pear Colored Stone-22 color choices”
is the product type “Bobby pins”. Thus, product names in
the product titles are focus words. Consider another prod-
uct title “3202-1950 color slim CD jewel case by Memorex”.
The product name in this case is “CD jewel case” and is a
strong indicator of the actual category, “Electronics”. How-
ever, the title carries another strong clue for categorization
in the brand name, “Memorex”. In fact, “Memorex” man-
ufactures products that are exclusively associated with the
Yahoo! category “Electronics”. Thus, brand names in prod-
uct titles can also be recognized as focus words for the cat-
egorization task. We thus identified two classes of focus
words in the product title that have high correlation with
the product categories. These are namely, the product name
and the brand name of the product.

3.2 Approach to Focus Word Detection
We outline algorithms that exploit the syntactic structure of
product titles for identifying the two types of focus words,
viz., brand names and product names. The algorithms are
based on supervised learning – they learn from example in-
stances of phrasal constructs (in this case titles), marked
with the corresponding focus words. Dictionary lookup is
our baseline algorithm for focus word detection; a dictio-
nary lookup algorithm will, for instance, look up a dictio-
nary of product names and mark as product names, all those
words in the title that happen to be in the dictionary. How-
ever, we believe that the vocabulary of product names keeps
expanding. Moreover, in a product title such as “Bernese
Mountain Dog Notecard”, a dictionary lookup algorithm
will mark “Dog” as well as “Notecard” as product names,
since both actually happen to be product names in differ-
ent categories; “Notecard” is a product name in the “Home
Garden Garage/Arts Antiques Collectibles” category while
“Dog” is sold under the “Home Garden Garage/PETS” cat-
egory. Therefore, tagging both these names as product
names in the above title will be misleading again. Hence,
there is a need to analyse the natural language structure of
the product and determine the focus words based on learn-
ing from example instances. We also refrain from rule-based
tagging of focus words, given the fact that the notion of fo-
cus word could differ across tasks and hence, rules will need
to be constantly tweaked.

However, the most compelling reason for subscribing to a
learning-based approach is the following. Classifiers such as
the probabilistic classifiers, associate a score of support, such
as probability, with an instance’s belonging to a particular
class. For this particular problem there are two classes -
a class of focus words and a class of non-focus words. We
have an instance for each word, with features derived from
the position of the word in the syntactic parse tree of the
title. For a word “w” in a product title, the classifier will
output a probability p(focus class|w). These probabilities
could be used in one of two ways:

(1) “w” can be marked as a focus word iff p(focus class|w) >
θ, where θ is some threshold. Thus, the tagging of focus
words becomes highly sensitive to the choice of θ. Two

words, one with probability slightly less than θ and another
with probability slightly greater than θ are treated very dif-
ferently. This can hurt, if there are more than one word in
the product title that are focus words, albeit to different de-
grees and if the probability p(focus class|w) for one of the
words falls marginally below the threshold. For instance,
the product title “Softalk Shoulder Rests Model no 808ST”
has two words “shoulder” and “rests” as part of the product
name, although “rests” is more important as a focus word.
(2) p(focus class|w) could be used as weight factors for the
title words. Focus words will get a higher score of support.
These weight factors could be used to get weighted word
counts for the multinomial naive bayes classifier for the ti-
tle field instead of the simple multinomial classifier for the
title as was described in section 2.4. Thus, a natural lan-
guage sensitive feature for the title field could be obtained
and plugged into the main product classification algorithm
that exploits the layout structure of the document.

We choose the latter of the two methods. We select logistic
regressor as our classifier since it is a probabilistic classifier
and known to be one of the best performing classifiers for
a two class problem. Section 3.5 describes how we use the
classifier in a modified feature for the title field that incor-
porates information from focus words.

We generated the training data for focus word identification
by manually tagging around 10 thousand product titles from
Yahoo!’s online shopping data. Within each title, words
that stood for the product name and the brand name were
marked out separately.

3.3 Learning to detect product words in titles
We describe how the syntactic parse of a phrase or sentence
can be helpful in identifying the product name. We build a
classifier, with features derived from the parse structure of
the title. To parse the title phrases, we use the lexicalized
version of the PCFG parser [10].

Figure 3: Example parse of a sentence as returned by

the Lexicalized parser

The parse tree for the example phrase 3202-1950 color slim
CD jewel case by Memorex is shown in figure 3. Based on
our observations on the parse structure of the title and the
general trend in the position of product names in the parse
structure, we tried constructing instances in two different
ways.

1. In the first approach, only heads of phrases are con-
sidered as candidate product names. We generate an
instance corresponding to every phrasal node in the
parse tree returned by the lexicalized parser. For each
instance, we identify features that capture the struc-
ture information. The features are: the height of the
phrase, the part-of-speech of the head of the phrase,
the phrase type of the preceeding phrase and the phrase
type of the following phrase. (NP (JJ slim) (NN CD)
(NN jewel) (NN case)) is an example instance de-
rived from the parse tree of figure 3. So is (PP (IN by)
(NN Memorex)) . The feature values for the exam-
ple instance (NP (JJ slim) (NN CD) (NN jewel) (NN
case)) are listed in figure 4.

The class labels for the training data were generated
by assigning “product name” class to phrase instances
whose heads were marked as part of the product name
and “non product name” class to all other instances.

Feature Description Value
phraseHeight height of the phrase 2

from the root
phraseType type of the phrase NP
headPOS part of speech of head NN
nextPhrase type of the phrase PP

on the right
prevPhrase type of the phrase NP

on the left

Figure 4: Description of the features for the instance

associated with the phrase (NP (JJ slim) (NN CD) (NN

jewel) (NN case)) when an instance is associated with each

phrase in the parse tree.

2. In our second approach, we experimented with a differ-
ent set of training instances; an instance was derived
for every word/token in the text. We choose the fol-
lowing as features for each such instance: whether the
token is a head of any phrase (yes/no), part-of-speech
of the token, type of the tightest embedding phrase, the
phrase preceeding the tightest embedding phrase and the
phrase following the tightest embedding phrase. Figure
5 shows the feature values for the token case in the
example sentence of figure 3. The class labels for the
training data were generated by assigning “product
name” class to tokens instances which were marked as
part of the product name and “non product name”
class to all other instances.

3.4 Learning to detect brand names in titles
We use a learning based algorithm for identifying brand
names in product titles in a manner very similar to that
outlined in section 3.3 for product names. We derive an in-
stance from every phrase in the syntactic parse of the title.
The features for each instance were as follows: the height
of the phrase, length of the phrase, the phrase type of the
previous phrase, the phrase type of the next phrase, the
words in the phrase and the part-of-speech tag of each of
the words. We try two classifiers for this task - the logistic
regressor and decision tree.

3.5 Modified Features for Title

Feature Description Example
isHead (yes/no) is the token the yes

head of the tightest
embedding phrase?

phraseType type of the tightest NP
embedding phrase

posType part of speech NN
of the token

nextPhrase type of the phrase PP
to the right of the
tighest embedding phrase

prevPhrase type of the phrase NP
to the left of the
tighest embedding phrase

Figure 5: Description of the features for the instance

corresponding to (NN case) when an instance is associated

with each token.

In section 2.4, we presented a uniform method using a multino-
mial naive bayes classifier for engineering features for fields
such as title, description, mid and merchant category. The
modified features for the title are brand name and product
name that take into account the importance of focus words
of the title phrase. We use the same multinomial naive bayes
classifier as was suggested in section 2.4, except that we ob-
tain weighted counts for words in the training dataset as
well as in the test instance. The weights obtained are the
p(focus class|w) scores from the logistic regressor.

4. EXPERIMENTS
We present categorization experiments with our structure-
sensitive framework on the products listed in Yahoo!’s online
shopping data. The main experiments are related to

1. Learning and inferencing the weighted scores(also called
boost-factors) associated with individual tokens for the
titles composed in natural language. There are again
two ways of assigning weights to tokens: a) based on
how much the token is a product-name for the title
and b) based on how much the token is a part of a
brand-name.

2. Learning and inferencing with the log-linear model,
whose features exploit the layout structure and using
which we can predict the correct category label for a
product.

Note that the output of the first part is used in determining
the feature for the title field, which is plugged into the over-
all categorization algorithm (the second part). We report
accuracies, precision and recall for each experiment, each
averaged over 10 random runs. We also report variances
along with the corresponding accuracies. Thus, an accuracy
of a ± b means average accuracy for the experiment was a
and the variance across the 10 accuracy results was b. In all
the experiments, the ratio of training to test instances was
kept at 60-40%.

4.1 Data Preparation
The data for our experiments came from more than 1 million
Yahoo! products categorized into 67 categories. A sample
from the list of categories was presented in figure 2. Each

product comprised of exactly those fields as mentioned in
figure 1. The training data for the focus word learning was
created manually where a set of product titles were picked up
at random. In these titles, the product name and the brand
name were marked. For training the logistic regressor, the
already existing manually categorized products were used.

4.2 Focus Word Detection in Titles
In this section, we present the results of experiments involv-
ing the product name learner and the brand name learner
and compare our method against the dictionary lookup based
baseline method(see section 3.2). The product and brand
name dictionaries for the baseline algorithms were manu-
ally compiled from several thousands of Yahoo! products.
Though we engineer the structure-sensitive features for ti-
tle using logistic regressor, we also report accuracies with
the J48 decision tree, to assess the suitability of the logistic
regressor for this task. We used the Weka[16] implemen-
tation of LR2 and J48. For product name detection, we
compare the performance of LR and DTree against classi-
fication using Conditional Random Fields(CRFs).We used
the implementation of CRFs given in [12].

4.2.1 Detecting Product Names (PNames)
We used the methods described in section 3.3 for learning to
detect product names. We observe that J48 performs better
than LR. When tokens are used as instances, CRFs do not
perform as good as J48 and LR. Also, CRFs are not adept to
learn with phrases as instances, since the sequence informa-
tion is lost when phrases are used as instances. The results,
reported over a 10-fold cross validation run, are shown in
figure 6.

Categorizer Accuracy(%) PName(%) PName(%)
class precision class recall

DTree with 92.90±1.44 80.74±1.32 68.77±1.55
phrases
as instances
DTree with 90.98±1.14 72.89±1.21 56.70±1.10
tokens
as instances
LR with 91.72±1.76 78.09±1.88 61.83±1.60
phrases
as instances
LR with 90.81±1.25 72.00±1.39 56.41±1.19
tokens
as instances
CRFs with 88.66±0.97 70.73±0.88 32.77±1.05
tokens
as instances
Baseline 60.15 48.23 69.43
(Dict. lookup)

Figure 6: Comparison of different classifiers and differ-

ent feature sets on the task of Product Name detection.

In all these experiments, we observe that the 10-fold cross-
validation accuracies are roughly equal to the training accu-
racies. This suggests that the classifiers are presumably not
over-fitting the training data.

2We use the following abbreviations here. LR for Logistic
Regressor, J48 for the decision tree, CRF for Conditional
Random Fields, PName for the product name and BName
for the Brand Name

All the learning based methods substantially outperform the
baseline algorithm. The baseline algorithm shows somewhat
high recall for the positive (i.e PName) class, owing to the
fact the the product name dictionary is quite exhaustive.
The pitfall in dictionary lookup for product names, which
affects the overall baseline accuracies, was pointed out in
section 3.2.

Figures 7 and 8 show the effect of the size of training data
on the logistic regressor. While the precision saturates at
lesser amount of training data, recall keeps increasing with
increasing amount of training data.

Figure 7: PName (positive) class statistics for LR as a

function of the fraction of the data used for training.

Figure 8: Non PName (negative) class statistics for LR

as a function of the fraction of the data used for training.

4.2.2 Detecting Brand Names (BNames)
The results obtained for brand name detection, reported
over a 10-fold cross validation run, are shown in figure 9.
We used the training set with phrases as instances with the
features as mentioned in section 3.4.

4.3 Categorization with SSCAT
When we incorporate the product-name and brand-name de-
tection into the complete categorization framework, we give
weights/boost-factors to individual tokens in a title rather
than subsetting the tokens by applying a threshold to the
classifier output. Both, the logistic regressor and the con-
ditional random field model output the probability of class

Categorizer Accuracy(%) Precision(%) Recall(%)
DTree with 99.69±1.61 97.64±1.48 99.60±1.77
phrases as
instances
LR with 98.38±1.17 94.32±1.26 99.10±1.10
phrases as
instances

Figure 9: Comparison of different classifiers on the task

of Brand Name detection.

given the feature set for the instance. For these classifiers,
the probability of the focus word class(say), given the in-
stance is more interpretable as a weight for the token than
the scores output by the decision tree. In the final setup,
we experiment with the logistic regressor and the CRF clas-
sifiers for boosting tokens in the title. Since the tokens are
only weighed relative to each other and no thresholding is
done, the problem of low recall for focus word class as men-
tioned in section 4.2.1 is partly taken care of.

The SSCAT categorizer was tried with different lone fea-
tures and the corresponding accuracies, micro-averaged pre-
cision and micro-averaged recall are reported in figure 10.
The results show that the title feature based on boosted ti-
tle, and in particular, boosted using LR model for product
names with tokens as instances, helps categorization, more
than the feature for the title based on simple word counts.
Description also plays an important role in identifying the
category to which the product belongs.

Feature for Micro Averaged F1(%)
Title 74.5±1.23
Title boosted using LR for
product names (token instances) 78.8±1.76
Title boosted using LR for
product names (phrase instances) 77.8±2.25
Title boosted using CRF for
product names (token instances) 74.4±2.12
Title boosted using LR for
brand names (phrase instances) 76.3±0.56
Description 84.5±1.33
Merchant Cat 67.3±2.14
MID 77.3±0.67
Price 15±3.25

Figure 10: Comparison of performance with individual

features

Categorizer Accuracy(%) Micro-avg(%) Micro-avg(%)
precision recall

Naive Bayes 85.0±1.6 87.6±1.7 76.3±1.2
SVM(one vs rest) 87.5±1.7 89.4±1.5 78.7±1.5
Our categorizer
(SSCAT) 92.5±1.8 95.1±1.8 78.0±1.4

Figure 11: Comparison of SSCAT, with all field-features

against other categorizers on same data (each averaged

over 10 random runs).

Based on preceding observations, features on following fields
were selected for the SSCAT classifier: Title boosted using
LR for product names, Title boosted using LR for brand
names, Description, Merchant Category, MID and Price.
The resulting classifier gives accuracies that beat a bag-of-
features based Naive Bayes and SVM classifiers. This result
is tabulated in figure 11. All results are obtained over a

10-fold cross validation run. Figure 12 gives a plot of the
accuracies obtained with SSCAT, as a function of the frac-
tion of the data used for testing(remaining data is used for
testing), each averaged over 10 random runs.

Figure 12: Plot of accuracies for the SSCAT against

fraction of the data used for testing (remaining was used

for training), each averaged over 10 random runs

5. CONCLUSIONS
We presented a categorization framework called SSCAT that
takes advantage of the structure present in text to be cate-
gorized. We brought forth the existence of structure present
in “semi-structured” text that can be exploited to improve
the categorization accuracies. We presented two novel tech-
niques, one for exploiting natural language structure and the
other for the layout structure in text to be categorized. We
used machine learning based algorithms in both the tech-
niques. The categorization accuracy when categorizing Ya-
hoo!’s shopping data with SSCAT is significantly better than
the ones obtained with standard classifiers such as Naive
Bayes and SVMs.

6. REFERENCES
[1] R. Basili, A. Moschitti, and M. T. Pazienza. A hybrid

approach to optimize feature selection process in text
classification. In Proceedings of AI*IA-01, 7th
Congress of the Italian Association for Artificial
Intelligence, pages 320–325, 2001.

[2] R. Basili, A. Moschitti, and M. T. Pazienza.
NLP-driven IR: Evaluating performances over a text
classification task. In IJCAI-01, 17th International
Joint Conference on Artificial Intelligence, pages
1286–1291, 2001.

[3] R. F. Binyamin Rosenfeld and Y. Aumann. Structural
extraction from visual layout of documents. In
Proceedings of the eleventh international conference on
Information and knowledge management, pages
203–210, 2002.

[4] C.-H. Cheng, J. Tang, A. Wai-Chee, and I. King.
Hierarchical classification of documents with error
control. In Proceedings of PAKDD-01, 5th
Pacific-Asia Conferenece on Knowledge Discovery and
Data Mining, pages 433–443, 2001.

[5] G. P. Cheong Fung, J. X. Yu, and H. Lu.
Discriminative category matching: Efficient text

classification for huge document collections. In
Proceedings of ICDM-02, 2nd IEEE International
Conference on Data Mining, pages 187–194, 2002.

[6] M. De Buenaga Rodŕıguez, J. M. Gómez-Hidalgo, and
B. Dı́az-Agudo. Using wordnet to complement
training information in text categorization. In
RANLP-97, 2nd International Conference on Recent
Advances in Natural Language Processing, 1997.

[7] A. S. Group. Jakarta lucene text search engine. In
GPL Library, 2002.

[8] S. Joshi, N. Agrawal, R. Krishnapuram, and S. Negi.
A bag of paths model for measuring structural
similarity in web documents. In KDD ’03: Proceedings
of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages
577–582, 2003.

[9] D. Klein and C. D. Manning. Accurate unlexicalized
parsing. In Proceedings of the ACL Conference, 2003.

[10] D. Klein and C. D. Manning. Fast exact inference
with a factored model for natural language parsing. In
Advances in Neural Information Processing Systems
15, pages 3–10, 2003.

[11] H. Lodhi, J. Shawe-Taylor, N. Cristianini, and C. J.
Watkins. Discrete kernels for text categorisation. In
Advances in Neural Information Processing Systems,
volume 13, pages 563–569. 2001.

[12] A. K. McCallum. Mallet: A machine learning for
language toolkit. http://mallet.cs.umass.edu, 2002.

[13] A. Moschitti and R. Basili. Complex linguistic
features for text classification: A comprehensive study.
In ECIR, pages 181–196, 2004.

[14] M. Sahlgren and R. Cster. Using bag-of-concepts to
improve the performance of support vector machines
intext categorization. In COLING, 2004.

[15] Strzalkowski, T. G. Stein, G. Bowden-Wise, and et al.
Natural language information retrieval. In TREC-7,
1998.

[16] I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools with Java implementations.
Morgan Kaufmann, 2000.

